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Abstract

We present Feasibility Jump (FJ), a primal heuristic for mixed-integer linear pro-
grams (MIP) using stochastic guided local search over a Lagrangian relaxation. The
method is essentially incomplete: it does not necessarily produce solutions to all feasible
problems, the solutions it produces are not in general optimal, and it cannot detect in-
feasibility. It does, however, very quickly produce feasible solutions to many hard MIP
problem instances. Starting from any variable assignment, Feasibility Jump repeatedly
selects a variable and sets its value to minimize a weighted sum of constraint violations.
These weights (which correspond to the Lagrangian multipliers) are adjusted for con-
straints that remain violated in local minima. Contrary to many other primal heuristics,
Feasibility Jump does not require a solution of the continuous relaxation, which can be
time-consuming for some problems. We compare FJ against FICO Xpress Solver 8.14
and we show that this heuristic is effective on a range of problems from the MIPLIB 2017
benchmark set [17], significantly improving the average time to first feasible solution. We
also show that providing these quick solutions to Xpress produces a modest reduction in
the average time to optimal solution in the same benchmark set.

Our entry based on FJ to the MIP 2022 Computational Competition (which challenged
participants to write LP-free MIP heuristics) won 1st place. Moreover, an implementation
of Feasbility Jump now runs by default on FICO Xpress Solver 9.0, where similar results
to the ones presented here could be observed [21].

1 Introduction

In mathematical programming, heuristic algorithms have always been an essential tool to
quickly find good feasible solutions. Not only they are used as standalone specialized al-
gorithms, but they are also tightly integrated in all state-of-the-art MIP solvers. The in-
troduction of primal heuristics was one of the four key ideas (together with cutting planes,
branching strategies, and preprocessing) that helped MIP solvers become so effective in the
last two decades [20]. But as MIP solvers got better, users wanted to solve increasingly hard
optimization problems, making sure the task of finding proven optimal solutions (or even just
feasible solutions) would still be challenging. This is particularly true for mixed-integer linear
programs, since it is, in general, not only NP-hard to find an optimal solution, but also NP-
hard to find a feasible one [26]. This work will focus on the development of a general purpose
primal heuristic, that is a heuristic algorithm for finding feasible solutions to generic MIP
problems, allowing it to be used as a standalone heuristic or to be integrated into a generic
MIP solver.

Most of the general purpose primal heuristics employed by existing MIP solvers are applied
only after solving the root node, such as local branching [12], pivot and shift [5], feasibility

1



pump [11], RINS [10], and RENS [7]. Some more recent heuristics that exploit information
obtained from the LP relaxation of a MIP problem include conflict-driven diving heuristics
[25] and even ML-based heuristics, such as [24] and [23].

But very few heuristics have been developed so as to be applied before the root node (i.e.,
pre-root heuristics), and they can generally be subdivided into propagation methods or relax-
ation methods. Propagation methods mostly involve constructive heuristics, where iterative
greedy decisions on the value of variables are propagated to the rest of the problem. Berthold
and Hendel’s [8] shift-and-propagate heuristic follows exactly this approach. It alternately fixes
one variable at a time to a promising value, and propagates this partial assignment to the
rest of the problem. The order in which the variables are fixed is decided from the beginning
and depends on the number of violated rows in the initial assignment. The promising value
of a certain variable, called best-shift, is the one that minimizes the total number of violated
constraints. More recently, a similar structure-driven approach was proposed by Gamrath et
al. [16], where the order in which the variables are fixed is based on information extracted
either from the clique table or the variable bound graph, both of which are usually computed
in the presolve phase of state-of-the-art MIP solvers.

Relaxation methods follow instead a very different approach, usually employing local search
methods in a relaxed version of the problem. This is also the approach recently proposed by Lei
et al. [19] in the context of pseudo-Boolean optimization, that is when all variables have binary
domains (also called 0-1 integer programs). The idea is to consider the Lagrangian relaxation
of a pseudo-Boolean problem and iteratively flip the value of the variable that most reduces
the total weighted constraint violation. The weighting of the constraints (which corresponds
to the Lagrangian multipliers) is updated whenever a local minimum is reached, that is, when
there is no variable that improves the current weighted total constraint violation and the
current assignment is still infeasible. Once a feasible solution has been found, the original
objective function of the problem can be also taken into account. Despite the large amount of
recent literature about Lagrangian methods for MIP problems, most of the proposed heuristics
are very problem specific, and “an improved Lagrangian technology would be a useful tool in
the bag of tricks available for solving difficult optimization problems” [15].

In this paper we describe Feasibility Jump (FJ), a general-purpose pre-root primal heuristic
for mixed-integer linear programming problems that belongs to the category of relaxation
methods. It can be used either as a standalone heuristic or tightly integrated into a more
sophisticated MIP solver. It extends the Lagrangian approach described in [19] to deal with
both general integer and continuous variables. In particular, when considering a variable
separately and assuming all other variables are fixed, we can efficiently find a new optimal
value for the variable. We say that values of promising variables jump towards assignments
with smaller constraint violations. The jump values are computed by extending and improving
the concept of best-shift described in [8]. These values are updated in a lazy fashion, only
after a variable jumps and only for that variable.

Being an incomplete algorithm, Feasibility Jump does not have any guarantee in terms
of finding a feasible solution or proving infeasibility, for example. The trade off is speed.
With a recent laptop and on sparse problems (almost independently of their size), FJ can
hit 1 million jumps per second. Algorithms that quickly produce feasible solutions can be
extremely valuable as a subroutine of a complete branch-and-bound MIP solver, either because
the user might be content with (possibly sub-optimal) solutions that are produced as quickly
as possible, or because the branch-and-bound search itself can become faster when a (good-
quality) feasible solution is known (see, for example, [3, 6, 14]).
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The algorithm was originally developed for the MIP 2022 Workshop’s Computational Com-
petition [1], where it won 1st place. It competed on a set of (hidden) MIP instances as a
standalone heuristic. In this paper, we go one step further by integrating FJ with Xpress,
and showing how it can improve both the time to first feasible solution and the time to op-
timal solution on instances from the MIPLIB 2017 benchmark set [17]. A C++ open-source
implementation of Feasibility Jump together with the Xpress integration are available at
https://github.com/sintef/feasibilityjump.

This paper provides the following contributions:

• a fast and effective primal heuristic for MIP problems;

• a high-performance open-source C++ implementation;

• results from a tight integration with the FICO Xpress solver.

2 Feasibility Jump

A mixed-integer linear program (MIP) is an optimization problem of the form

minimize
∑
j∈N

cjxj

subject to
∑
j∈N

aijxj ≤ bi i ∈M,

lj ≤ xj ≤ uj j ∈ N,
xj ∈ Z j ∈ I,

(1)

where N = {1, . . . , n}, M = {1, . . . ,m}, x ∈ Rn, lj and uj are variable bounds, and I ⊆ N
are indices of variables that are constrained to take only integer values. Any specific vector
x̄ ∈ Rn is an assignment to the variables. An assignment that satisfies the linear constraints,
bounds, and integrality, is a feasible solution. A feasible solution that minimizes the objective
is an optimal solution.

Local search algorithms are heuristic optimization algorithms that work by considering a
feasible solution x̄ and examining a set of other neighboring solutions N (x̄) (i.e., solutions
that are close to x̄ according to some predefined distance measure). If it finds a new feasible
solution x̄′ ∈ N (x̄) with a better objective value, then it sets x̄← x̄′, and the process repeats
as long as such an improving solution can be found. When no such x̄′ exists, the process
has reached a local minimum. It is not possible, in general, to know if the local minimum is
also a global minimum. In practice, local search algorithms work well for many optimization
problems even though their theoretical guarantees tend to be weak [2].

The objective of primal heuristics is to find feasible solutions to problems such as (1).
In the context of a local search algorithm, this requires relaxing some of the constraints,
so that it becomes possible to start from a solution that is feasible for all but the relaxed
constraints. Depending on which constraints get relaxed, different algorithms or techniques
may emerge. For example, the well-known Feasibility Pump (for which we owe the inspiration
of our heuristic’s name) is a local search algorithm that relaxes the integrality constraints of 1
and tries to move towards solutions in which these constraints are less and less violated. Our
approach is different. We relax all but the variable bounds and the integrality constraints,
penalizing the relaxed ones (when violated) in the objective function. This technique is usually
known as Lagrangian relaxation.
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In the next sections, we describe all the pieces that contribute to Feasibility Jump. We first
introduce a Lagrangian relaxation of the MIP problem (Section 2.1) and we explain how to
compute promising values that variables can use to heuristically “jump” towards local minima
of the corresponding Lagrangian function (Section 2.2). We then describe how these values
can be used to efficiently define new neighbourhoods (Section 2.3) and how to traverse them
(Section 2.4). Finally, Section 2.5 summarizes the entire algorithm.

2.1 Relaxing the linear constraints

Based on the well-known Lagrangian relaxation of a MIP problem, we define our relaxed MIP
problem as:

minimize Oq(x) + Fw(x)
subject to lj ≤ xj ≤ uj j ∈ N,

xj ∈ Z j ∈ I,
(2)

where Oq(x) = q
∑

j∈N cjxj is the original objective weighted by q, and Fw(x) is the total
infeasibility penalty of an incumbent solution x, defined as the sum of the infeasibility penalties
computed for each linear constraint

Fw(x) =
∑
i∈M

wifi(x), (3)

where wi is a weight associated to each constraint and the infeasibility penalty fi(·), i ∈ M ,
for a single linear constraint

∑
j∈N aijxj ≤ bi is

fi(x) = max

0,
∑
j∈N

aijxj − bi

 . (4)

The factor q is introduced to adjust the relative importance of the feasibility versus the original
MIP objective. If we set q = 0, the relaxed problem’s objective becomes exclusively to achieve
feasibility in the original problem. We use the max function in fi(·) (as opposed to the classical
Lagrangian full penalty

∑
j∈N aijxj − bi) because we are more interested in solutions that live

at the edge of the feasible region, rather than at its center. On one hand, this could yield
feasible solutions with better objective value and, on the other hand, it can be beneficial for
feasibility heuristics based on local search (see, for example, [11]).

The first surveys on Lagrangian techniques for discrete optimization started appearing
already in the 1970s [22], but the basic idea did not change since then: minimize the Lagrangian
function Oq(x) + Fw(x) for fixed q and w, produce modified weights q̄ and w̄ (usually by
increasing their value for violated constraints and reducing it for satisfied ones), and repeat.
Unfortunately (but not unexpectedly), no theoretical guarantees exist for the this method to
converge to an integer feasible solution [9].

As we will see in the following sections, Feasibility Jump follows a very similar framework.
However, we do not want to minimize the Lagrangian function exactly, but rather look for
a local minimum in neighbourhoods where we are allowed to only change the value of one
variable at a time. The next section describes how to compute a promising value to which
each single variable could jump to.
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2.2 The jump value

Given the current variable assignment x̄ and considering a single variable xj , we would like to
find the value that solves (2) when all variables xk, k ∈ N , k ̸= j, are fixed to their current
value x̄k. In essence, this is the value of xj that minimizes the total constraint violation (plus
the original objective penalty) given that all other variables are fixed to the current incumbent.
But there is a caveat. We want this value to be different from the current x̄j . This is common
in local search methods, where one would want for each variable a non-empty neighbourhood.
However, if xj is not restricted to take only integer values, then one could not simply add the
additional constraint xj ̸= x̄j .

Notice that when all variables but xj are fixed, then each fi(xj) in (4) measures the
constraint violation of an expression of the form aijxj ≤ di, where di = bi −

∑
k ̸=j aikx̄k. If

xj is integer and di is fractional, then it only makes sense to consider aijxj ≤ ⌊di⌋ if aij > 0,
or aijxj ≤ ⌈di⌉ if aij < 0 [18].

In general, given a current variable assignment x̄ and a variable xj , for each constraint
violation function fi(xj | xk = x̄k, k ̸= j) in which aij ̸= 0, we define the critical value,
tij(x̄k ̸=j), as follows:

tij(x̄k ̸=j) =


⌊r⌋ aij > 0

⌈r⌉ aij < 0

r =
1

aij
(bi −

∑
k ̸=j

aikx̄k),

where x̄k ̸=j is short for xk = x̄k, k ̸= j. In other words, the critical value tij(x̄k ̸=j) is
the greatest (resp. smallest, if the coefficient is negative) value that variable xj can take
before constraints i becomes violated, when all the other variables are fixed to x̄. For greater
(resp. smaller) values of xj , the penalty associated with the violation of constraint i increases
proportionally to its corresponding weight wi. For values of xj smaller (resp. greater) than
tij(x̄k ̸=j), the penalty is zero. For a given x̄, this defines a piecewise-linear convex function
gij(t|x̄k ̸=j) such that:

gij(t|x̄k ̸=j) =


max

{
0, wi

(
t− tij(x̄k ̸=j)

)}
aij > 0

max
{
0,−wi

(
t− tij(x̄k ̸=j)

)}
aij < 0,

(5)

where t ∈ R and j ∈ N . For ease of explanation, we ignored the original objective function
in these considerations. This can be taken into account simply by considering the additional
constraint ctx <∞ with a weight equal to q. In the rest of the section, we assume the objective
function to be part of the set of constraint indices M .

We are now ready to define the promising value each variable is allowed to jump to.

Definition 1 Given a feasible solution x̄ for problem (2), we define the jump value of variable
xj as the feasible value of xj (different from x̄j) that minimizes the sum of the constraint
violation penalties,

Gj(t|x̄k ̸=j) =
∑

i∈M : aij ̸=0

gij(t|x̄k ̸=j).

Then we have:
Jumpj(x̄k ̸=j) = argmin

t∈[lj ,uj ],t ̸=x̄j

Gj(t|x̄k ̸=j). (6)
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By looking at (5), it is easy to see that the jump value of a variable will be exactly equal
to one of the values in the set of critical values, plus its lower and upper bounds:

Tj(x̄) = lj ∪ uj ∪
⋃
i∈M

tij(x̄k ̸=j).

Therefore, it is always possible to find a t that is different than x̄j , even in the continuous case.
A simple and efficient algorithm to compute the jump value of variable xj given the current
incumbent x̄ is described in Algorithm (1). We start by computing Tj(x̄k ̸=j) and sorting its
values in ascending order. Then, for every t ∈ Tj(x̄k ̸=j), we keep track of the slope changes
in Gj(t|x̄k ̸=j) while storing the best feasible value t that is different from x̄j . It is easy to
see that the initial slope corresponds to the sum of all negative slopes (see also Example 1),
and once the slope becomes equal to 0 or the upper bound uj is reached, then we found the
optimal solution of mint∈[lj ,uj ], t ̸=x̄j

Gj(t|x̄k ̸=j).

Algorithm 1 Jump value
Input Problem (1), incumbent solution x̄, and variable index j
Output: The jump value.

1: ∆← [(lj , 0), (uj , 0)] ▷ Initialize a list (value,slope) pairs
2: slope← 0 ▷ Initialize the cumulative slope
3: for i ∈M where aij ̸= 0 do
4: ∆.insert

(
(tij(x̄k ̸=j), wi)

)
▷ Add critical value and slope change

5: if aij < 0 then ▷ If coeff. is negative, we start in a negative slope
6: slope← slope− wi

7: t∗ ← −∞ ▷ Initialize the best value
8: for (t, w) ∈ sorted(∆) do
9: slope← slope + w ▷ Update the slope

10: if lj ≤ t ≤ uj then
11: t∗ ← t ▷ Update the best value only when feasible
12: if slope ≥ 0 then ▷ Stop when the slope becomes non-negative
13: break
14: return t∗

The following example demonstrates the computation of the jump value in a simple MIP
problem.

Example 1 Consider a pure feasibility problem (i.e., q = 0 in (2)) and consider the pair of
constraints:

x1 + x2 = 2
x2 + x3 ≥ 3,

where x1, x2, x3 ∈ Z+, the current incumbent is x̄1 = 2, x̄2 = 0, x̄3 = 0, and w1, w2 = 1. Figure
1 shows the constraint violation functions gi,2(t|x̄k ̸=j) and corresponding critical values for the
first (Figure 1a) and second (Figure 1b) constraints, while Figure 1c shows the sum of those
functions and the jump value. In this case, T2(x̄k ̸=j) = {0, 2, 3,+∞}, and Algorithm 1 loops
through these values starting from l2 = 0 with a slope equal to -2. When hitting the critical
value at x2 = 2, the slope changes to 0, and since x̄2 ̸= 2, then 2 is the jump value.

6



1 2 3 4 5 6

2

4

6

ti=1,j=2(x̄k ̸=j)

t

gi=1,j=2(t|x̄k ̸=j)

(a)
1 2 3 4 5 6

2

4

6

ti=2,j=2(x̄k ̸=j)

t

gi=2,j=2(t|x̄k ̸=j)

(b)
1 2 3 4 5 6

2

4

6

Jump2(x̄k ̸=j)
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G2(t|x̄k ̸=j)

(c)

Figure 1: The constraint violation functions for variable x2 (Figure (a) and (b)), and their
sum (Figure (c)).

The jump value was motivated by the best shift of the Shift-and-Propagate heuristic [8].
In [8], given an incumbent solution x̄, the best-shift for a variable xj is the value ψj such that
x̄j+ψj reduces the largest number of violated constraints (assuming the rest of the incumbent
stays the same). This is in contrast with the infeasibility penalties described in (4), where even
partial reductions of constraint violations are considered. The intrinsic problem of considering
only when constraints switch between being violated and satisfied is the loss of information
associated with, for example, the following combination of constraint and incumbent solution:

x1 + · · ·+ xn ≥ b, x1, . . . , xn ∈ {0, 1}, n ≥ 2, b > 1, x̄1, . . . , x̄n = 0.

Since in the current incumbent all variables have value zero, changing the value of any of the
variables individually by +1 would not be enough to satisfy this constraint, and there would
no incentive for the algorithm to do so.

In the next section, we show how can we construct neighbourhoods based on the jump
value.

2.3 Lazy adaptive neighborhoods

Feasibility Jump looks for local minima of (2) by traversing neighbourhoods in which only
one variable at a time can change its value. For a particular incumbent solution x̄, we define
a neighborhood N (x̄) for problem (2) by simply associating a pair (vj , sj) to each variable xj ,
where vj is a new value the variable could jump to and sj represents its corresponding score.

This score is computed as the difference between the current total constraint violation
penalty Gj(x̄j |x̄k ̸=j) and the same penalty obtained by changing the current value of xj from
x̄j to vj :

sj = Gj(x̄j |x̄k ̸=j)−Gj(vj |x̄k ̸=j). (7)

The value vj is computed based on the jump value, but is not necessarily always equal
to the jump value at all times. Ideally, since in the previous section we went through the
trouble of computing the value that minimizes Gj(t|x̄k ̸=j), we would like to always have
vj = Jumpj(x̄k ̸=j). But since the jump values depend on the current incumbent x̄, we would
need to recompute all of them every time we change x̄, which means every time we make a
single variable jump to a new value. This can easily become too computationally expensive.

7



We consider instead “lazy” neighbourhood updates. The idea is to initialize the very first
neighbourhood with the jump values, vj = Jumpj(x̄k ̸=j) for all j ∈ N . Then, every time a
variable xj performs a jump, we update only its value vj = Jumpj(x̄k ̸=j), keeping the remaining
vk, k ̸= j intact, but updating all the scores sj , j ∈ N . This means that in any neighbourhood
except the first one, only the value vj of the variable that performed a jump in the previous
neighbourhood is guaranteed to be equal to its corresponding jump value, as defined in (1).
Note that only the scores of the variables that share the same constraints as the previous
“jumping” variable need to be updated, and this can be done with a simple single pass.

A positive score sj > 0 means that assigning the new value vj to xj will reduce the total
constraint violation of the current incumbent solution. Having defined our neighborhood N
and how to update it, we can hope that repeatedly choosing new assignments for variables
with positive scores will eventually lead us to a feasible solution, or even to an optimal solution
(when q > 0). There are no guarantees, however, that the neighborhood will always contain
such an improving assignment, i.e., that there exist a variable with a positive score. When
this happens, we say that the local search is stuck in a local minimum. To escape such a local
minimum, we can add a new layer of heuristics that will try to perturb the current assignment
or search parameters so that local search will not return to the same local minimum but
instead find a new and potentially better one. The next section describes exactly this.

2.4 How to guide the search

The specific meta-heuristic we use in the Feasibility Jump is known as guided local search (see
[4] for a detailed survey). Guided local search works by modifying the objective function of the
local search whenever the search is stuck in a local minimum. In our Lagrangian relaxation
(2), we introduced the weight parameters wi, i ∈ M , to be able to adjust the “importance”
of each constraint individually. Since these parameters influence the scores sj , j ∈ N , we
hope that we can use them to guide the search out of local minima and towards a feasible (or
optimal) solution.

The heuristic we use for updating these weights is based on the fact that whenever we reach
a local minimum, we expect most of the constraints in our original MIP (1) to be satisfied by
the current assignment. By increasing the weights of the few remaining violated constraints,
we hope that subsequent solutions will be less likely to violate them, since the corresponding
penalties (5) will be higher. In general, a MIP problem may contain constraints that are easy
to satisfy, and other constraints (or combinations of constraints) that are difficult to satisfy.
By increasing the weight of the latter we focus the search on the constraints that are the
hardest to satisfy.

We update the weights wi, i ∈M , at every local minimum by setting:

wi ← ∆W (w, x̄, i),

where ∆W is some weight update function that depends on the current local minimum x̄.
The simplest weight update is to increase the weight of any violated constraints by a constant
amount:

∆W+(w, x̄, i) =

{
wi

∑
j∈N aij x̄j ≤ bi

wi + 1 otherwise.

This is in fact the update function that we have used. We did also experiment with multi-
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plicative updates, i.e.,

∆W ∗(w, x̄, i) =

{
wi

∑
j∈N aij x̄j ≤ bi

λwi otherwise,

which also requires some implementation tricks to avoid saturating the floating point number
representation, but we found that it had no significant effect on the algorithm’s performance.

If we reach a local minimum where no constraints are violated, then we have found a
feasible solution, and ∆W does not change any weights. We can now modify the parameter
q of (2) to increase the weight of the original MIP objective and hope that this leads to a
different feasible solution that has a better objective value in the original MIP (1).

We update q in every local minimum by setting:

q ← ∆Q(q, x̄),

for some objective weight update function ∆Q. The simplest such update is simply to increase
its value by a constant amount whenever all linear constraints are satisfied.

∆Q+(q, x̄) =

{
q + 1

∑
j∈N aij x̄j ≤ bi, i ∈M

q otherwise

While different and more sophisticated update functions could be derived, we found the
current results satisfying.

2.5 The algorithm

In this section we combine the ideas described in the previous sections and present our LP-
free Langrangian MIP heuristic. Feasibility Jump performs a highly-efficient guided local
search by computing promising neighbourhoods based on the jump values, and updating
them lazily. The steps of the algorithms are shown in Algorithm 2. The algorithm starts from
any (potentially infeasible) assignment, and measures how far away the current incumbent
assignment is from satisfying the constraints (i.e., from feasibility). We maintain for each
variable a promising new value (which is different from the current incumbent value), and
we associate to this value a score that is proportional to the potential reduction in the total
constraints violation. At each iteration (line 3-29), we assign a new value to a promising
variable (line 27) and we perform two updates: we compute the jump value for the current
variable, and we update the scores of the variables that appear in the same constraints. If no
value exists that improves the current sum of constraint violations (line 13), we have reached
a local minimum. We increase the weight of the currently unsatisfied constraints and update
the scores of the values of the variables involved (line 15-16). After the first feasible solution
has been found, we augment the function that computes the score of each variable by taking
into account the objective function of the original MIP (line 18-21). This helps steering the
search towards feasible solutions with better objective value.

To further reduce the computational effort of the heuristic, we maintain a set of variable
indices with a positive score, and we choose the variable index with the highest score among
a small random sample of them. We found that maintaining the ranking of all variables to
find the highest scoring one had a modest negative impact in the performance (i.e., number
of “jumps per second”), while providing almost zero benefits. Moreover, a bit of randomness
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Algorithm 2 Feasibility Jump
Input relaxed MIP problem (2), initial assignment x̃
Output: a feasible solution or Null

1: best_feas ←∞, best_obj ←∞, x∗ ← Null ▷ Initialize best feasible solution
2: x̄← x̃ ▷ Initialize incumbent
3: q = 0, wi = 1, i ∈M ▷ Initialize weights
4: vj = Jumpj(x̄k ̸=j), j ∈ N ▷ Initialize promising values
5: sj = Gj(x̄j |x̄k ̸=j)−Gj(vj |x̄k ̸=j), j ∈ N ▷ Initialize scores
6: P = {j ∈ N : sj > 0} ▷ Initialize set of indices with positive score
7: while ShouldTerminate() is false do
8: if Fw(x̄) < best_feas then
9: best_feas ← F (x̄) ▷ Update the best violation penalty

10: if Fw(x̄) = 0 and Oq(x̄) < best_obj then
11: x∗ ← x̄ ▷ Update the best feasible solution
12: best_obj ← Oq(x̄) ▷ Update the best weighted objective
13: if P = ∅ then ▷ Whether we reached a local minimum
14: if Fw(x̄) = 0 then
15: q ← q + 1 ▷ Put more emphasis on the original objective
16: Update all scores sj : cj ̸= 0, j ∈ N
17: else
18: U ← ∅
19: for i ∈ N : fi(x̄) > 0 do
20: wi ← wi + 1 ▷ Put more emphasis on satisfying this constraint
21: U ← U ∪ i
22: Update all scores sj : aij ̸= 0, i ∈ U, j ∈ N
23: j∗ = random choice in N ▷ Random move
24: else
25: P ∗ = randomly choose up to 100 indices from P
26: j∗ = argmaxj∈P ∗ sj ▷ Best move among a random set of good ones
27: x̄j∗ ← vj∗ ▷ Make the move
28: vj∗ = Jumpj∗(x̄k ̸=j∗) ▷ Recompute a new promising value
29: Update all scores sj of the neighboring variables
30: return x∗

can sometimes be beneficial when dealing with MIP problems (see, for example [13]). We use
a sample size of min{n, 100}.

As there is no natural time at which to stop the algorithm, we use an estimate of the
computation effort expended by the algorithm. One of the easiest ways to do this is simply
to sum the size of the bounds of every for-loop that runs. The advantage of using such an
effort estimate over measuring wall-clock time, is that the heuristic runs deterministically,
which simplifies debugging, adds reliability, and is typically a property that MIP solvers
offer. The algorithm terminates after some amount of effort has been expended since the last
improvement made, that is since the last time Fw(x̄) or Oq(x̄) have been reduced. The value
of the threshold has currently been tuned based on the MIPLIB 2017 benchmark set [17].
Whenever FJ runs within a MIP solver, one could also simply decide to stop the algorithm
after any feasible solution has been found (either by FJ or by other components of the MIP
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solver).
The computational complexity of each iteration is dominated by the updating of the scores

and weights:

• Making the choice of variable and direction takes constant time because it consists of
sampling a constant amount of variable scores.

• Updating the constraint weights wi requires iterating over all currently unsatisfied con-
straints (in the worst case, all constraints) and over all variables appearing in those
constraints. In total, the worst case scales with the number of non-zero coefficients in
the problem.

• Updating the objective weight q scales with the number of non-zero objective coefficients.

• Setting the value of a variable requires updating the jump value and the scores of all
the neighboring variables. This requires iterating over all the constraint the that the
variable appears in and all the variables appearing in those constraints. In total, the
worst case scales with the number of non-zero coefficients in the problem.

3 Implementation

We have developed a C++ reference implementation of Feasibilty Jump that is not dependent
on any other MIP solver. This solver is available online1 under an open source license. To
use it, one creates a new FeasibilityJumpSolver object and adds variables by calling the
addVar method. Constraints are added by calling the addConstraint method. The solve
function takes an initial assignment and a callback function parameter that the solver will call
periodically with an FJStatus object, containing the effort spent so far and any new solutions
found and their objective value. The callback function’s return value decides whether to
continue or abort the heuristic.

// Method signatures
class FeasibilityJumpSolver {

FeasibilityJumpSolver(int seed=0, int verbosity=0);
int addVar(VarType type, double lb, double ub, double coeff);
int addConstraint(RowType sense, double rhs, int numCoeffs, int *rowVarIdxs,

double *rowCoeffs);
int solve(double *x, function<int(FJStatus)> callback);

};

The C++ implementation is generic in the type of neighborhoods it uses, with the Jump
value being one of many possible. We have also experimented with other neighborhoods,
such as the nearest integer values (i.e., x̄j ← x̄j ± 1), but found that they had only marginal
impact on the solver’s performance. All uses of the neighborhood throughout the algorithm are
performed through the method forEachMove, where all moves for a variable are enumerated.
The neighborhood can be modified by simply editing this function, which has the following
signature:

template <typename F> void forEachMove(int32_t varIdx, F f);

1https://github.com/SINTEF/feasibilityjump
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Our reference implementation can also be used as a starting point for other experiments with
MIP local search, such as modifying the weight update functions ∆W,∆Q or testing other
meta-heuristics.

Feasibility Jump can be used both a standalone heuristic or integrated within an existing
exact MIP solver. In the latter case, one would be interested not only in improving the
average time to first feasible solution, but also the average time to optimal solution. Current
state-of-the-art MIP solvers, such as FICO Xpress, are already so effective that improving the
average solving time of just few percent would be a great achievement. We used the interface
presented above also to integrate the heuristic with Xpress. But since we only have access
to Xpress’ external interface, it requires copying all the constraints from the Xpress problem
instance representation to the heuristic’s representation. Except for duplicating the constraint
coefficients (also called the matrix ), Feasibility Jump requires very little memory, proportional
the sum of the number of variables and the number of constraints. Duplicating the constraint
coefficients would not be required if the heuristic was implemented using the MIP solver’s
internal interfaces.

To integrate FJ with Xpress, we start by loading the MIP problem into Xpress. Then, we
copy all the variables and constraints from Xpress to FJ and start FJ on a background thread.
After starting FJ (i.e., on the non-presolved instance), we presolve the problem using Xpress
and copy all the variables and constraints of the presolved problem into a new FJ instance,
which is launched on another background thread. We then call the main MIPoptimize function
of Xpress with a checktime callback function, which Xpress will periodically call. In this
callback function we check if any solutions have been found by any of the two FJ threads,
and, if so, copy them to Xpress by using the addMIPsolution method.

Our C++ reference implementation is around 800 lines of code, with Xpress integration
adding an additional 500 lines. The version of Feasibility Jump that participated in the
computational competition of the 2022 Mixed Integer Programming Workshop was written in
Rust and contained a few additional tunable parameters and additional move types. These
additional features only allowed finding feasible solutions to a few more instances from the
MIPLIB 2017 Benchmark collection, and we found that the increase in complexity was not
worth-while for the presentation in this paper (and its accompanying source code), nor for
integration in a more complete branch-and-bound MIP solver system. The Rust competition
implementation is available on request.

4 Computational results

In this section, we provide an extensive set of results to assess the performance and effectiveness
of Feasibility Jump. All tests were executed on single threads of an AMD Threadripper 3990x
CPU running at 2.9GHz with 128GB of memory. The instances we used for testing belong
to the MIPLIB 2017 benchmark set [17], a widely-used set of 240 mixed-integer problems of
various size and difficulty.

We first look at average time it takes FJ to perform an iteration, that is an iteration
of the while loop in line 3 of Algorithm 2. Figure 2 shows a somewhat linear correlation
of the iteration time and the average number of non-zero coefficients per variable. More
importantly, it shows that for many problems of MIPLIB 2017, an iteration can easily take
less than a microsecond.

The next computational results will consider three different solvers:
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Figure 2: Average computation time (in seconds) for each iteration of the while loop of Algo-
rithm (2), for each problem instance in MIPLIB 2017.

• FJ: Feasibility Jump, as described in Section 2.5 and Algorithm 2;

• XPR: FICO Xpress Solver 8.14 in its default settings;

• XPR+FJ: Feasibility Jump integrated into Xpress as described in Section 3.

We compare these solvers on the time it takes to find the first feasible solution of a MIP
problem (Section 4.1), and the time it takes to find an optimal solution (Section 4.2). Note
that FJ typically produces solutions very quickly, if it produces any at all. We did not see
significant improvements in FJ’s performance by increasing the available computational effort
with the current implementation. Feasbility Jump uses a flexible and intuitive framework,
which could be extended to increase its ability of finding feasibile solutions, perhaps at the
cost more computational effort. But, when integrated in a more comprehensive MIP solver, a
very quick heuristic may be preferred, so that more computation time is allocated to methods
that are guaranteed to eventually produce solutions (for example, branch-and-bound).

4.1 Time to first feasible solution

We first compare FJ, XPR, and XPR+FJ on the time it takes to find the first feasible solution
(TFS). We run all solvers with a time limit of 1 minute, although FJ will usually terminate
earlier even when not finding a feasible solution (the termination criterion is described in
Section 2.5).

Figure 3 shows the fraction of instances Ps(τ) for which a solver s is the fastest when
its running times are scaled by 1/τ . It is not surprising to see XPR+FJ always in the lead,
since it combines solutions both from XPR and FJ. Still, it represents a notable improvement
compared to standalone Xpress, XPR. This is also summarized in Figure 4, where we show the
ratio between the TFS of XPR and the TFS of XPR+FJ. Instances where only one of the solvers
found a feasible solution within the time limit are represented by plus and minus infinity.
Thanks to Feasbility Jump, XPR+FJ found a feasible solution to 6 more problems compared to
XPR, and provided an average reduction of 25% on the time to first feasible solution.
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Figure 3: Performance profile of the three solvers in regards to the time they take to find
a first feasible solution. Since XPR+FJ contains the best solution of either of the other two
solvers, it is always the obvious winner.
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Figure 4: Logscale plot of the ratio between the time to first feasibile solution of XPR versus
XPR+FJ in all instances of the MIPLIB 2017.

4.2 Time to optimal solution

Also of interest is to check whether quick feasible solutions found by Feasibility Jump can
be exploited by a MIP solver to solve some problems faster. We run XPR and XPR+FJ with
a 10 minute time limit, in which the solvers were able to find an optimal solution for 84 of
the MIPLIB 2017 benchmark set instances. Similar to the previous section, Figure 5 shows
the fraction of instances Ps(τ) for which a solver s is the fastest when its running times are
scaled by 1/τ . Figure 6, instead, shows the ratio between the TOS of XPR and TOS of XPR+FJ.
Instances where only one of the solvers found an optimal solution within the time limit are
represented by plus and minus infinity. We found that the time to optimal solution (TOS)
improved for a small subset of instances. But there are also other cases in which the solving
time remained the same even though Feasibility Jump provided Xpress with good solutions
(better than those found by XPR in the same time interval) early in the solution process. On
average, we see a reduction on the solving time of about 3%.

14



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.7

0.8

0.9

1

Performance factor τ on the time to optimal solution

P
s
(τ
)

XPR+FJ
XPR

Figure 5: Performance profile of XPR versus XPR+FJ in regards to the time they take to find
an optimal solution.

0 10 20 30 40 50 60 70 80

−∞
10−1

100

101

∞

Instance

T
O

S(
XP

R)
/

T
O

S(
XP

R+
FJ

)

Figure 6: Logscale plot of the ratio between the time to optimal solution of XPR versus XPR+FJ
in all instances of the MIPLIB 2017.

5 Conclusions

We have introduced the Feasibility Jump primal heuristic for mixed-integer linear program-
ming. It is based on a guided local search approach over a Lagrangian relaxation of the
original problem. The algorithm finds feasible solutions on some benchmark problems where
even state-of-the-art commercial solvers can struggle. Because Feasibility Jump handles very
large problem instances, and is not based on a solution to the root relaxation, it can find
solutions to some instances very early in the solution process, sometimes even before presolve
has finished.

We have integrated Feasibility Jump with FICO Xpress and shown that, in addition to
providing feasible solutions early, supplying those solutions back to a MIP solver can also
improve the time to find the optimal solution.

An efficient C++ implementation of the algorithm is available under an open-source license,
and can be extended with additional neighborhood definitions or meta-heuristics.

The current algorithm uses a constant weight update function, but we expect that more
sophisticated heuristics for setting the weights of individual constraints could increase the
effectiveness of Feasibility Jump.
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