
Feasibility Jump: an LP-free Lagrangian MIP heuristic

Bjørnar Luteberget Giorgio Sartor

2023-01-09

Abstract

We present Feasibility Jump (FJ), a primal heuristic for mixed-integer linear pro-
grams (MIP) using stochastic guided local search over a Lagrangian relaxation. The
method is incomplete: it does not necessarily produce solutions to all feasible problems,
the solutions it produces are not in general optimal, and it cannot detect infeasibility.
It does, however, very quickly produce feasible solutions to many hard MIP problem
instances. Starting from any variable assignment, Feasibility Jump repeatedly selects
a variable and sets its value to minimize a weighted sum of constraint violations. These
weights (which correspond to the Lagrangian multipliers) are adjusted for constraints
that remain violated in local minima. Contrary to many other primal heuristics, Fea-
sibility Jump does not require a solution of the continuous relaxation, which can be
time-consuming for some problems. We compare FJ against FICO Xpress Solver 8.14
and we show that this heuristic is effective on a range of problems from the MIPLIB
2017 benchmark set [19], significantly improving the average time to find a first feasi-
ble solution. We also show that providing these quick solutions to Xpress produces a
modest reduction in the average time to optimality in the same benchmark set. Our
entry based on FJ to the MIP 2022 Computational Competition (which challenged
participants to write LP-free MIP heuristics) won 1st place. Moreover, an implemen-
tation of Feasibility Jump now runs by default on FICO Xpress Solver 9.0, where
similar results to the ones presented here could be observed [25].

1 Introduction

In mathematical programming, heuristic algorithms have always been an essential tool
to quickly find good feasible solutions. Not only are they used as standalone specialized
algorithms, but they are also tightly integrated in all state-of-the-art MIP solvers. The
introduction of primal heuristics was one of the four key ideas (together with cutting planes,
branching strategies, and preprocessing) that helped MIP solvers become so effective in
the last two decades [22]. But as MIP solvers got better, users wanted to solve increasingly
hard optimization problems, making sure the task of finding proven optimal solutions (or
even just feasible solutions) would still be challenging (note that finding a feasible solution
for a MIP problem is NP-hard [30]). This work will focus on the development of a general
purpose primal heuristic, that is, a heuristic algorithm for finding feasible solutions to
generic MIP problems, allowing it to be used as a standalone heuristic or to be integrated
into a generic MIP solver.

Most of the general purpose primal heuristics employed by existing MIP solvers are
applied only after solving the LP relaxation at the root node, such as local branching [13],
pivot and shift [4], feasibility pump [12], RINS [10], RENS [6], and tabu search methods
(see, for example, [23]). Some more recent heuristics that exploit information obtained
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from the LP relaxation of a MIP problem include conflict-driven diving heuristics [29] and
even ML-based heuristics, such as [28] and [27].

But very few heuristics have been developed so as to be applied before the root node
(i.e., pre-root heuristics), and they can generally be subdivided into propagation methods
or relaxation methods. Propagation methods mostly involve constructive heuristics, where
iterative greedy decisions on the value of variables are propagated to the rest of the problem.
Berthold and Hendel’s [7] shift-and-propagate heuristic follows exactly this approach. It
alternately fixes one variable at a time to a promising value, and propagates this partial
assignment to the rest of the problem. The order in which the variables are fixed is decided
from the beginning and depends on the number of violated rows in the initial assignment.
The promising value of a certain variable, called best-shift, is the one that minimizes the
total number of violated constraints. More recently, a similar structure-driven approach
was proposed by Gamrath et al. [18], where the order in which the variables are fixed is
based on information extracted either from the clique table or the variable bound graph,
both of which are usually computed in the presolve phase of state-of-the-art MIP solvers.

Relaxation methods follow instead a very different approach, usually employing local
search methods in a relaxed version of the problem. This is also the approach recently
proposed by Lei et al. [21] in the context of pseudo-Boolean optimization, that is when all
variables have binary domains (also called 0-1 integer programs). The idea is to consider
the Lagrangian relaxation of a pseudo-Boolean problem and iteratively flip the value of
the variable that most reduces the total weighted constraint violation. The weighting of
the constraints (which corresponds to the Lagrangian multipliers) is updated whenever a
local minimum is reached, that is, when there is no variable that improves the current
weighted total constraint violation and the current assignment is still infeasible. Once a
feasible solution has been found, the original objective function of the problem can be
also taken into account. Despite the large amount of recent literature about Lagrangian
methods for MIP problems, most of the proposed heuristics are very problem specific, and
“an improved Lagrangian technology would be a useful tool in the bag of tricks available
for solving difficult optimization problems” [17].

In this paper we describe Feasibility Jump (FJ), a general-purpose pre-root primal
heuristic for mixed-integer linear programming problems that belongs to the category of
relaxation methods. It can be used either as a standalone heuristic or tightly integrated into
a more sophisticated MIP solver. It extends the Lagrangian approach described in [21] to
deal with both general integer and continuous variables. In particular, when considering
a variable separately and assuming all other variables are fixed, we can efficiently find
a new optimal value for the variable. We say that values of promising variables jump
towards assignments with smaller constraint violations. The jump values are computed
by extending and improving the concept of best-shift described in [7]. These values are
updated in a lazy fashion, only after a variable “jumps” and only for that variable.

Being an incomplete algorithm, Feasibility Jump does not have any guarantee in terms
of finding a feasible solution or proving infeasibility, for example. The trade-off is speed.
With a recent laptop and on sparse problems (almost independently of their size), FJ can
hit 1 million jumps per second. Algorithms that quickly produce feasible solutions can
be extremely valuable as a subroutine of a complete branch-and-bound MIP solver, either
because the user might be content with (possibly sub-optimal) solutions that are produced
as quickly as possible, or because the branch-and-bound search itself can become faster
when a (good-quality) feasible solution is known (see, for example, [2, 5, 16]).
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The algorithm was originally developed for the MIP 2022 Workshop’s Computational
Competition [24], where it won 1st place. It competed on a set of (hidden) MIP instances
as a standalone heuristic. In this paper, we go one step further by integrating FJ within
Xpress, and showing how it can improve both the time to first feasible solution and the
time to optimal solution on instances from the MIPLIB 2017 benchmark set [19]. A C++
open-source implementation of Feasibility Jump together with the Xpress integration are
available at https://github.com/sintef/feasibilityjump.

This paper provides the following contributions:

• a fast and effective primal heuristic for MIP problems;

• a high-performance open-source C++ implementation;

• results from a tight integration with the FICO Xpress solver.

2 Feasibility Jump

A mixed-integer linear program (MIP) is an optimization problem of the form

minimize
∑
j∈N

cjxj

subject to
∑
j∈N

aijxj ≤ bi i ∈M,

lj ≤ xj ≤ uj j ∈ N,
xj ∈ Z j ∈ I,

(1)

where N = {1, . . . , n}, M = {1, . . . ,m}, x ∈ Rn, aij , cj , bi ∈ R, lj ∈ R and uj ∈ R are
variable bounds, and I ⊆ N are indices of variables that are constrained to take only integer
values. Any specific vector x̄ ∈ Rn is an assignment to the variables. An assignment that
satisfies the linear constraints, bounds, and integrality, is a feasible solution. A feasible
solution that minimizes the objective is an optimal solution.

Local search algorithms are heuristic optimization algorithms that work by considering
a feasible solution x̄ and examining a set of other neighboring solutions N (x̄) (i.e., solutions
that are close to x̄ according to some predefined distance measure). If it finds a new feasible
solution x̄′ ∈ N (x̄) with a better objective value, then it sets x̄ ← x̄′, and the process
repeats as long as such an improving solution can be found. When no such x̄′ exists, the
process has reached a local minimum. It is not possible, in general, to know if the local
minimum is also a global minimum. In practice, local search algorithms work well for many
optimization problems even though their theoretical guarantees tend to be weak [1].

The objective of primal heuristics is to find feasible solutions to problems such as (1).
In the context of a local search algorithm, this requires relaxing some of the constraints,
so that it becomes possible to start from a solution that is feasible for all but the relaxed
constraints. Depending on which constraints get relaxed, different algorithms or techniques
may emerge. For example, the well-known Feasibility Pump [12] (to which we owe the
inspiration for our heuristic’s name) is an algorithm that relaxes the integrality constraints
of (1) and tries to move towards solutions in which these constraints are less and less
violated. Our approach is different. We relax all but the variable bounds and the integrality
constraints, penalizing the relaxed ones (when violated) in the objective function. This
technique is usually known as Lagrangian relaxation [26].
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In the next sections, we describe all the pieces that contribute to Feasibility Jump. We
first introduce a Lagrangian relaxation of the MIP problem (Section 2.1) and we explain
how to compute promising values that variables can use to heuristically “jump” towards
local minima of the corresponding Lagrangian function (Section 2.2). We then describe how
these values can be used to efficiently define new neighborhoods (Section 2.3) and how to
proceed when reaching a local minimum (Section 2.4). Finally, Section 2.5 summarizes the
entire algorithm and Section 2.6 describes how to extend FJ to take the original objective
function into account.

2.1 Relaxing the linear constraints

Based on the well-known Lagrangian relaxation of a MIP problem, we define our relaxed
MIP problem as:

minimize Fw(x)
subject to lj ≤ xj ≤ uj j ∈ N,

xj ∈ Z j ∈ I,
(2)

where Fw(x) is the total infeasibility penalty incurred by x. It is defined as the sum of the
infeasibility penalties computed for each linear constraint,

Fw(x) =
∑
i∈M

wifi(x), (3)

where wi ≥ 0 is a weight associated to each constraint and the infeasibility penalty fi(·),
i ∈M , for a single linear constraint

∑
j∈N aijxj ≤ bi is

fi(x) = max

0,
∑
j∈N

aijxj − bi

 . (4)

Note that problem (2) does not contain the original objective of (1), and solving (2)
corresponds to finding feasible solutions to (1). We discuss in Section 2.6 how to extend
(2) to also consider the original objective function.

We use the max function in fi(·) (as opposed to the classical Lagrangian full penalty∑
j∈N aijxj − bi) because we are more interested in solutions that live at the edge of the

feasible region, rather than at its center. It has been shown this can be beneficial for
feasibility heuristics (see, for example, [12]), and we also hope this could yield feasible
solutions with better objective value.

The first surveys on Lagrangian techniques for discrete optimization started appearing
already in the 1970s [26], but the basic idea did not change since then: minimize the La-
grangian function F w̄(x) for fixed w̄, produce modified weights w̄′ (usually by increasing
their value for violated constraints and reducing it for satisfied ones), and repeat. Unfor-
tunately (but not unexpectedly), no theoretical guarantees exist for the this method to
converge to an integer feasible solution [9].

As we will see in the following sections, Feasibility Jump follows a very similar frame-
work. However, we do not minimize the Lagrangian function exactly, but rather look for a
local minimum in neighborhoods where we only change the value of one variable at a time.
The next section describes how to compute a promising value for each variable.
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2.2 The jump value

Given the current variable assignment x̄ and considering a single variable xj , we would
like to find the value that solves (2) when all variables xk, k ∈ N , k ̸= j, are fixed to their
current value x̄k. In essence, this is the value of xj that minimizes the total constraint
violation given that all other variables are fixed to the current incumbent. But there is a
caveat. We want this value to be different from the current x̄j . This is common in local
search methods, where one would want to have a non-empty neighborhood for each variable
so that there are always moves available, even if they do not improve the objective value.
However, if xj is not restricted to take only integer values, then one could not simply add
the additional constraint xj ̸= x̄j .

Notice that when all variables but xj are fixed, then each fi(xj) in (4) measures the
constraint violation of an expression of the form aijxj ≤ di, where di = bi −

∑
k ̸=j aikx̄k.

If xj is integer and di is fractional, then it only makes sense to consider aijxj ≤ ⌊di⌋ if
aij > 0, or aijxj ≤ ⌈di⌉ if aij < 0 [20]. In this way, we include the integrality constraint of
xj directly into the constraint violation measure.

In general, given a current variable assignment x̄ and a variable xj , for each constraint
violation function fi(xj | xk = x̄k, k ̸= j) in which aij ̸= 0, we define the critical value,
tij(x̄k ̸=j), as follows:

tij(x̄k ̸=j) =


⌊r⌋ aij > 0

⌈r⌉ aij < 0

r =
1

aij
(bi −

∑
k ̸=j

aikx̄k), (5)

where x̄k ̸=j is short for xk = x̄k, k ̸= j. In other words, the critical value tij(x̄k ̸=j) is the
greatest (resp. smallest, if the coefficient is negative) value that variable xj can take before
constraint i becomes violated, when all the other variables are fixed to x̄. For greater (resp.
smaller) values of xj , the penalty associated with the violation of constraint i increases
proportionally to its corresponding weight wi. For values of xj smaller (resp. greater) than
tij(x̄k ̸=j), the penalty is zero. For a given x̄, this defines a piecewise-linear convex function
gij(t|x̄k ̸=j) such that:

gij(t|x̄k ̸=j) =


max

{
0, wi

(
t− tij(x̄k ̸=j)

)}
aij > 0

max
{
0,−wi

(
t− tij(x̄k ̸=j)

)}
aij < 0,

(6)

where t ∈ R and j ∈ N . In other words, gij(t|x̄k ̸=j) is equivalent to the function fi(xj | xk =
x̄k, k ̸= j) translated by the fractional part of r, as defined in (5)1. Note that one could
also choose to normalize the penalty function gij by aij , but we did not experiment with
this.

We are now ready to define the promising value each variable is allowed to jump to.

Definition 2.1. Given a feasible solution x̄ for problem (2), we define the jump value of
variable xj as the feasible value of xj (different from x̄j) that minimizes the sum of the

1We found that using the constraint violation functions fi(xj | xk = x̄k, k ̸= j) (as opposed to
gij(t|x̄k ̸=j)) to compute the jump value in (7), did not perform as well, reducing the number of prob-
lems from the MIPLIB 2017 benchmark set for which Feasibility Jump found a feasible solution by 5%.
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constraint violation penalties,

Gj(t|x̄k ̸=j) =
∑

i∈M : aij ̸=0

gij(t|x̄k ̸=j).

Then we have:

Jumpj(x̄k ̸=j) = min

(
argmin

t∈[lj ,uj ],t ̸=x̄j

Gj(t|x̄k ̸=j)

)
. (7)

By looking at (6), it is easy to see that the jump value of a variable will be exactly
equal to one of the values in the set of critical values, plus its lower and upper bounds:

Tj(x̄) = lj ∪ uj ∪
⋃
i∈M

tij(x̄k ̸=j).

Therefore, it is always possible to find a t that is different from x̄j , even in the continuous
case. A simple and efficient algorithm to compute the jump value of variable xj given the
current incumbent x̄ is described in Algorithm (1). We start by finding the set of critical
values Tj(x̄), and by computing the cumulative slope of Gj(t|xk ̸=j) when approaching
t = lj from below (see lines 8-11 and also Example 2.1 below). We then loop through the
feasible values of Tj(x̄) in ascending order, keeping track of the slope changes in Gj(t|x̄k ̸=j)
while storing the best value that is different from x̄j . Note that since we can assume that
lj ̸= uj (otherwise the variable xj is fixed), then we will always reach line 16 at least once,
and the algorithm will return a value different from the incumbent one. If we reach the
upper bound, or the slope becomes greater or equal to 0, then we have found the optimal
solution of mint∈[lj ,uj ], t ̸=x̄j

Gj(t|x̄k ̸=j). The correctness is easy to prove, since we are simply
traversing a piecewise-linear convex function from lj to uj , where the only slope changes
happen at the critical values. Starting from the correct slope at lj and updating the slope
at each feasible critical value (plus lj and uj), either we reach the upper bound or the slope
becomes non-negative (i.e., we reached the bottom of Gj(t|xk ̸=j)). Then the best value
found up this point (which always exists) is the optimum.

The following example demonstrates the computation of the jump value in a simple
MIP problem.

Example 2.1. Consider a pure feasibility problem and consider the pair of constraints:

x1 + x2 = 3
x2 + x3 ≥ 3,

where x1, x2, x3 ∈ Z+, the current incumbent is x̄1 = 1, x̄2 = 2, x̄3 = 0, and w1, w2 = 1.
Figure 1 shows the constraint violation functions gi,2(t|x̄k ̸=j) and corresponding critical
values for the first (Figure 1a) and second (Figure 1b) constraints, while Figure 1c shows
the sum of those functions and the jump value (the equality constraint is simply the sum
of a ≥ and ≤ constraint). In this case, T2(x̄k ̸=j) = {0, 2, 3,+∞}, and Algorithm 1 loops
through these values starting from l2 = 0 with a slope equal to -2. When hitting the critical
value at x2 = 2, the slope changes to 0 and we reached the bottom of the total constraint
violation function for variable x2. But since x̄2 = 2, then we continue to the next critical
value, x2 = 3, which becomes the jump value.
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Algorithm 1 Jump value
Input Problem (2), incumbent solution x̄, and variable index j
Output: The jump value.

1: t∗ ← lj ▷ Initialize the best value
2: ∆← [(lj , 0), (uj , 0)] ▷ Initialize the list of (value,slope) pairs
3: slope← 0 ▷ Initialize the cumulative slope
4: for i ∈M where aij ̸= 0 do
5: t← tij(x̄k ̸=j) ▷ Compute the critical value
6: if lj ≤ t ≤ uj then
7: ∆.insert

(
(t, wi)

)
▷ Add feasible critical value and slope change

8: if t ≥ lj and aij < 0 then
9: slope← slope− wi ▷ Accumulate the negative slopes before lj

10: if t < lj and aij > 0 then
11: slope← slope + wi ▷ Accumulate the positive slopes before lj
12: for (t, w) ∈ sorted(∆) do ▷ Iterate ∆ in ascending order by the first component
13: slope← slope + w ▷ Update the current slope
14: if t = x̄j then
15: continue ▷ Skip values equal to the current incumbent
16: t∗ ← t ▷ Update the best value
17: if slope ≥ 0 then
18: break ▷ Stop when the slope becomes non-negative
19: return t∗

1 2 3 4 5 6

2

4

6

ti=1,j=2(x̄k ̸=j)

t

gi=1,j=2(t|x̄k ̸=j)

(a)
1 2 3 4 5 6

2

4

6

ti=2,j=2(x̄k ̸=j)

t

gi=2,j=2(t|x̄k ̸=j)

(b)
1 2 3 4 5 6

2

4

6

Jump2(x̄k ̸=j)

t

G2(t|x̄k ̸=j)

(c)

Figure 1: The constraint violation functions for variable x2 (Figure (a) and (b)), and their
sum (Figure (c)).

The jump value was motivated by the best shift of the Shift-and-Propagate heuristic
[7]. In [7], given an incumbent solution x̄, the best-shift for a variable xj is the value ψj

such that x̄j + ψj minimizes the number of violated constraints (assuming the rest of the
incumbent stays the same). This is in contrast with the infeasibility penalties described
in (4), where even partial reductions of constraint violations are considered. The intrinsic
problem of considering only when constraints switch between being violated and satisfied is
the loss of information associated with, for example, the following combination of constraint
and incumbent solution:

x1 + · · ·+ xn ≥ b, x1, . . . , xn ∈ {0, 1}, n ≥ 2, b > 1, x̄1, . . . , x̄n = 0.
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Since in the current incumbent all variables have value zero, changing the value of any of
the variables individually by +1 would not be enough to satisfy this constraint, and there
would be no incentive for the algorithm to do so.

In the next section, we show how can we construct neighborhoods based on the jump
value.

2.3 Lazy adaptive neighborhoods

Feasibility Jump looks for local minima of (2) by traversing neighborhoods in which only
one variable at a time can change its value. For a particular incumbent solution x̄, we define
a neighborhood N (x̄) for problem (2) by simply associating a pair (vj , sj) to each variable
xj , where vj is a new value the variable could jump to and sj represents its corresponding
score.

This score is computed as the difference between the current total constraint violation
penalty Gj(x̄j |x̄k ̸=j) and the same penalty obtained by changing the current value of xj
from x̄j to vj :

sj = Gj(x̄j |x̄k ̸=j)−Gj(vj |x̄k ̸=j). (8)

A positive score sj > 0 means that assigning the new value vj to xj will reduce the total
constraint violation of the current incumbent solution.

The value vj is initialized to the jump value, but it is updated in a lazy fashion.
Ideally, since in the previous section we went through the trouble of computing the value
that minimizes Gj(t|x̄k ̸=j), we would like to always have vj = Jumpj(x̄k ̸=j). But since the
jump values depend on the current incumbent x̄, we would need to recompute all of them
every time we change x̄, which means every time we make a single variable jump to a new
value. This can easily become too computationally expensive. One could also choose to
recompute all of them at regular intervals or after a certain condition gets satisfied, but we
decided not to experiment with this behavior (in limited preliminary experiments, we saw
that even recomputing all jump values after each jump would not significantly reduce the
amount of jumps necessary to reach a feasible solution, while increasing the computation
time).

We consider instead “lazy” neighborhood updates. The idea is to initialize the very
first neighborhood with the jump values, vj = Jumpj(x̄k ̸=j) for all j ∈ N . Then, every
time a variable xj performs a jump, we update only its value vj = Jumpj(x̄k ̸=j), keeping
the remaining vk, k ̸= j intact, but updating all the scores sj , j ∈ N . This means that in
any neighborhood except the first one, only the value vj of the variable that performed a
jump in the previous neighborhood is guaranteed to be equal to its corresponding jump
value, as defined in (1). In other words, performing a jump with positive score will always
improve feasibility since the scores are always updated correctly, but one might miss better
jump values since only a single value vj is updated after performing a jump. Note that
only the scores of the variables that share the same constraints as the previous “jumping”
variable need to be updated, and this can be done with a simple single pass.

Having defined our neighborhood N and how to update it, we can hope that repeatedly
choosing new assignments for variables with positive scores will eventually lead us to a
feasible solution. There are no guarantees, however, that the neighborhood will always
contain such an improving assignment, i.e., that there exists a variable with a positive
score. When this happens, we say that the local search is stuck in a local minimum. To
escape such a local minimum, we can add a new layer of heuristics that will try to perturb
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the current assignment or search parameters so that the local search will not return to the
same local minimum but instead find a new and potentially better one. The next section
describes exactly this.

2.4 How to guide the search

The specific metaheuristic we use in Feasibility Jump is known as guided local search (see
[3] for a detailed survey). Guided local search works by modifying the objective function
of the local search whenever the search is stuck in a local minimum. In our Lagrangian
relaxation (2), we introduced the weight parameters wi, i ∈ M , to be able to adjust the
“importance” of each constraint individually. Since these parameters influence the scores
sj , j ∈ N , we hope that we can use them to guide the search out of local minima and
towards a feasible (or optimal) solution. This penalty method is indeed similar to the
classical Lagrangian relaxation method, and can be seen as its approximation.

The heuristic we use for updating these weights is based on the fact that whenever
we reach a local minimum, we expect most of the constraints in our original MIP (1) to
be satisfied by the current assignment. By increasing the weights of the few remaining
violated constraints, we hope that subsequent solutions will be less likely to violate them,
since the corresponding penalties (6) will be higher. In general, a MIP problem may contain
constraints that are easy to satisfy, and other constraints (or combinations of constraints)
that are difficult to satisfy. By increasing the weight of the latter we focus the search on
the constraints that are the hardest to satisfy.

We update the weights wi, i ∈M , at every local minimum by setting:

wi ← ∆W (w, x̄, i),

where ∆W is some weight update function that depends on the current local minimum
x̄. The simplest weight update is to increase the weight of any violated constraints by a
constant amount:

∆W+(w, x̄, i) =

{
wi

∑
j∈N aij x̄j ≤ bi

wi + 1 otherwise.

This is in fact the update function that we have used. We did also experiment with
multiplicative updates, i.e.,

∆W ∗(w, x̄, i) =

{
wi

∑
j∈N aij x̄j ≤ bi

λwi otherwise,

which also requires some implementation tricks to avoid saturating the floating point num-
ber representation, but we found that it had no significant effect on the algorithm’s per-
formance.

2.5 The algorithm

In this section we combine the ideas described in the previous sections and present our LP-
free Langrangian MIP heuristic. Feasibility Jump performs a highly-efficient guided local
search by computing promising neighborhoods based on the jump values, and updating
them lazily. The steps of the algorithms are shown in Algorithm 2. The algorithm starts
from any (potentially infeasible) assignment, and measures how far away the current in-
cumbent assignment is from satisfying the constraints (i.e., from feasibility). We maintain
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for each variable a promising new value (which is different from the current incumbent
value), and we associate to this value the score as defined in (8). In each iteration (line
8-26), we assign a new value to a promising variable (line 23) and we perform two updates:
we compute the jump value for the current variable (line 24), and we update the scores of
the variables that appear in the same constraints (line 25). If no value exists that improves
the current sum of constraint violations (line 11), we have reached a local minimum. If
there are unsatisfied constraints, then we increase their weight (line 14), we update the
scores of the values of the variables involved (line 16), and we choose the best move within
one random unsatisfied constraint (line 18-19). If the current assignment is feasible, we
return it (line 8-10).

To further reduce the computational effort of the heuristic, we maintain a set of variable
indices with a positive score, and we choose the variable index with the highest score among
a small random sample of them. We found that maintaining the ranking of all variables to
find the highest scoring one had a modest negative impact in the performance (i.e., number
of “jumps per second”), while providing almost zero benefits. Moreover, a bit of randomness
can sometimes be beneficial when dealing with MIP problems (see, for example [14]). We
use a sample size of min{n, 25}. Also, with a probability of 0.1%, we use a sample size of
1.

As there is no natural time at which to stop the algorithm, we use an estimate of the
computation effort expended by the algorithm. One of the easiest ways to do this is simply
to sum the size of the bounds of every for-loop that runs. The advantage of using such an
effort estimate over measuring wall-clock time, is that the heuristic runs deterministically,
which simplifies debugging, adds reliability, and is typically a property that MIP solvers
offer. The algorithm terminates after some amount of effort has been expended since the
last improvement made (that is, since the last time Fw(x̄) reached its lowest value yet) or
if a given total amount of effort has been exceeded. This stopping criteria is referred to as
ShouldTerminate() in line 7 of Algorithm 2. The value of the threshold has currently
been tuned based on the MIPLIB 2017 benchmark set [19]. Whenever FJ runs within a
MIP solver, one could also simply decide to stop the algorithm after any feasible solution
has been found (either by FJ or by other components of the MIP solver).

The computational complexity of each iteration is dominated by the updating of the
scores and weights:

• Choosing a move takes constant time because it consists of sampling a constant
amount of move scores, running in worst-case O(1).

• Computing the jump value takes time proportional to the number of constraints that
the selected variable appears in, meaning that it runs in worst-case O(η), where η is
the maximum number of constraints that any variable appears in.

• Computing the updated scores for neighboring variables (line 25) requires iterating
over all the constraints that the selected variable appears in and all the variables
appearing in those constraints, meaning that it runs in worst-case O(ηµ), where µ is
the maximum number of variables appearing in a constraint.

• Computing the updated scores of the variables appearing in the currently unsatisfied
constraints (line 16) requires iterating over those constraints (in the worst case, all
constraints) and over all variables appearing in those constraints, meaning that it
runs in worst-case O(mµ), where m is the number of constraints in the problem.
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Algorithm 2 Feasibility Jump
Input Problem (2), initial assignment x̃
Output: a feasible solution or Null

1: x∗ ← Null ▷ Initialize best feasible solution
2: x̄← x̃ ▷ Initialize incumbent
3: wi = 1, i ∈M ▷ Initialize weights
4: vj = Jumpj(x̄k ̸=j), j ∈ N ▷ Initialize promising values
5: sj = Gj(x̄j |x̄k ̸=j)−Gj(vj |x̄k ̸=j), j ∈ N ▷ Initialize scores
6: P = {j ∈ N : sj > 0} ▷ Initialize set of indices with positive score
7: while ShouldTerminate() is false do
8: if Fw(x̄) = 0 then
9: x∗ ← x̄

10: break ▷ Found a feasible solution
11: if P = ∅ then ▷ Whether we have reached a local minimum
12: U ← ∅ ▷ Set of violated constraints
13: for i ∈ N : fi(x̄) > 0 do
14: wi ← wi + 1 ▷ Put more emphasis on satisfying this constraint
15: U ← U ∪ i
16: Update scores sj : aij ̸= 0, i ∈ U, j ∈ N
17: Update P
18: i∗ = random choice in U ▷ Random violated constraint
19: j∗ = argmax

j∈N : ai∗j ̸=0
sj ▷ Best move in this constraint

20: else
21: P ∗ = randomly choose up to 25 indices from P
22: j∗ = argmax

j∈P ∗
sj ▷ Best move among a random set of moves with sj > 0.

23: x̄j∗ ← vj∗ ▷ Make the move
24: vj∗ = Jumpj∗(x̄k ̸=j∗) ▷ Recompute jump value
25: Update scores sj of the neighboring variables
26: Update P
27: return x∗

In summary, each iteration of FJ (line 8-26) has a worst-case O(η+ ηµ+mµ) running
time. Note that both of the last two terms are proportional to the total number of non-zero
coefficients in the problem instance. However, in many problem instances, the number of
variables in each constraint is small, and the number of violated constraints in a local
minimum is small, which makes an iteration very fast in practice.

2.6 How to optimize using the original objective function

In the previous sections, we described a heuristic algorithm designed specifically for feasi-
bility, disregarding the original objective function and quitting as soon as a feasible solution
has been found (or any other termination criteria has been reached). However, Feasibility
Jump can be easily extended to support an “improving” behavior, that is to keep searching
for feasible solutions with better objective value after a first feasible solution has been
found.

A simple way to take into account the original objective function is to consider an
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extended Lagrangian function:
Oq(x) + Fw(x),

where Oq(x) = q
∑

j∈N cjxj is the original objective weighted by q ≥ 0. The factor q is
introduced to adjust the relative importance of the feasibility objective versus the original
MIP objective. One drawback of this extended Lagrangian function is the possibility of
having heavily unbalanced objective components, so that it would difficult to update q and
w to maintain the correct balance between feasibility and optimality.

A more elegant way to look for solutions with better objective value is to consider an
additional constraint of the form:

cTx ≤ cTx∗ − θ, (9)

where x∗ is the current best feasible solution, and θ > 0 is an appropriate cutoff tolerance.
This cutoff constraint has been used in other MIP heuristic approaches (see, for example,
[15]). The idea is that selecting a suitable θ will help the algorithm find a sequence of
improving solutions. This constraint could be also immediately integrated in the current
Feasibility Jump framework without changes to the algorithm, simply by adding (9) to the
Lagrangian function Fw(x).

Note that Feasibility Jump was not initially developed to provide improving solutions,
and the objective function was not taken into account in any of the computational results
below. However, this is a very interesting direction for future research.

3 Implementation

We have developed a C++ reference implementation of Feasibility Jump that is not de-
pendent on any other MIP solver. This solver is available online2 under an open source
license. To use it, one creates a new FeasibilityJumpSolver object and adds variables by
calling the addVar method. Constraints are added by calling the addConstraint method.
The solve function takes an initial assignment and a callback function parameter that the
solver will call periodically with an FJStatus object, containing the effort spent so far and
any new solutions found and their objective value. The callback function’s return value
decides whether to continue or abort the heuristic.

// Method signatures
class FeasibilityJumpSolver {

FeasibilityJumpSolver(int seed=0, int verbosity=0);
int addVar(VarType type, double lb, double ub, double coeff);
int addConstraint(RowType sense, double rhs, int numCoeffs, int *
rowVarIdxs, double *rowCoeffs);

int solve(double *x, function<int(FJStatus)> callback);
};

The C++ implementation is generic in the type of neighborhoods it uses, with the Jump
value being one of many possible. We have also experimented with other neighborhoods,
such as the nearest integer values (i.e., x̄j ← x̄j ± 1), but found that they had only
marginal impact on the solver’s performance. All uses of the neighborhood throughout the

2https://github.com/SINTEF/feasibilityjump
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algorithm are performed through the method forEachMove, where all moves for a variable
are enumerated. The neighborhood can be modified by simply editing this function, which
has the following signature:

template <typename F> void forEachMove(int32_t varIdx, F f);

Our reference implementation can also be used as a starting point for other experiments
with MIP local search, such as modifying the weight update functions ∆W or testing other
metaheuristics.

Feasibility Jump can be used both as a standalone heuristic or integrated within an
existing exact MIP solver. In the latter case, one would be interested not only in improving
the average time to first feasible solution, but also the average time to optimal solution.
Current state-of-the-art MIP solvers, such as FICO Xpress [11], are already so effective that
improving the average solving time of just few percent would be a great achievement. We
used the interface presented above also to integrate the heuristic within Xpress. But since
we only have access to Xpress’ external interface, it requires copying all the constraints
from the Xpress problem instance representation to the heuristic’s representation. Except
for duplicating the constraint coefficients (also called the matrix ), Feasibility Jump requires
very little memory, proportional to the sum of the number of variables and the number of
constraints. Duplicating the constraint coefficients would not be required if the heuristic
was implemented using the MIP solver’s internal interfaces.

To integrate FJ with Xpress, we start by loading the MIP problem into Xpress. Then,
we copy all the variables and constraints from Xpress to FJ and start FJ on a background
thread. After starting FJ (i.e., on the non-presolved instance), we presolve the problem
using Xpress and copy all the variables and constraints of the presolved problem into a
new FJ instance, which is launched on another background thread. We then call the main
MIPoptimize function of Xpress with a checktime callback function, which Xpress will
periodically call after a very short interval of time (to make sure we inject the solutions
found by FJ as soon as possible). In this callback function we check if any solution has
been found by any of the two FJ threads, and, if so, copy it into Xpress by using the
addMIPsolution method.

Our C++ reference implementation is around 800 lines of code, with Xpress integration
adding an additional 500 lines. The version of Feasibility Jump that participated in the
computational competition of the 2022 Mixed Integer Programming Workshop was written
in Rust and contained a few additional tunable parameters and additional move types.
These additional features only allowed finding feasible solutions to a few more instances
from the MIPLIB 2017 benchmark set, and we found that the increase in complexity was
not worth-while for the presentation in this paper (and its accompanying source code), nor
for integration in a more comprehensive MIP solver. The Rust competition implementation
is available on request.

4 Computational results

In this section, we provide an extensive set of results to assess the performance and ef-
fectiveness of Feasibility Jump. All tests were executed on an AMD Threadripper 3990x
CPU running at 2.9GHz with 128GB of memory. The instances we used for testing belong
to the MIPLIB 2017 benchmark set [19], a widely-used set of 240 mixed-integer problems
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of various size and difficulty. Our implementation of Feasibility Jump is able to find feasi-
ble solutions to 123 of these, when combining solutions from both the non-presolved and
presolved versions of the problem. For 84 of these instances, solutions are found in both
the non-presolved and the presolved case, while an additional 6 are found only using the
non-presolved problem and 33 only using the presolved problem.

We first look at the average time it takes FJ to perform an iteration, that is an iteration
of the while loop in line 7 of Algorithm 2. Figure 2 shows a somewhat linear correlation
of the iteration time and the average number of non-zero coefficients per variable. More
importantly, it shows that for many problems of MIPLIB 2017, an iteration can take less
than a microsecond.
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Figure 2: Average computation time (in seconds) for each iteration of the while loop of
Algorithm (2), for each problem instance in MIPLIB 2017.

The next computational results will consider three different solvers:

• FJ: Feasibility Jump, running on two threads, one with the non-presolved problem
and one where the problem is presolved by Xpress (using the framework from Section
3);

• XPR: FICO Xpress Solver 8.14 with its default settings;

• XPR+FJ: Feasibility Jump integrated into Xpress as described in Section 3.

We compare these solvers on the time it takes to find the first feasible solution (Section
4.1), and the time it takes to prove optimality (Section 4.2).

Note that FJ typically produces solutions very quickly, if it produces any at all. We
did not see significant improvements in FJ’s performance when increasing the computa-
tional effort with the current implementation. The local search framework could easily
be extended to increase the ability to find feasible solutions, perhaps at the cost of more
computational effort. When integrated in a more comprehensive MIP solver, a very quick
heuristic may be preferred, so that more computation time is allocated to methods that
are guaranteed to eventually produce solutions (for example, branch-and-bound).

Note that in both XPR and XPR+FJ, the MIP solver is configured to run on a single thread
only, while FJ runs on two additional threads (as described in Section 3). In other words,
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we are simulating how FJ would influence a MIP solver if there were enough computational
resources to run both programs at the same time. This gives a slight resource advantage to
XPR+FJ when compared to XPR, but note that the Feasibility Jump heuristic is tuned to run
for a very short amount of time, typically much less than the MIP solver (in these tests, the
average running time of FJ was 0.6 seconds). Inside a comprehensive MIP solver, one would
instead select between different heuristics with different trade-offs and tune FJ to run for
as little time as necessary, taking problem characteristics into account. The objective of
this paper is to show that integrating FJ in a MIP solver can indeed be beneficial, which
has also been confirmed by the introduction of Feasibility Jump as a default heuristic in
Xpress 9.0 [25].

4.1 Time to feasibility

We first compare FJ, XPR, and XPR+FJ on the time it takes to find the first feasible solution
(TF). We run all solvers with a time limit of 1 minute, although FJ will usually terminate
much earlier even when not finding a feasible solution (the termination criterion is described
in Section 2.5).

Figure 3 shows the fraction of instances Ps(τ) for which a solver s is the fastest when
its running times are scaled by 1/τ . It is not surprising to see XPR+FJ always in the lead,
since it combines solutions both from XPR and FJ. Still, it represents a notable improvement
compared to standalone Xpress, XPR. This is also summarized in Figure 4, where we show
the ratio between the TF of XPR and the TF of XPR+FJ. Instances where only one of the
solvers found a feasible solution within the time limit are represented by plus and minus
infinity. Thanks to Feasibility Jump, XPR+FJ found a feasible solution to 6 more problems
than XPR, and provided an average reduction of 25% on the time to first feasible solution.
In about 10% of the instance, XPR+FJ found a feasible solution more than 10 times faster
than XPR thanks to Feasibility Jump. Table 1 lists the number of instances on which FJ
found a feasible solution before XPR, and which phase of the MIP solver was reached at
that time.
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Figure 3: Performance profile of time to first feasible solution (TF) for FJ, XPR and XPR+FJ
on the MIPLIB 2017 benchmark set. Since XPR+FJ contains the best solution of either of
the other two solvers, it is always faster.
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Figure 4: Logscale plot of the ratio between the time to first feasible solution (TF) of XPR
versus XPR+FJ on the MIPLIB 2017 benchmark set.

Table 1: Categorization of the MIPLIB 2017 benchmark set instances based on the time
to feasibility (TF) of FJ versus XPR. In particular, when FJ is faster than XPR, we check
whether FJ found a feasible solution (1) during presolve, (2) during root node (either while
running the LP solver, other feasibility heuristics, or root cutting heuristics), or (3) during
branching.

Category # instances
No solutions found 33

128

240

FJ found no solution but XPR did 84
FJ found a solution after XPR 11

FJ found a solution
before XPR

during presolve 88
112during root node 24

during branching 0

4.2 Time to optimality

Sometimes, finding feasible solutions quickly may not be sufficient for improving the per-
formance of a solver when considering the time to optimality. Therefore, it is of interest
to check whether quick feasible solutions found by Feasibility Jump can be exploited by a
MIP solver to solve some problems faster. We run XPR and XPR+FJ with a 10 minute time
limit, in which the solvers were able to find an optimal solution for 137 of the MIPLIB
2017 benchmark set instances. Similar to the previous section, Figure 5 shows the fraction
of instances Ps(τ) for which a solver s is the fastest when its running times are scaled
by 1/τ . Figure 6, instead, shows the ratio between the TO of XPR and TO of XPR+FJ.
Instances where only one of the solvers found an optimal solution within the time limit
are represented by plus and minus infinity. We found that the time to prove optimality
(TO) improved for a small subset of instances. But there are also other cases in which
the solving time remained the same even though Feasibility Jump provided Xpress with
good solutions (better than those found by XPR in the same time interval). On average,
we see a reduction on the solving time of about 3% on the instances where both solvers
finish within the time limit. On 3 of the instances, XPR+FJ does not finish even though
XPR does. Figure 7 shows how the best objective value improves over time for each of the
solvers, for a set of instances where XPR+FJ proves optimality before XPR. In this figure,
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Feasibility Jump did not always provide a better bound than XPR, but Xpress could be
taking advantage of the additional feasible solutions in other ways. Figure 8 shows similar
plots for instances where solutions found by FJ did not impact the total running time of
XPR. In this case, even though Feasibility Jump provided solutions with a better bound
than the ones found by XPR, they were not useful to reduce the total running time.

We observe that Feasibility Jump has little impact on the time to optimality on a
large number of instances, i.e., their TO ratios (Figure 6) are very close to 1. This is not
surprising, since FJ is just one of the many heuristics running in a state-of-the-art MIP
solver such as Xpress. In fact, even if FJ finds a feasible solution quickly, the MIP solver
may find a better solution before the branch-and-bound search starts, and the solution
provided by FJ might then have little impact on the search. We measured that, in 22
cases, XPR+FJ had a better upper bound than XPR when branching starts (in 5 of those
cases, XPR had no feasible solution at all). In 10 cases, XPR had a better upper bound than
XPR+FJ when branching starts (in none of those cases XPR+FJ had no feasible solution at
all). In the remaining 208 instances, the upper bound is the same in XPR and XPR+FJ at
the time the branching search starts.
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Figure 5: Performance profile of time to optimality (TO) for XPR and XPR+FJ on the
MIPLIB 2017 benchmark set.

0 20 40 60 80 100 120

−∞

10−1

100

Instance

T
O

(X
PR

)
/

T
O

(X
PR

+F
J)

Figure 6: Logscale plot of the ratio between the time to optimal solution (TO) of XPR
versus XPR+FJ on the MIPLIB 2017 benchmark set.
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Figure 7: Some examples of Feasibility Jump improving the solving time of Xpress. FJ
solutions are shown as green circles, while the blue and red lines are the primal bounds
for XPR and XPR+FJ, respectively. The squares mark the first feasible solution. The stars
mark the time that the solution is known to be optimal.
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Figure 8: Some examples of Feasibility Jump not improving (at least not significantly)
the solving time of Xpress, even though it provided good solutions (better than the those
found by Xpress) from the beginning. FJ solutions are shown as green circles, while the
blue and red lines are the primal bound for XPR and XPR+FJ, respectively. The squares
mark the first feasible solution. The stars mark the time that the solution is known to be
optimal.
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5 Conclusions and future directions

We have introduced Feasibility Jump, a pre-root primal heuristic for mixed-integer linear
programs based on a guided local search approach over a Lagrangian relaxation of the
original problem. The algorithm is able to find feasible solutions for some large benchmark
problems where even state-of-the-art commercial solvers can struggle. And because Feasi-
bility Jump does not require a solution to the LP relaxation, it can find solutions to some
instances very early in the solution process, sometimes even before presolve has finished.

We have also integrated Feasibility Jump with the FICO Xpress Solver [11] and shown
that, in addition to providing feasible solutions early in the solution process, supplying
those solutions back to a MIP solver can also improve the time it takes to prove optimality.

An efficient C++ implementation of Feasibility Jump is available under an open-source
license, and can be easily extended with custom, experimental designs. In particular, we
refrained (on purpose) from “over-optimizing” the algorithm with sophisticated tuning,
hoping to inspire the research community to come up with innovative solutions. Among
others, we recognize the following directions as the most promising ones to consider for
improving FJ:

• Neighborhoods. The neighborhood of each variable is currently made of a single
value vj . In a previous implementation, we considered two more values (a positive
or negative increment of the current incumbent value) and we saw little to no im-
provements. However, in general, we expect that having a larger neighborhood with
different values could to be beneficial if easy to compute.

• Metaheuristics. The algorithm is currently based on a guided search metaheuristic
that favors constraints that remain violated across many assignments. Other meta-
heuristics, such as tabu search [23], or a combination of them, could provide different
advantages.

• Weight updates. The weights of the Lagrangian function are currently updated
with a simple constant update function, but we expect that more sophisticated heuris-
tics (perhaps even based on machine learning techniques) could increase their effec-
tiveness in steering the algorithm towards a feasible solution. In particular, there can
be local minima affected by so-called short cycles, whereby the algorithm repeatedly
goes back to a previous infeasible assignment until the weights of the corresponding
infeasible constraints have risen enough. We did not witness any long cycles, but
that might also be due to the randomness steps added in each local minimum. With
that said, we did witness cases in which a lot of weight updates were necessary to
get out of a local minimum. Then one could try to determine the minimum weight
update required by those constraints to escape from the current local minimum.

• Specializations. Feasibility Jump is currently completely problem agnostic, but
several other primal MIP heuristics have been shown to take advantage of known
constraint types (see, for example, [8]) or problem specific structures (see, for exam-
ple, [18]).

• Solution quality. The current implementation of FJ emphasizes finding a feasible
solution. We experimented with giving the original objective function some impor-
tance through a simple weight update function. A more sophisticated version of FJ
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could include a better way to exploit existing feasible solutions (perhaps even pro-
vided by the MIP solver in which it is embedded) and incorporate a behavior usually
found in improving heuristics.
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