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Abstract

Construction of railways is a challenging and expensive task. Comprehensive plan-
ning is required to ensure that the finished system has a high transportation capac-
ity while remaining safe, reliable and maintainable. Computer science has a long
history in the domain of railway analysis. Firstly, creating time tables that make
efficient use of a large network of railway lines is assisted by numerical optimiza-
tion and stochastic simulations. Secondly, the signalling and control systems that
ensure that trains do not collide or derail, are modelled mathematically and proven
correct using formal methods and automated reasoning.

However, both of these important tasks rely on a model of the infrastructure
describing tracks, platforms, signals, sensors, and more. The infrastructure needs
to be correctly designed to allow a control system to ensure safety without creating
bottlenecks in the network. The design process for infrastructure is characterized
by tedious, repetitive verification of elaborate specifications, and complex inter-
play with other disciplines, such as tracks, power lines, and telecommunications.
Because the work is so complicated in this sense, essential questions about capacity
and safety can go unanswered until it is too late to change the construction plans.

To help increase quality and efficiency, we have developed several components
that contribute to the overall goal of bringing automated analysis tools to railway
infrastructure engineering work. The main contributions are:

1. A system for static analysis of railway infrastructure based on Datalog logic.

2. A language of local capacity specifications, which can be used to relate the
network-scale requirements to the construction of railway stations.

3. A solverwhich verifies local capacity specifications on proposed railway infras-
tructure based on Boolean satisfiability solvers and discrete event simulation.

4. An algorithm for synthesis and optimization of signal and sensor placements
from amodel of tracks and platforms, based on the verification for local capacity.

5. A controlled natural language for specifications so that engineers can access
and maintain formalized rules and regulations in an understandable format.

6. A visualization algorithm for railway infrastructure, allowing automatic trans-
fer of data fromgeographic or purely topological information to schematic views.

7. Integration of these tools with engineering software through the railML stan-
dard format and though graphical user interfaces built into drafting software.

The tools and techniques have been tested and evaluated using real-world rail-
way infrastructure from the Norwegian railway network and from ongoing con-
struction projects.
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Preface

This Ph.D. thesis is a result of the RailCons¹ project, a collaboration between Rail-
complete AS and the University of Oslo. The project has been funded by Railcom-
plete AS and the Research Council of Norway under the Industrial Ph.D. scheme.

The project originated in the railway signalling engineering company Anacon
AS, where engineers were dissatisfied with the state of tool support for performing
design and engineering of railway signalling and interlocking systems. The com-
pany Railcomplete AS was founded as an offshoot from Anacon AS with the goal
of integrating domain-specific analysis tools for signalling and other railway dis-
ciplines with cross-discipline drafting tools, so that engineering projects could be
executed more efficiently and yield higher quality. Railcomplete AS also launched
the RailCons research project to bring in research expertise on mathematical mod-
elling and automated verification from the Reliable Systems research group at the
Department of Informatics at the University of Oslo.

In this project, we have investigated the use of formal methods from computer
science to handle the variety and complexity of specifications and regulations that a
railway engineering project must comply with. We have used logic-based methods
and automated solvers and integrated them with drafting tools. This thesis can be
considered the final report on the results of the RailCons project

For me personally, the Ph.D. period has been an exciting exploration of state-
of-the-art problem solving techniques from the field of computer science, made
even more interesting by the fact that we have been solving real-world problems
that originated in engineering practice. I am grateful for having had the chance to
collaborate with very capable researchers, programmers, and engineers, and hope
that our joint work will make an impact on how railway engineering is practised
in the future.

Publications

The contents of this thesis is based on research articles that are either published in
international, peer-reviewed computer science conference proceedings and jour-
nals, or are under review in such venues. The relevant articles are:

• Static analysis of railway infrastructure models and interlocking specifications
(Chapters 2 and 7):

– Bjørnar Luteberget, Christian Johansen, and Martin Steffen: Rule-based Con-
sistency Checking of Railway Infrastructure Designs. International Conference

¹RailCons web page: https://www.mn.uio.no/ifi/english/research/projects/railcons/
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on Integrated Formal Methods (iFM 2016), [109]. Received award for best pa-
per of the conference.

– Bjørnar Luteberget, Christian Johansen, Claus Feyling, and Martin Steffen:
Rule-Based Incremental Verification Tools Applied to Railway Designs and Reg-
ulations. International Symposium on Formal Methods (FM 2016), [108].

– Bjørnar Luteberget and Christian Johansen: Efficient Verification of Railway
Infrastructure Designs Against Standard Regulations. Formal Methods in Sys-
tem Design, [107].

• Controlled natural language specifications for railway verification (Chapter 5):

– Bjørnar Luteberget, John J. Camilleri, Christian Johansen, andGerardo Schnei-
der: Participatory Verification of Railway Infrastructure by Representing Regu-
lations in RailCNL. International Conf. on Software Engineering and Formal
Methods (SEFM 2017), [105].

– Bjørnar Luteberget, John J. Camilleri, Christian Johansen, andGerardo Schnei-
der: RailCNL: A Controlled Natural Language for Railway Design Verification
Specifications, under review for publication as a journal article.

• Verification, synthesis, and optimization of infrastructure using local capacity
specifications (Chapters 3 and 4):

– Bjørnar Luteberget, Koen Claessen, and Christian Johansen: Design-Time Rail-
way Capacity Verification using SAT modulo Discrete Event Simulation. Formal
Methods in Computer-Aided Design (FMCAD 2018), [106]. Received award
for best paper of the conference.

– Bjørnar Luteberget, Koen Claessen, Christian Johansen, and Martin Steffen:
Design-Time Railway Capacity Verification using SAT modulo Discrete Event
Simulation, under review for publication as a journal article.

– Bjørnar Luteberget, Christian Johansen, and Martin Steffen: Optimization
and Synthesis of Railway Signalling Layout from Local Capacity Specifications.
To appear in International Symposium on Formal Methods (FM 2019).

• Drawing of schematic railway plans (Chapter 6):

– Bjørnar Luteberget, Koen Claessen, and Christian Johansen: Drawing Schema-
tic Railway Maps using SAT and Optimization. To appear in International Con-
ference on Integrated Formal Methods (iFM 2019).

I have been involved as a main contributor on each one of these articles, and they
were written in their entirety between 2015 and 2019 for the purpose of supporting
this thesis.
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1Railway construction planning

Research into improved methods for railway construction have the potential to
create large savings in public spending in the years to come. Computer software
tools for track layout and power catenary lines planning are alreadywell developed.
However, signalling and interlocking have had little progress in design tooling. The
complex nature of the designs means that we need thoroughly researched methods
to be able to ensure the correctness of the design with respect to safety regulations,
as well as to optimize and automate the design processes.

Signalling engineering, in the context of constructing of railway infrastructure,
consists of setting up signals, train detectors, derailers, and related equipment, and
building a control system called the interlocking which ensures that all train move-
ments happen in a safe sequence.

Comprehensive regulations and processes have been put in place to ensure the
safety of such systems. At the same time, the locations of signalling components
on the railway tracks can have crucial impact on the capacity of the railway, i.e.
its ability to handle intended operational scenarios in a timely manner. There are
many details of the signalling layout design which can cause operational scenar-
ios to become infeasible or slow. Some examples are signal and detector place-
ment, correct allocation and freeing of resources, track lengths, train lengths, etc.
Capacity-related decisions in signalling border closely to the fields of timetable
planning and the implementation of interlocking systems, and although tool sup-
port for verification of interlockings and optimization of timetables has been thor-
oughly investigated and developed since the beginnings of computer science (for
example, themaximumflow problemwas originally formulated to estimate railway
network capacity [72]), signalling layout design still lacks appropriate modelling
and analysis.

Signalling engineers are looking for a more agile working environment, sup-
ported by software tools, which would facilitate new railway designs to reach the
decision makers considerably faster, and allow quickly adopting changes dictated
by problems encountered in the field during the construction and implementation
phases.

1.1 Research goals

The goal of this thesis is to introduce new kinds software tools to aid the design
process of railways, focusing especially on the signalling. By signalling we mean:

• Positioning of signal lamps and signs (physical or virtual), train detectors, and
related equipment, in the track models.

1
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• Interlocking of movable elements, signals and train detection, resulting in a safe
control system for dispatching trains using the signalling components.

• Automatic speed control mechanisms, such as the ATC system in use in Norway
and Sweden, or the ETCS international standard.

Most of the process described above has so far been based on the engineer’s
experience and gut feeling. It can be hard to keep all the constraints in one’s head
at the same time, and often the design may be redone several times, and in the end
it may not be optimal. By automating parts of this process we hope to create a more
objectively good design, which can be shown to fulfil its functional requirements
and allow for more rapid safety certification. To achieve this, we have aimed for
the following goals:

• Goal A: Formal specifications. Capture specifications for railway engineering,
such as rules, regulations, and project requirements, in formal logic so that main-
tenance and handling of complexity can be assisted by automated tools.

• Goal B: User-friendly reasoning. Assist railway engineers who are not edu-
cated in computer science and logic in working with formal specifications and
associated tools.

• Goal C: Design automation. Synthesize models, starting from empty or partial
models, to produce complete designs which are optimized for safety and perfor-
mance.

To achieve these goals, we have brought together three different fields of en-
gineering and research: firstly, the field of railway engineering, especially the sig-
nalling sub-discipline, which is the application domain that we are targeting. Sec-
ondly, software development for railway engineering, which is concerned with
data representations of railway designs, and graphical user interfaces integrated
into drafting programs. Thirdly, the computer science sub-discipline called formal
methods concerns itself with handling automated reasoning and verification tasks
where both general and project-specific specifications are a separate concern from
the reasoning and verification technique. The following sections in this chapter
give a brief introduction to each of these three topics, before we return in Section
1.5 to an overview of the rest of this thesis and how the research goals have been
fulfilled.
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1.2 Introduction to railway engineering

Railway is a mode of transport for passengers and goods where cars with wheels
run on a pair of rails, called the track. There are two physical characteristics of
railways, as opposed to paved roads, which are defining for its use:

• (P1) Low friction

Using steel wheels on steel rails has a friction coefficient which is on average
only one eighth of the friction between a car’s rubber tires and asphalt road. This
means that less energy is spent on accelerating and keeping a constant velocity,
but it also means that the maximum braking power is reduced correspondingly.
The distance required to brake the train often exceeds the sight range of the train
driver for speeds higher than around 20 km/h.

• (P2) Fixed guidance path

The path that vehicles take on a railway is fixed by the location of the tracks, so
there is no possibility to go off-road. Together with low friction, this means that
trains on collision course can neither stop nor manoeuvre around each other to
avoid impact, so organizing traffic with safety in mind is of the highest impor-
tance. It also means that railway infrastructure must be carefully planned to
include side tracks with space for vehicles to overtake and cross each other.

These physical characteristics give the railways the advantage that trains can be
run with high speed and energy efficiency, but it also means that constructing rail-
ways is costly. However, high investment costs also means that the infrastructure
required for powering vehicles with electric energy can be cost-effective. Together
with the need for centralized control to ensure safety, this makes railways among
the safest forms of transport with low levels of CO2 emissions.

The high level of centralized control imposed on the train traffic in a railway
system is essential to the design philosophy and engineering practice of the railway
domain. Exactly how the infrastructure will be used in operation must be carefully
considered in advance, and all the supporting systems of the railway (signalling,
automatic speed control, catenary power, etc.) need to coordinate their designs in
detail to make a safety-certified working system and to avoid bottlenecks. A com-
puter scientist would say that the system is tightly coupled, which is known to cause
complex inter-dependencies and make it hard and time consuming to implement
and to adjust when requirements change.

Making a railway system run optimally depends on complex interplay between
infrastructure (tracks and fixed equipment), rolling stock (trains with dynamical
characteristics), and operations (procedures ensuring safety and time tables ensur-
ing efficiency). It is the infrastructure itself which is the domain of this thesis,
but already when designing the infrastructure, the available rolling stock and the
intended operations must be kept in mind to produce an optimal design.
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1.2.1 Railway infrastructure

The railway infrastructure consists of the following main parts:

• Track network: switches (also called turnouts or points) are a mechanical part
of the railway tracks that allows trains to be guided from one track to another
at junctions. The switches are set into a position by a point machine, which can
be operated manually or by the interlocking (see Figure 1.1).
The track network of tracks and switches is organized into main tracks, where
trains travel at high speed on a time table, and siding tracks (also called secondary
tracks), where train cars are stored and trains are assembled (see Figure 1.2).

Rail

Point
machine

Frog

Guiding
rails Diverg

ing

cours
e

Straight
course

Facing
movements

Trailing
movements

Figure 1.1: A railway switch allows trains to be guided from one track to another.
Facing movements go into the straight or the diverging route, depending on the
setting of the point machine.

Platform

Platform

Main
tracks

Crossover
track

Siding
tracks

Switches

Figure 1.2: A railway network (here in schematic presentation) consists of tracks
and switches. Tracks are categorized into main tracks (drawn in bold) and siding
tracks. Crossovers are short tracks used for changing between two parallel tracks.
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• Signalling and interlocking: in order to direct traffic and keep trains clear of
each other, most railways use control systems called interlockings, which are
designed to only allow movements which are safe. The interlocking uses train
detectors, such as track circuits or axle counters, to determine whether a railway
track is free of trains and safe for another train to move into. Whenever the
interlocking allows a safe movement, it communicates this to the train using
semaphores, signalling lamps, or radio communication. Signalling lamps are still
most commonly used, and signals can communicate a fixed number of messages
(called aspects) depending on how many lamps is has. Main signals indicate
authority to move ahead from the current signal, while distant signals indicate
whether the next main signal is already showing a proceed aspect, which allows
the train to proceed at a higher speed. Amain signal and a distant signal are often
combined into one combined signal. The control system is designed according to
the highest safety standards, but the safety relies also on the train driver correctly
interpreting the signals and executing the movements. Most railways have also
automatic train control which can override the train driver’s control in case the
train exceeds given limits. These systems rely on automatically transmitting data
from the control system (infrastructure) to the train, typically using magnets,
balises, or radio communication.
Figure 1.3 shows examples of schematic symbolic representation of signalling
components.

Balise Train
detectors

Distant signal
(lower part)

Three-aspect main
signal (upper part)

Figure 1.3: Railway signalling equipment used by the interlocking (control system)
to ensure that a dispatcher can only request safe movements to be signalled to the
train driver.

• Telecommunications: reliable digital and analogue transmission equipment and
cables are necessary for communication between stations and control centres,
between trains and train dispatchers, and between signalling equipment and the
interlocking.

• Catenary power supply: many high-traffic railway lines have overhead electric
wires that supply power to train engines. These wires carry high voltage elec-



6

tricity from feeder stations placed along the railway at regular intervals. Wires
are broken into sections, each of which is suitably tensioned over a sequence of
masts to avoid mechanical oscillations causing damage.

Designing railway infrastructure is highly cross-disciplinary because engineers
in each of these sub-disciplines (track, signalling, telecommunications, catenary)
perform their design under tight constraints, and are also dependent on each other’s
design decisions. For example, the location of the signals must be coordinated with
the location of masts for the catenary power supply to avoid conflicts. The target
maximum speed of the trains may be limited by the design of the catenary system,
which again impacts the optimal location of signs and signals.

This thesis mainly concerns the design of the signalling and interlocking sys-
tem and its relation to the track network, and also cross-disciplinary design con-
straints. Increasing the usage of analysis tools across disciplines and coordinating
data models to use for this purpose increases the chances that conflicts between
sub-disciplines can be caught early and corrected before the design is finished.

1.2.2 Control system: interlocking safety principles

The control system ensures safety by imposing the following conditions for allow-
ing train movements:

• (C1) Way integrity

The movable elements (switches and other mechanical parts of the track) along
the path should bemechanically locked in place and detected to be in their correct
positions to avoid derailing.

• (C2) Path vacancy

The track should be detected clear of trains to avoid collisions.

• (C3) Blocking conflicts

The track sections along the train’s path should be exclusively allocated to the
movement, and other movements should be performed at a safe distance.

The interlocking gets requests from a dispatcher to set routes and must then
either ensure that conditions (C1), (C2) and (C3) are fulfilled before communicating
movement authority to the train, or decline the request, see Figure 1.4.

The details of the workings of the interlocking vary greatly between countries.
Many modern railways (especially those based on the German engineering tradi-
tion) describe the interlocking’s workings using tabular route-based specifications.
These specifications consist of a list of elementary routes, which describe requests
to move a train from one main signal to an adjacent signal, together with the con-
ditions for accepting the request.
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(1)

(2) (3)
SIL4

SIL4

Figure 1.4: A dispatcher (1) requests routes from the interlocking control system.
The interlocking decides whether to accept the command (2), and signals the re-
sulting movement authority to the train driver (3). The control system itself is
responsible for the safety of the resulting movements.

These conditions typically include:

• switch positions which must be mechanically locked,
• track sections which must be exclusively allocated, or which must be vacant,
• conflicting elementary routes: routes that use the same track sections, the same
switches, or which for other reasons are not safe to use simultaneously, are often
explicitly listed for each elementary route.

• flank protection: to protect the train from other movements, a certain distance
along each path leading into the route path (the flank) should be detected vacant,
and should have an element, e.g. a signal or a switch, locked in a protective state.

• safety zone (also called overlap): to protect the train from overrunning the route,
a certain distance after the end of the route should be detected vacant.

Any unsafe combinations of movements are usually excluded by several of the
requirements listed above, so the specifications often have redundancies.

Interlocking systems have been designed and used since around 1850, and were
at first implemented using mechanical locks, later using relay electronics (starting
from the 1920s), and finally using computer software (starting from the 1980s),
which is the most common method used today. The systems and specifications
vary greatly between different countries in terms of principles, requirements, and
implementation. For a more detailed account of railway operations, including a
comparison of British, German, and North American concepts, see Railway Oper-
ation and Control by Jörn Pachl [131].

Figure 1.5 demonstrates how an interlocking works in principle, by showing a
sequence of events that results in moving a train ahead by one route.
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1 Train #1
is waiting

Train #2
is waitingTrack section

occupied

Dispatcher
requests route

2 Requested
path sections (C2)

Requested
flank sections (C3)

Requested
overlap sections (C3)

Setting switch
to left position

3

Signal shows
’proceed’

Switch position
detected and locked (C1)

Train #1 starts
moving

4

Signal reset
to ’stop’

Train #1 has passed
first detector

Dispatcher request for
route for train #2 would fail

5 Partial release: track sections
that have been passed can
be used by other routes

Dispatching train #2
is now possible

Overlap sections are
still blocked while the
train is still moving

Figure 1.5: A sequence of events resulting in moving a train ahead one elementary
route, exemplifying route setting, allocation of resources, and partial release.
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1.3 Software tool support for railway infrastructure design

Computer software tools can have an important supporting role in the complex
design processes for railway infrastructure, both for engineering analysis and ver-
ification work, and for cross-discipline coordination and project management. The
use of software for railway infrastructure engineering tasks has in many compa-
nies not advanced beyond computerized drafting. The main tools in use in railway
engineering today are:

• Drafting tools, often called CAD (computer-aided design or drafting), provide
efficient means for producing geographical or schematic drawings of a construc-
tion project.

Today, these are being extended to so-called BIM, Building Information Manage-
ment, which typically means extending the CAD model to include 3D drawings
of all disciplines for realistic visualization, and to include semantic data on com-
ponents involved in the construction process.

Examples of general CAD programs in use for all sub-disciplines include Au-
todesk AutoCAD and Bentley MicroStation. For some disciplines, there are also
domain-specific CAD programs available, most notably for railway track design
which is supported by Trimble NovaPoint, AKG Vestra, Card 1, and more. Sig-
nalling and interlocking design is supported byWSP ProSig and RailCOMPLETE.

Figure 1.6: The RailCOMPLETE CAD tools extends Autodesk AutoCAD with
railway-specific drafting and modelling capabilities.
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• Databases andmodels of railway infrastructure and related information are used
to store and transfer infrastructure data between companies, and between en-
gineering, maintenance and operations sub-organizations. Typically, each na-
tional railway has a database model and a central database to store information
about their railway network for engineering, maintenance, and operational plan-
ning. Examples include Ariane/Gaïa in the French SNCF railways, PlanProML in
the German DB railways, and Banedata in the Norwegian Bane NOR railways.
Some efforts on international standards for data models are gaining traction,
such as railML, RailTopoModel, EuLynx, and IFC, all of which are aimed at im-
proving integration between software tools, and data exchange between infras-
tructure managers and contractors across different countries.
The railML format (see Figure 1.7) is an XML based language for data exchange of
railway designs, developed by an international standardization committee, and
was used in the work with this thesis to exchange infrastructure data between
programs. railML consists of sub-schemas for time table, rolling stock, and in-
frastructure. The infrastructure schema is organized with a list of tracks at the
top level of the hierarchy. Tracks contain sub-elements for (1) movable track
elements, such as switches, crossings, and derailers, (2) trackside elements such
as signals, detectors, and balises, (3) track geometry, such as radius and gradi-
ent, and (4) operational status, such as country borders, electrification, platform
adjacency, and much more. Ends of tracks, along with switches and crossings,
are considered nodes which can be connected to each other by mutually cross-
referencing each other by name (using the XML attribute id). The recent railML
version 3 now also contains a sub-schema for interlocking specifications.

Figure 1.7: The railML XML format is hierarchically structured, the infrastructure
element contains tracks, and tracks contain trackside elements such as signals, and
track geometry features such as radius and gradient.
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• Analysis tools are typically specific to a sub-discipline. A major category of
analysis tools is the capacity and time tabling tools. These tools use detailed
data from the infrastructure, rolling stock, and time table domains to analyse
changes to time table and stochastic effects of delays and congestion. Exam-
ples of capacity and time table analysis tools include VIA LUKS (see Figure 1.8),
OpenTrack, and RMCon RailSys.
Examples of other analysis domains include Sicat Master for catenary power line
analysis, and Prover Trident for formal verification of interlocking implementa-
tions.

Figure 1.8: The LUKS capacity analysis tool offers analytical models and simulation
models on comprehensive infrastructure and time table data.

1.4 Automated reasoning and formal methods

The sub-discipline of computer science called formal methods is concerned with
formulating statements about computer programs and systems usingmathematical
language, and developing automated reasoning tools that can aid in verifying that
systems adhere to the specifications written in this mathematical language. Most
notably, formal methods are used in industrial software development for safety
critical applications (for safety reasons), and in electronic hardware design (for
economical reasons), see [36, 18].

Because both the design principles and the details of regulatory compliance
and standards compliance in railway infrastructure design are complex and highly
country specific, it might not be cost-effective to write custom software for each
analysis task that might be useful for the end user. However, declarative logic-
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based programming allows development of software where logical specifications
are separated from the algorithm that performs the analysis. This means re-casting
analysis problems from specific-purpose algorithms to the verification problem, as
known from formal methods of computer science. This method consists of splitting
an analysis task into models and properties which operate in a certain logic, which
typically has a more general purpose than the specific problem being solved.

The fact that properties to be verified are considered an input to the solver pro-
gram at the same level as the models themselves, means that the resulting software
is more flexible in what it can be used for.

Another feature of the formal methods style of analysis is that the there are
many logics which have been thoroughly studied for how to solve equations or
answer queries about them efficiently. The formal logics that we have used in this
thesis have advanced, efficient solvers:

• Datalog, a restricted form of logic programming which can only express tract-
able, terminating computations, has several highly optimized solvers, e.g. Soufflé
[83], RDFox [122], and XSB Prolog [160].

• SAT, the Boolean satisfiability problem, consists of checking whether assigning
truth values to the propositions of a propositional logic formula can make the
formula true. This is in general a hard problem, but many solvers exists which
solve real-world problems very efficiently, e.g. MiniSat [52] and Glucose [7].

• SMT, satisfiability modulo theories, integrates solvers for equations over reals,
integers, and data structures such as arrays, with a SAT solver. Several solvers
are popular for a wide range of problem solving, e.g. Z3 [43] and MathSAT [33].

Several such solver categories have annual competitions for fastest solvers on
different kinds of benchmark problems, and significant effort has been put into
solving arbitrary formulas and equations. For computationally hard problems, it is
often much easier to model a problem in a suitable logic and use a well-developed
solver than to create a special-purpose analysis program from first principles.

The tools presented in this thesis use automated reasoning and formal methods
to de-couple highly specific domain logic from software development, so that en-
gineers in different countries can use the same tools. By expressing properties in
a suitable logic and using an efficient solver for that logic, it is possible to develop
analysis tools that produce their results very fast, often with performance compa-
rable to special-purpose algorithms. The efficient working of analysis tools can be
highly important for using a tool in practice.

Railway control systems and signalling designs are a fertile ground for formal
methods. See [16, 56] for an overview of various approaches and pointers to the lit-
erature, applying formal methods in various phases of railway design. For a slightly
more dated state-of-the-art survey, see [77]. In particular, safety of interlockings
has been intensively formalized and studied, using for instance VDM [61] and the
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B-method, resp. Event-B [98]. Model checking has proved particularly attractive
for tackling the safety of interlocking, and various model checkers and temporal
logics have been used, cf. e.g. [26, 172, 54] [134, 112, 64, 54]. Critically evaluat-
ing practicality, [57] investigated applicability of model checking for interlocking
tables using NuSMV and Spin, two prominent representatives of BDD-based sym-
bolic model checking, and explicit state model checking, respectively. The research
shows that interlocking systems of realistic size are currently out of reach for both
flavors of general purpose model checkers. To mitigate the state-space explosion
problem, bounded model checking has been extensively used for for interlockings.
Instead of attempting an exhaustive coverage of the state-space, symbolically or ex-
plicitly, bounded model checking analysis (the behaviour of) a given system only
up to a given bound (which is raised incrementally in case analysing a problem
instance is inconclusive). This restriction allows to use SAT solving techniques in
the analysis. The standard BMC references are [13, 35], however the techinque
was already suggested for railway verification in [65]. [76] uses BMC on a variant
of linear temporal logic (LTL) for safety property specification and employs so-
called k-induction. The work of [173] investigates how to exploit domain-specific
knowledge about interlocking verification to obtain good variable orderings when
encoding the systems to be verified in a BDD-based symbolic model checker. An
influential technology is the tool-based support for verified code generation for
railway interlockings from Prover AB Sweden [19]. Prover is an automated theo-
rem prover, using Stålmarck’s method [158] of tautology checking.

Most of the approaches that can be found in the formal methods literature are
concerned with the correct implementation of the control system’s logic, and usu-
ally take the station layout as a given. In contrast, this thesis presents tools for
working out these station layouts by placing signals, detectors, and related equip-
ment onto the track plan.
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1.5 Research contributions

The following overview shows the components of our railway design tool chain
that we have developed and which is described in the following chapters.

Infrastructure models, edited in a
graphical interactive editor (CAD
program) extended with railway
semantic data and translated into
railML for analysis (Ch. 7).

12 Bjørnar Luteberget and Koen Claessen

(a) Crossover

(b) Ladder sidings (c) Real-world example: Eidsvoll railML

Fig. 9. Output examples for the level-based SAT method

Note that the if an edge is a short edge (such as a crossover between two
adjacent tracks) it does not require its own level, and we use instead the same
level as the one of its end nodes which has the highest value.

We need the following constraints:

– Each edge e connecting na to nb must be at least 1 unit long on the x axis:∨
i∈(a,b)

∆xi ≥ 1.

– Edge ordering constraints for ea <E eb:

la ≤ lb,
(
¬qupa ∧ ¬qdown

b

)
⇒ la + 1 ≤ lb

– An edge i is short (qup or qdown) if both ends have the same direction and
the vertical distance between nodes is one:

qupi ⇒ (dupi = Begin) ∧ (dupi = End) ∧ (ya + 1 = yb)

qdown
i ⇒ (ddown

i = Begin) ∧ (ddown
i = End) ∧ (ya − 1 = yb)

– Direction on edge i decides vertical level constraints:

(dbegini = Straight)⇒ (ya = li), (dbegini = Up)⇒ ya + 1 ≤ li,

(dbegini = Down)⇒ ((qupi ⇒ (ya ≥ li)) ∧ (¬qupi ⇒ (ya ≥ li + 1)))

And similar for dend.
– The sum of ∆x values over the edge must match the shape of the edge:(

qup ∨ qdown
)
⇒ Σj∈(a,b)∆xj ≤ 1(

¬qup ∧ ¬qdown ∧
(
dbegin 6= Straight ∨ dend 6= Straight

))
⇒ Σj∈(a,b)∆xj ≥ 2

With this representation we can now also optimize for bends by using the
difference between dbegin and dend on each edge. See examples in Figure 9. The
visual quality of the produced schematics is much better with the new additions
of switch orientation and short-edges.

Schematic drawings, automatically
created from the topological data in
an infrastructure model using a lin-
ear track referencing system (Ch. 6).

Warning

Error
Static verification, analysis of in-
frastructure and interlocking models
according to specifications given as
Datalog logic programs (Ch. 2).

Capacity analysis for railway construction using SAT modulo Discrete Event Simulation 3

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two trains on a two-track station.
The green areas show track segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which are currently occupied by a
train going from right to left.

In consequence, this paper addresses the following problem: in the context of designing
the layout and control systems for railway stations, does the station infrastructure have the
capacity to handle the amount of trains and the desired traveling times to provide adequate
service in transportation of goods and passengers?

As an example, consider the question of crossing trains on a railway station. Fig. 1
shows two sequences of movements which result in such a crossing. There are a number of
details of the railway design which can cause this scenario to become infeasible (or take an
unacceptably long time), such as signal placement, detector placement, correct allocation
and freeing of resources, track lengths, train lengths, etc.

Railway design and construction planning is an old engineering discipline with long-
standing traditions. Demands for the highest safety, compatibility with existing infrastruc-
ture and practices, and high investment costs, make railway engineering a conservative do-
main. The design of railways is in practice highly sequential, leading to the known advan-
tages and disadvantages of so-called waterfall process models.

Waterfall-style design processes require that high-level specifications can be written up-
front and afterwards implemented without feedback from the implementation process back
to the high-level specifications. This also means that verification and validation in waterfall-
style design processes is confined to the scope of each separate design activity, or destined
to have little hope of improving the design when weaknesses are uncovered.

Slightly unfounded design assumptions which are made early in the early process stages
have been known to trickle all the way down to the final stages and require new rounds of
design starting from the top, a process which typically takes several years.

These negative effects are typically mitigated by:

1. Re-using proven design concepts, i.e. doing something the same way as somewhere else,
where it has already turned out to work well.

2. Allowing sizable margins, e.g. planning the track with more than enough space for safety
distances so that it is highly likely that control system engineers will later be able to
come up with a safe and performant design.

These mitigations exploit tradition, experience and cross-discipline knowledge in the
railway engineers, which in turn contributes to making the engineering community slow-
moving and conservative.

However, modern construction practice expects and demands optimization. When space
requirements, performance requirements and cost limitations are squeezed to the limits of

Planning of operations, using
SAT for capacity verification, with
special-purpose specifications suited
to construction projects (Ch. 3).

Distance

Velocity Velocity restriction Simulation, implemented by estab-
lished methods and used as a timing
measurement component in capacity
verification (Ch. 3).

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringClassMasculine 
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValue (StringTerm "21.0m")))

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End, Dist), Dist < 21.0.

Controlled natural language, speci-
fying properties of infrastructure us-
ing a natural language-like syntax,
with editor support (Ch. 5).

Fig. 12: Partial screen capture from our interactive design tool showing suggestions
for design improvement to the user, inspired by integrated development environments
used for programming. The individual optimization steps run their calculations as a
background process, showing an information symbol where the algorithm is able to
provide an improvement over the current design. The user can decide to implement it
or to dismiss this change and similar changes from future suggestions.

towards a better design, which can be performed by a user interactively. Using
a computer-assisted design program for railway, or a drafting program (such as
AutoCAD) extended with semantic information about railway objects and rail
network topology, the user gets suggestions for smaller changes to their design
and can investigate how applying these changes affects the various scenarios.

Local optimization steps suggested to the user are the following:

– Redundant equipment: if removing a single object from the drawing can
still be made to satisfy all local capacity requirements, the program suggests
that the object is redundant. This class of suggestions is based on the SAT-
based component minimization technique described above.

– Local move of equipment: if moving a single object or a set of nearby
objects can improve the overall capacity measure on the station, the program
suggests moving the object (or set of objects). This class of suggestions is
based on the numerical timing optimization technique described above.

– Adding equipment: if adding a single piece of equipment (and perform-
ing local moves of equipment afterwards) can improve timing, the program
suggests this to the user. This class of suggestions is based on the numerical
timing optimization technique described above.

When the user accepts any of these changes, they can investigate how the
dispatch plans and the timings change. The tool meanwhile calculates new sug-
gestions based on the new layout.

We have developed a prototype tool which can calculate and suggest such
changes to a user while they are editing their layout, and we are currently starting
testing of this tool in an industrial setting together with railway engineers to
investigate how useful such suggestions are, and how often they can be used
compared to a from-scratch synthesis.

Synthesis and optimization, creating
a signalling design from scratch or
suggesting improvements to existing
designs. (Ch. 4).
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The overview above is organized like the end-user software tools that we have
developed, with closely dependent modules listed together. The rest of this text is
however organized thematically:

• Chapter 2: static analysis, which is treated with Datalog logic programming,
and integrated into a CAD program.
This chapter contributes to goals A and B.

• Chapter 3: dynamic analysis for assessing capacity of a signalling design,
which is treated as a SAT problem with simulation testing.
This chapter contributes to goals A and B.

• Chapter 4: synthesis of signalling designs, treated using SAT and numerical
optimization with the dynamic analysis techniques as a basis.
This chapter contributes to goal C.

• Chapter 5: controlled natural language specification of railway regulations,
treated using the Grammatical Framework programming language to define
a domain-specific grammar and translating the resulting statements into the
relevant formal logic.
This chapter contributes to goal A and B.

• Chapter 6: drawing schematic railway plans by using SAT and optimization.
This chapter contributes to goal B.

• Chapter 7: integrating a data model of railway infrastructure and various
analysis tools into the interactive modelling tools used by railway engineers
in practice (CAD tools).
This chapter contributes to goal B.

Finally, some concluding remarks about our findings and developments and
the way forward for taking railway engineering into the future can be found in
Chapter 8.





2Static analysis in infrastructure
verification

Railway construction projects are heavy processes that integrate various fields,
engineering disciplines, different companies, stakeholders, and regulatory bodies.
When working out railway designs a large part of the work is repetitive, involving
routine checking of consistency with regulations, writing tables, and coordinating
disciplines. Many of these manual checks are simple enough to be automated. The
repetition comes from the fact that even small changes in station layout and inter-
locking may require thorough (re-)investigation to prove that the designs remain
internally consistent and still adhere to the rules and regulations of the national
(and international) rail administration agencies.

With the purpose of increasing the degree of automation, this chapter presents
results on integrating formal methods into the railway design process by the fol-
lowing means:

• Formalizing rules governing track and signalling layout, and interlocking.

• Using the standardized railway markup language, railML¹, as basis and exchange
format for the formalization.

• Modelling the concepts describing a railway design in the logic of Datalog; and
developing an automated generation of the model from the railML representa-
tion.

• Developing a prototype tool and integrating it in existing railway CAD software.

We illustrate the logical representation of signalling principles and show how they
can be implemented and solved efficiently using the Datalog style of logic pro-
gramming [165]. We also show the integration with existing railway engineering
workflow by using CADmodels directly. This enables us to verify compliance with
regulations continuously as the design process changes the station layout and in-
terlocking. Based on railML [121] as intermediary language, our results can be
easily adopted by anyone who uses this international standard.

The approach presented in here could be applied also to other engineering dis-
ciplines, such as catenary power lines, track works, and others, which have similar
design regulations and often make use of a similar CAD environment. However,
we use the signalling and interlocking design process as an example and show how
it can be improved by automation using formal methods.

¹railML.org: https://www.railml.org/
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The work uses as case study the software and the design (presently under de-
velopment) used in the Arna-Fløen upgrade project,² a major infrastructure activity
of the Norwegian railway system, with planned completion in 2020. TheArna train
station is located on Northern Europe’s busiest single-track connection (between
Arna and Bergen), which is being extended to a double-track connection. Thus, the
train station is currently undergoing an extensive overhaul, including significant
new tunnel constructions and specifically a replacement of the entire signalling
and control system. The case study is part of an ongoing project in Anacon AS
(now merged with Norconsult), a Norwegian signalling design consultancy. It is
used to illustrate the approach, test the implementation, and to verify that the tool’s
performance is acceptable for interactive work within the CAD software.

2.1 Verification artifacts

Thesignalling design process results in a set of documentswhich can be categorized
into (a) track and signalling component layout, (b) interlocking specification, and
(c) automatic train control specification. The first two categories are considered
here.

2.1.1 Track and signalling component layout

Railway construction projects rely heavily on computer aided design (CAD) tools to
map out railway station layouts. The various disciplines within a project, such as
civil works, track works, signalling, or catenary power lines, work with coordinated
CAD models. These CAD models contain a major part of the work performed by
engineers, and are a collaboration tool for communication between disciplines. The
signalling component layout is worked out by the signalling engineers as part of
the design process. Signals, train detectors, derailers, etc., are drawn using symbols
in a 2D geographical CAD model. An example of a layout drawing made from a
CAD model is given in Figure 2.1.

Track layout details, which are input for the signalling design, are often given
by a separate division of the railway project. At an early stage and working at a
low level of detail, the signalling engineer may challenge the track layout design,
and an iterative process may be initiated.

2.1.2 Interlocking specification

An interlocking is an interconnection of signals and switches to ensure that train
movements are performed in a safe sequence [131]. Interlocking is performed elec-
tronically so that, e.g., a green light (or, more precisely, the proceed aspect) com-
municating the movement authority required for a train to travel through a station

²http://www.jernbaneverket.no/Prosjekter/prosjekter/Arna---Bergen

http://www.jernbaneverket.no/Prosjekter/prosjekter/Arna---Bergen
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Figure 2.1: (a) Example schematic construction drawing. (b) Cut-out from 2D ge-
ographical CAD model (construction drawing) of preliminary design of the Arna
station signalling.

can only be lit by the interlocking controller under certain conditions. Conditions
and state are built into the interlocking by relay-based circuitry or by computers
running interlocking software. Most interlocking specifications use a route-based
tabular approach, which means that a train station is divided into possible routes,
which are paths that a train can take from one signal to another. These signals
are called the route entry signal and route exit signal, respectively. An elementary
route contains no other signals in-between. The main part of the interlocking spec-
ification is to tabulate all possible routes and set conditions for their use. Typical
conditions are:

• Switches must be positioned to guide the train to a specified route exit signal.

• Train detectors must show that the route is free of any other trains.

• Conflicting routes, i.e. routes which make use of the same track segments, in-
cluding segments inside safety margins, must not be in use.
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Route Start End Sw. pos Detection sections Conflicts
AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

Figure 2.2: Example of a tabular interlocking, showing available routes and their
conditions.

2.2 Logic programming and knowledge-base systems

In order to automatically verify rules and regulations on these railway infrastruc-
ture model artifacts, we need a computer program which can check each property
for violations with the given model as input.

A straight-forward approach to making such a program could be to create some
search function on the graph implicit in the track network. This procedure should
allow, for example, to find the nearest object of a given type, or to find all paths
between two points. Then we would describe a checking procedure for each rule.
Consider for example the home signal regulation, introduced as Property 1 in Sec-
tion 2.2.5 below, which says “A home main signal shall be placed at least 200 m
in front of the first controlled, facing switch in the entry train path.”. Checking
such a property can be done by iterating over tracks, locating station boundaries,
starting a search function to locate the relevant facing switches, starting another
search backwards to check that there is a home signal, and so on. The amount of
code required to do this in a mainstream programming language can become large,
and this code is often very specific to a given railway administration.

Better suited to manage the large amounts of code required for a large number
of rules, is logic programming, which allows rule descriptions that are much closer
to the original specifications than in a mainstream programming language.

2.2.1 Logic programming

Logic programming [124] is a family of programming languages based on formal
logic. Logic programs are declarative, i.e. they describe properties of the solution
of a problem rather than a calculation procedure for finding the solution. This sep-
arates the concerns of expressing rules about railway systems from the algorithms
required to do automatic analysis. This separation allows one to systematically
maintain a large set of rules, and decouple the tool implementation from the set of
concepts, rules and expert knowledge that is specific to a railway administration.

We have successfully used the Datalog language [165], a subset of the more
well-known Prolog language, for verifyingmany properties given as technical rules
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and expert knowledge. It allows concise formulations of railway concepts, and
queries can be efficiently calculated.

Ideally, we would like the railway engineers themselves, without much pro-
gramming education, to be able to create and maintain the set of rules which is
used for the verification. This separation of logic and algorithm is a step in this di-
rection, because non-IT experts can work on the rules without considering how the
calculations are implemented. However, the strict formalism and subtle semantics
of logic programming are still a challenge for an inexperienced programmer.

Still we think that it is feasible for inexperienced logic programmers to do some
of the maintenance of a rule base for the following reasons:

1. Themost basic concepts, such as connectedness, distances, directions, etc., rarely
need to be redefined, and may be specified by an expert programmer, and then
reused.

2. Naming or documenting the basic concepts in a way that is understandable by
railway engineers allows them to use these concepts without considering the
actual definitions.

3. Rule formulations are often so succinct that they can be understood evenwithout
knowledge of the logic programming syntax.

4. Modification (updating) of rules, for example following a change in regulation
from the railway administration, often preserves the structure of the specifica-
tion, adding only a similar clause or the change of a numeric constant.

5. Templates for common rule structures can be given, so that implementing some
types of rules becomes a matter of specifying e.g. only object types, directions,
and distances.

We envision that a common rule base would be exchanged between all en-
gineers working with a railway administration, and that the rule base would be
worked out partly by software experts, partly by railway experts. Also, the rule
base should be fairly constant, like the regulations, requiring an update frequency
of perhaps once per year.

We do, however, concede that Datalog programming in general is outside what
would be expected competency for a railway engineer. A higher-level domain-
specific language including relevant constructs for a railway design knowledge
base could improve the likelihood of railway engineers being successful in creat-
ing and maintaining the regulations. Even more, this language could allow each
company and each engineer to experiment with encoding different design heuris-
tics and expert knowledge to see the effects on the verification and the design. This
idea is elaborated on in Chapter 5.



22

2.2.2 Datalog

Declarative logic programming is a programming language paradigmwhich allows
clean separation of logic (meaning) and computation (algorithm). This section gives
a short overview of Datalog concepts. See [165, 2, 124] for more details. In its
most basic form a Datalog program is a database query, as in the SQL language,
over a finite set of atoms which can be combined using conjunctive queries, i.e.
expressions in the fragment of first-order logic which includes only conjunctions
and existential quantification.

Conjunctive queries alone, however, cannot express the properties needed to
verify railway signalling. For example, given the layout of the station with tracks
represented as edges between signalling equipment nodes, graph reachability que-
ries are required to verify some of the rules. This corresponds to computing the
transitive closure of the graph adjacency relation, which is not expressible in first-
order logic [99, Chap. 3].

Adding fixed-point operators to conjunctive queries is a common way to mit-
igate the above problem while preserving decidability and polynomial time com-
plexity.

The Datalog language is a first-order logic extended with least fixed points. We
define the Datalog language as follows: Terms are either constants (atoms) or vari-
ables. Literals consist of a predicate p with a certain arity n, along with terms cor-
responding to the predicate arguments, forming an expression like p(−→a ), where
−→a = (a1, a2, . . . , an). Clauses consist of a head literal and one or more body liter-
als, such that all variables in the head also appear in the body. Clauses are written
as

r0(
−→x ) :– ∃−→y : r1(

−→x1,
−→y1), r2(−→x2,

−→y2), . . . , rk(−→xk,
−→yk),

with
∪

1≤i≤k
−→xi = −→x and

∪
1≤i≤k

−→yi = −→y . Datalog uses the Prolog conven-
tion of interpreting identifiers starting with a capital letter as variables, and other
identifiers as constants, e.g., the clause

a(X,Y ) :– b(X,Z), c(Z, Y )

has the meaning of

∀x, y : ((∃z : (b(x, z) ∧ c(z, y)))→ a(x, y)) .

Clauses without body, which cannot then contain any variables, are called facts,
those with one or more literals in the body are called rules. No nesting of literals
is allowed. However, recursive definitions of predicates are possible. For example,
let edge(a, b) be a graph edge relation between vertices a and b. Graph searches
can now be encoded by making a transitive closure over the edge relation:

path(a, b) :– edge(a, b).
path(a, b) :– edge(a, x), path(x, b).
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In the railway domain, this can be used to define the connected predicate, which
defines whether two objects are connected by railway tracks:

directlyConnected(a, b) :– track(t), belongsTo(a, t), belongsTo(b, t).
connected(a, b) :– directlyConnected(a, b).
connected(a, b) :– directlyConnected(a, x), connection(x, c),

connected(c, b).

Here, the connection predicate contains switches and other connection types. Fur-
ther details of relevant predicates are given in the sections below.

Another common feature of Datalog implementations is to allow negation, with
negation as failure semantics. This means that negation of predicates in rules is al-
lowed with the interpretation that when the satisfiability procedure cannot find a
model, the statement is false. To ensure termination and unique solutions, the
negation of predicates must have a stratification, i.e. the dependency graph of
negated predicates must have a topological ordering (see [165, Chap. 3] for de-
tails).

Datalog is sufficiently expressive to describe static rules of signalling layout
topology and interlocking. For geometrical properties, it is necessary to take sums
and differences of lengths, which requires extending Datalog with arithmetic op-
erations. A more expressive language is required to cover all aspects of railway
design, e.g. capacity analysis and software verification, but for the properties in
the scope of this chapter, a concise, restricted language which ensures termination
and short running times has the advantage of allowing tight integration with the
existing engineering workflow.

2.2.3 Knowledge-base system

With Datalog as specification language, we build a knowledge-base system to per-
form the verification. A knowledge-base system consists of a set of facts and rules,
along with an inference engine which answers queries by applying logical infer-
ence rules. For an introduction to knowledge-base systems in general, see [165,
Chap. 3] or [149, Chap. 8 and 12]. We give here an overview of how we encode
railway signalling properties as Datalog predicates, which in turn may be automat-
ically checked for consistency. In our verification tool, we organize our knowledge
base in the following manner:

1. Input documents: Predicate representation of input document, i.e. track layout
and interlocking, are represented as facts which are converted from the railML
representation stored and maintained in the CAD database by a CAD plug-in
program.

2. Derived concepts: Predicate representation of derived concept rules, such as
object properties, topological properties, and calculation of distances. A library
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of general railway concepts and administration-specific concepts and definitions
are kept in a rule base which is re-used between projects.

3. Technical rules and expert knowledge: Predicate representation of technical
rules or expert knowledge as logic programming rules, which encode the admi-
nistration-specific rules and expert knowledge that is checked and errors re-
ported to the user by the verification tool.

4. Inference engine: A Datalog evaluation engine is used as inference engine; in
our case the XSB Prolog tabled logic programming system [160].

Each of these aspects are described in more detail below.

2.2.3.1 Input documents

Each of the XML elements and attributes is translated into a corresponding pred-
icate. An example of translating a railML switch element into predicate represen-
tation is given below.

<switch id='sw1'>
<connection id='conn1' course='

left' orientation='outgoing'
/>

</switch>

→

switch(sw1).
connection(conn1).
belongsTo(sw1,conn1).
course(conn1,left).
orientation(conn1,outgoing).

2.2.3.2 Track and signalling objects layout in the railML format

Given a complete railML infrastructure document, we consider the set of XML
elements in it that correspond to identifiable objects (this is the set of elements
which inherit properties from the type tElementWithIDAndName). The set of all
IDs which are assigned to XML elements form the finite domain of constants on
which we base our predicates (IDs are assumed unique in railML).

Atoms := {a | element.ID = a} .

We denote a railML element with ID = a as elementa. All other data associated
with an element is expressed as predicates with its identifying atom as one of the
arguments, most notably the following:

• Element type (also called class in railML):

track(a)← elementa is of type track,
signal(a)← elementa is of type signal,
balise(a)← elementa is of type balise,
switch(a)← elementa is of type switch.
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• Element name:
name(a, n)← (elementa.name = n).

• Position and absolute position (elements inheriting from tPlacedElement):

pos(a, p)← (elementa.pos = p), a ∈ Atoms, p ∈ R,
absPos(a, p)← (elementa.absPos = p), a ∈ Atoms, p ∈ R.

• Geographical coordinates (for elements inheriting from tPlacedElement):

geoCoords(a, q)← (elementa.geoCoords = q), a ∈ Atoms, q ∈ R3.

• Direction (for elements inheriting from tOrientedElement):

dir(a, d)← (elementa.dir = d), a ∈ Atoms, d ∈ Direction,

where Direction = {up, down, both, unknown}, indicating whether the object
is visible or functional in only one of the two possible travel directions, or both.

• Signal properties (for elements of type tSignal):

signalType(a, t)← (elementa.type= t),

t ∈ {main, distant, shunting, combined} ,
signalFunction(a, f)← (elementa.function = f),

a ∈ Atoms, f ∈ {home, intermediate, exit, blocking} .

Consistency axioms would impose that signalType and signalFunction be applied
only to signal elements:

signalType(a, t)⇒ signal(a),

signalFunction(a, f)⇒ signal(a).

These are only a few examples of predicates that are extracted from the railML
document. The translator from railML to predicate form needs only to consider
XML elements, attributes and sub-elements, not the specifics of railML and its type
hierarchy. The complete structure of railML as such is carried over directly to the
logic programming environment. The switch element is the object which connects
tracks with each other and creates the branching of paths, see Figure 2.3. A switch
belongs to a single track, but contains connection sub-elements which point to other
connection elements, which are in turn contained in switches, crossings or track
ends. For connections, we have the following predicates:

• Connection element and reference:

connection(a)← elementa is of type connection,
connection(a, b)← (elementa.ref = b).
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Path 1

Path 2

Switch A

Switch B

Figure 2.3: Switches give rise to branching paths

• Connection course and orientation:

connectionCourse(a, c)← (elementa.course = c), c∈{left, straight, right}
connectionOrientation(a, o)← (elementa.orientation = o),

a ∈ Atoms, o ∈ {outgoing, incoming} .

To encode the hierarchical structure of the railML document, a separate pred-
icate encoding the parent/child relationship is added. This is required because the
predicate representation does not implicitly contain the hierarchy of the XML rep-
resentation, where elements are declared inside other elements.

• Object belongs to (e.g. a is a signal belonging to track b):

belongsTo(a, b)← b is the closest XML ancestor of a whose element
type inherits from tElementWithIDAndName.

2.2.3.3 Interlocking

An XML schema for tabular interlocking specifications is now included in version
3 of railML, but the interlocking encoding below was developed before railML 3
and is instead based on the preliminary railML work described in [21]. We give
some examples of how this schema is translated into predicate form:

• Train route with given direction d, start point a, and end point b (a, b ∈ Atoms,
d ∈ Direction):

trainRoute(t)← elementt is of type route
start(t, a)← (elementt.start = a)

end(t, b)← (elementt.end = b)

• Conditions on detection section free (a) and switch position (s, p):

detectionSectionCondition(t, a)←(a ∈ elementt.sectionConditions),
switchPositionCondition(t, s, p)←((s, p) ∈ elementt.switchConditions).
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2.2.4 Derived concepts representation

Derived concepts are properties of the railway model which can be defined inde-
pendently of the specific station. A library of these predicates is needed to allow
concise expression of the rules to be checked.

2.2.4.1 Object properties

Properties related to specific object types which are not explicitly represented in
the layout description, such as whether a switch is facing in a given direction, i.e.
if the path will branch when you pass it:

• Switch facing or trailing (a ∈ Atoms, d ∈ Direction):

switchFacing(a, d)← ∃c, o : switch(a) ∧ switchConnection(a, c)∧
switchOrientation(c, o) ∧ orientationDirection(o, d).

switchTrailing(a, d)← ¬switchFacing(a, d)

2.2.4.2 Topological and geometric layout properties

Predicates describing the topological configuration of signalling objects and the
train travel distance between them are described by predicates for track connection
(predicate connected(a, b)), directed connection (predicate following(a, b, d)), dis-
tance (predicate distance(a, b, d, l)), etc. The track connection predicate is defined
as:

• There is a track connection between object a and b (a, b ∈ Atoms):

directlyConnected(a, b)← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b)← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

• There is a directed connection between object a and b (a, b ∈ Atoms, d ∈
Direction, pa, pb ∈ R):

directlyFollowing(a, b, d)← directlyConnected(a, b)∧
position(a, pa) ∧ position(b, pb)∧
((d = up ∧ pa < pb) ∨ (d = down ∧ pa > pb))

following(a, b, d)← directlyFollowing(a, b, d)∨
∃c1, c2 : connection(c1, c2) ∧ directlyFollowing(a, c1, d)
∧ following(c2, b, d)



28

• The distance (along track) in a given direction between object a and b (a, b ∈
Atoms, d ∈ Direction, pa, pb, l ∈ R):

directDistance(a, b, d, l)← directlyFollowing(a, b, d)∧
position(a, pa) ∧ position(b, pb)
∧ l = |pb − pa|

distance(a, b, d, l)← directDistance(a, b, d, l)∨
∃c1, c2, l1, l2 : connection(c1, c2)
∧ directDistance(a, c1, d, l1)
∧ distance(c2, b, d, l2) ∧ l = l1 + l2

• Object is located between a and b (a, x, b ∈ Atoms, d ∈ Direction):

between(a, x, b, d)← following(a, x, d) ∧ following(x, b, d)

between(a, x, b)← ∃d : between(a, x, b, d)

• A path between a and b overlaps with a path between c and d (a, b, c, d ∈
Atoms):

overlap(a, b, c, d)← ∃e : between(a, e, b) ∧ between(c, e, d)

2.2.4.3 Interlocking properties

Predicates such as existsPathWithoutSignal(a, b) which defines the method for
finding elementary routes, and existsPathWithDetector(a, b) for finding adjacent
train detectors, will be used as building blocks for the interlocking rules. We show
here a recursive rule used for finding elementary routes:

• Signals a and b have a path between them without any other signals in between:

existsPathWithoutSignal(a, b, d)← following(a, b, d)∧
(¬(∃x : signal(x) ∧ between(a, x, b))∨
(∃x : between(a, x, b) ∧ existsPathWithoutSignal(a, x, d)∧
existsPathWithoutSignal(x, b, d)).

2.2.5 Rule violations representation

With the input documents represented as facts, and a library of derived concepts,
it remains to define the technical rules to be checked. All technical rules presented
herein are based on the Norwegian infrastructure manager’s regulations³. The goal
of the consistency checking is to confirm that no inconsistencies exist, in which

³Bane NOR: Teknisk regelverk, http://trv.banenor.no/

http://trv.banenor.no/
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case no further information is required, or to find inconsistencies and present them
in a way that allows the user to understand the error and to adjust their design
accordingly. Rules are therefore expressed negatively, as rule violations, so that a
query corresponding to the rule is empty whenever the rule is consistent with the
design, or the query contains counterexamples to the rule when they exist. Some
examples of technical rules representing conditions of the railway station layout
are given below.
Property 1 (Layout: Home signal). A home main signal shall be placed at least 200
m in front of the first controlled, facing switch in the entry train path.

200 m

Property 1 may be represented in the following way:

isFirstFacingSwitch(b, s)← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),

ruleViolation1(b, s)← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x, home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x, home)∧
∧ distance(x, s, d, l) ∧ l < 200).

Checking for rule violations can be expressed as:

∃b, s : ruleViolation1(b, s),

which in Datalog query format becomes ruleViolation1(B,S)?.

Property 2 (Layout: Minimum detection section length). No train detection section
shall be shorter than 21 m. I.e., no train detectors should be separated with less than
21 m driving distance.

This property is represented as follows:

ruleViolation2(a, b)←∃d, l : trainDetector(a) ∧ trainDetector(b)∧
distance(a, b, d, l) ∧ l < 21.0.
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Property 3 (Layout: Exit main signal). An exit main signal shall be used to signal
movement exiting a station.

This property can be elaborated into the following rules:

• No path should have more than one exit signal:

ruleViolation3(s)←∃d : signalType(s, exit) ∧ following(s, so, d)∧
¬signalType(s0, exit).

• Station boundaries should be preceded by an exit signal:

exitSignalBefore(x, d)←∃s : signalType(s, exit) ∧ following(s, x, d)
ruleViolation3(b)←∃d : stationBoundary(b) ∧ ¬exitSignalBefore(b, d).

A basic property of tabular interlockings is that each consecutive pair of main
signals normally has an elementary train route associated with it, i.e.:

Property 4 (Interlocking: Elementary routes). A pair of consecutive main signals
should be present as a route in the interlocking.

This can be represented as follows:

defaultRoute(a, b, d)← signalType(a,main) ∧ signalType(b,main)∧
direction(a, d) ∧ direction(b, d)∧
following(a, b, d) ∧ existsPathWithoutSignal(a, b, d),

ruleViolation4(a, b, d)← defaultRoute(a, b, d)∧
¬(∃r : trainRoute(r) ∧ trainRouteStart(r, a) ∧ trainRouteEnd(r, b)).

This type of rule is not absolutely required for a railway signalling design to be valid
and safe. Some rules are hard constraints, where violations may be considered to
be errors in the design, while other rules are soft constraints, where violations
may suggest that further investigation is recommended. This is relevant for the
counterexample presentation section below.
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Property 5 (Interlocking: Track clear on route). Each pair of adjacent train detectors
defines a track detection section. For any track detection sections overlapping the route
path, there shall exist a corresponding condition on the activation of the route.

Section 1 Section 2

Sig. A Sig. B

Detector Detector Detector

Tabular interlocking:
Route Start End Sections must be clear
AB A B 1, 2

Property 5 can be represented as follows:

existsPathWithDetector(a, b)←∃d : following(a, b, d) ∧ trainDetector(x)∧
between(a, x, b).

adjacentDetectors(a, b)←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, da, db)← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),

detectionSectionCondition(r, da, db)← detectionSectionCondition(c)∧
belongsTo(c, r) ∧ belongsTo(da, c) ∧ belongsTo(db, c).

ruleViolation5(r, da, db)←
detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

Property 6 (Interlocking: Flank protection). A train route shall have flank protec-
tion.

For each switch in the route path and its associated position, the paths starting in
the opposite switch position defines the flank. Each flank path is terminated by the
first flank protection object encountered along the path. The following objects can
give flank protection:

1. Main signals, by showing the stop aspect.

2. Shunting signals, by showing the stop aspect.
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Route

Signal A Signal B

Signal C

Switch X

Switch Y

Fla
nk

Figure 2.4: The dashed path starting in switch X must be terminated in all branches
by a valid flank protection object, in this case switch Y and signal C. (Property 6)

3. Switches, by being controlled and locked in the position which does not lead into
the path to be protected.

4. Derailers, by being controlled and locked in the derailing state.

An example situation is shown in Figure 2.4. While the indicated route is active (A
to B), switch X needs flank protection for its left track. Flank protection is given
by setting switch Y in right position and setting signal C to stop. Property 6 can be
elaborated into the following rules:

• All flank protection objects should be eligible flank protection objects, i.e. they
should be in the list of possible flank protection objects, and have the correct
orientation (the flankElement predicate contains the interlocking facts):

flankProtectionObject(a, b, d)←((signalType(a,main) ∧ dir(a, d))∨
(signalType(a, shunting) ∧ dir(a, d))∨
switchFacing(a, d)∨
derailer(a)) ∧ following(a, b, d).

flankProtectionRequired(r, x, d)← trainRoute(r) ∧ start(r, sa)∧
end(r, sb) ∧ switchOrientation(x, o) ∧ between(sa, x, sb)∧
orientationDirection(o, od) ∧ oppositeDirection(od, d).

flankProtection(r, e)←flankProtectionRequired(r, x, d)∧
flankProtectionObject(e, x, d).

ruleViolation6(r, e)←flankElement(r, e)∧
¬flankProtection(r, e).
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• There should be no path from a model/station boundary to the given switch, in
the given direction, that does not pass a flank protection object for the route:

existsPathWithFlankProtection(r, b, x, d)←
flankElement(r, e) ∧ flankProtectionElement(e, x, d)∧
between(b, e, x).

existsPathWithoutFlankProtection(r, b, x, d)←
¬existsPathWithFlankProtection(r, b, x, d)∨
(between(b, y, x) ∧ ¬flankProtectionElement(e, y, d)∧
existsPathWithoutFlankProtection(r, b, y, d)∧
existsPathWithoutFlankProtection(r, y, x, d)).

ruleViolation6(r, b, x)← stationBoundary(b)∧
flankProtectionRequired(r, x, d) ∧ following(b, x, d)∧
existsPathWithoutFlankProtection(r, b, x, d).

2.3 Tool implementation

TheXSB Prolog interpreter [160] was used as a back-end for the implementation as
it offers tabled predicates which have the same characteristics as Datalog programs,
while still allowing general Prolog expressions such as arithmetic operations.

The translation from railML to Datalog facts assumes that the document is valid
railML, which may be checked with general XML schema validators, or a special-
ized railML validator.

2.3.1 Counterexample Presentation

When rule violations are found, the railway engineer will benefit from information
about the following:

• Which rule was violated (textual message containing a reference to the source
of the rule or a justification in the case of expert knowledge rules).

• Where the rule was violated (identity of objects involved).

Also, classification of rules based on e.g. discipline and severity may be useful in
many cases. In the rule databases, this may be accomplished through the use of
structured comments, similar to the common practice of including structured doc-
umentation in computer programs, such as JavaDoc (see Figure 2.5 for an example
of how we do this). A program parses the structured comments and forwards cor-
responding queries to the logic programming solver. Any violations returned are
associated with the information in the comments, so that the combination can be
used to present a helpful message to the user. We implemented a prototype CAD
add-on program for Autodesk AutoCAD (see Section 7.2).
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%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Figure 2.5: Structured comments on rule violation expression

2.3.2 Case study results

The rules concerning signalling layout and interlocking from Bane NOR⁴ described
above have been checked against the model (i.e., railML representation) of the
Arna-Fløen project, which is an ongoing design project in Anacon AS (nowmerged
with Norconsult AS). Each object was associated with one or more construction
phases, which we call phase A and phaseB, which also corresponds to two opera-
tional phases. The model that was used for the work with the Arna station (phase
A andB combined) included 25 switches, 55 connections, 74 train detectors, and 74
signals. The interlocking consisted of 23 and 42 elementary routes in operational
phase A and B respectively.

The Arna station design project and the corresponding CAD model has been
in progress since 2013, and the method of integrating railML fragments into the
CAD database, as described in Section 7.2, has been in use for more than one year.
Engineers working on this model are now routinely adding the required railML
properties to the signalling components as part of their CAD modelling process.
This allowed a fully automated transfer of the railML station description to the
verification tool. Several simplified models were made also for testing the correct
functioning of the concept predicates and rule violation predicates. The rule col-
lection consisted of 37 derived concepts, 5 consistency predicates, and 8 technical
predicates. Running times for the verification procedure can be found in Table 2.1.

The tight integration into the CAD program and, as such, into the engineer’s
design process, creates the demand for fast re-evaluation of all conclusions upon
small changes to the railway designs.

Usually, engineers start with an empty or draft design and add/change one ob-
ject at a time. The performance figures presented in Table 2.1 show that the current
implementation is well acceptable for “one-shot” validation even for realistic de-
signs with running times in the range of seconds. However, it is not fast enough to
smoothly and transparently be integrated such that it can automatically rerun the
complete verification for each small change.

⁴The Norwegian Railway Authorities (http://www.banenor.no).

http://www.banenor.no
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Testing
station

Arna
phase A

Arna
phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog facts 85 8283 9159
Running time (s) 0.1 4.4 9.4

Table 2.1: Case study size and running times on a standard laptop.

An alternative approach that promises to be more efficient is incremental ver-
ification: instead of solving logic programs from scratch for each verification run,
it tries to materialize all consequences of the base facts and then maintains this
view under fact updates. Incremental verification is further discussed in Section
2.4 below.

2.4 Incremental verification

While the static infrastructure verification process as developed so far in this text
certainly can improve on the current practice of railway signalling design as it
is, the full potential of a “light-weight” verification is still unused because of the
perceived separation of design activity and verification activity. A verification tool
which runs invisibly alongside the design, giving feedback on the current state of
the design at any time could have a higher impact on the design process.

The common use case for running the railway design CAD tool in general is that
one performs a series of small changes. Indeed, we have found in the collaborations
with railway engineers that large portions of the design phase have the goal of
efficiently handling changes in track layouts, component capabilities, performance
requirements, etc. The verification could, instead of being called whenever final
version printouts are being made, instantly report potential problems in the design
as soon as this information is available.

This requires lowering the running time of the verification, hopefully to less
than one second, while keeping in mind that our prototype verification tool should
eventually be able to scale up tomuch larger stations, projects spanning several sta-
tions, and significantly larger knowledge bases. Exploiting the fact that the design
work is incremental, also evaluating the Datalog programs incrementally seems to
be a promising solution to this challenge.

In this section we give an overview of approaches and algorithms for incremen-
tal Datalog and the tools that are available. We study these from the viewpoint of
our application domain and evaluate initial performance on our case study.
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2.4.1 Incremental evaluation of Datalog

Datalog systems use rules to derive a set of consequences (intensional facts), from a
given set of base facts (extensional facts). Typically, Datalog systems use a bottom-
up (or forward-chaining) evaluation strategy, where all possible consequences are
materialized [165, Chap. 3] [2, Chap. 13] . This simplifies query answering to
simply looking up values in the materialization tables. Any change to the base
facts, however, will invalidate the materialization. Several approaches have been
suggested to reduce the work required to find a newmaterialization after changing
the base facts.

First, if considering only addition of facts to positive Datalog programs, i.e.
without negation, then the standard semi-naive algorithm [165, Chap. 3] [2, Chap.
13] is already an efficient approach, as it correctly handles additions to the ma-
terialization in an incremental manner. The real challenge is the non-monotonic
changes, i.e., when removing facts appearing positively in rules or adding facts
appearing negatively in rules. Non-monotonicity is essential in our railway infras-
tructure verification rules. Graph reachability is prominent in many of the regula-
tions for railway signalling, so efficiently maintaining rules involving transitivity
is also essential.

Some algorithms, such as truth maintenance systems [49], work by storing
more information (in addition to the logical consequences) about the supporting
facts for derived facts, so that removal of supporting facts may or may not remove
a derived fact, depending on whether the support is still sufficient. This allows
efficient removal of facts, at the cost of requiring more time and memory for nor-
mal derivations. Inspired by the truth maintenance systems of Doyle [49], the XSB
Prolog system implements incremental tabling [159] by keeping such sets of sup-
porting facts in memory. Figure 2.6. shows deduced facts for a graph reachability
query. In this case, whenever there are several paths connecting a pair vertices of
the graph, the reach fact for the two vertices is deduced in several ways. In the
approach taken in XSB Prolog, different sets of facts that independently prove a
derived fact are stored in tables. Whenever changes are made to base facts, the
sets of supporting facts can be removed, and as long as the set is not emptied, the
derived fact still holds.

Figure 2.6: Edge relation and corresponding support sets for a reachability predi-
cate (example from [150]).
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Another class of algorithms, working without additional “bookkeeping”, can
be more efficient if the re-evaluation of sets of facts is relatively easy compared
to re-materializing all facts. The Propagation-Filtering algorithm [73] works on
each removed fact separately, propagating it through to all rules which depend on
it, while also after each step of the propagation performing a query for alternative
support which would end the propagation. In contrast, the Delete-Rederive (DRed)
algorithm [66] is rule-oriented and works on sets of facts, first over-approximating
all possible deletions that may result from a change in base facts, then re-deriving
any still-supported facts from the over-deleted state before finally continuing semi-
naive materialization on newly added facts.

An example where the DRed algorithm is less efficient is graph reachability,
which can be encoded on the following form:

path(x, y)← edge(x, y),
path(x, y)← edge(x, z) ∧ path(z, y).

Figure 2.7 shows key differences in update approaches for the example of a
graph reachability from a given node.

Recently, the Forward/Backward/Forward (FBF) algorithm [118] used in RDFox
improved the DRed algorithm in most cases by searching for alternative support
(and caching the results) for each potentially deleted fact before proceeding to the
next fact. Notably, this method performs better on rules involving transitivity, as
deletions do not propagate further than necessary.

This method is used in the Semantic Web tool RDFox⁵, which has a high per-
formance on multicore processors with in-memory databases. We are considering
RDFox as an alternative candidates for the back end of our incremental railway
infrastructure verification procedure.

2.4.2 Tools and performance

This section summarizes a survey of tools first presented in [108], and describes
tools that feature incremental evaluation and Datalog, and which have the matu-
rity required for a future in industrial applications. The logic programs for our
verification make use of recursive predicates, stratified negation, and arithmetic.
Therefore, we pay particular attention to tools that at least satisfy these needs. In
addition, we are looking for high performance on relatively small (in-memory) data
sets, so light-weight library-style logic engines are preferred. High-performance
distributed “big data” type of tools have less value in this context.

⁵RDFox: scalable in-memory RDF triple storewith sharememory parallel Datalog reasoning, http:
//www.cs.ox.ac.uk/isg/tools/RDFox/

http://www.cs.ox.ac.uk/isg/tools/RDFox/
http://www.cs.ox.ac.uk/isg/tools/RDFox/
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(a) Edge relation visualized as arrows be-
tween objects (each element is an arrow
e(a, b)).

(b) DRed algorithm: removing one edge
(thick line) triggers re-evaluation of many
dependent edges (dashed lines)

(c) FBF algorithm: removing one edge
(thick line) causes re-evaluation of depen-
dent edge (thick dashed line), but confirma-
tion that this edge is still valid stops further
propagation.

1

1
2− 1

2

(d) Counting approach: removing one edge
(thick line) causes re-evaluation of depen-
dent edge (thick dashed line), but because
this edge has multiple derivations, it is still
valid, and propagation can stop. Note that a
pure counting approach is not sufficient in
this case because of the recursive reachabil-
ity rule.

Figure 2.7: Different approaches to incremental evaluation demonstrated on a
reachability program using an edge relation. Using the edge relation in (a), the
reachability from the first vertex is calculated, and update strategies for (b) DRed,
(c) FBF, and (d) a counting approach are exemplified.

XSB Prolog, continuously developed since 1990, has constantly been pushing the
state of the art in high-performance Prolog. XSB is especially known for its
tabling support [160], which allows fast Datalog-like evaluation of logic pro-
grams without restricting ISO Prolog in any way. The tabling support was ex-
tended to allow incremental evaluation [150], and these features have been under
continued development and seem to have reached amature state [159]. For some
applications, however, the additional memory usage for incremental tabling can
lead to a significant increase in the total memory needed.

RDFox is a multicore-scalable in-memory RDF triple store with Datalog reason-
ing. It reads semantic web formats (RDF/OWL) and stores RDF triples, but also
includes a Datalog-like input language which can describe SWRL rules. This rule
language has been extended to include stratified negation and arithmetic. The
RDFox system also implements the new FBF algorithm for incremental evalua-
tion [118].

RDFox stores internally only triples as in RDF (subject, predicate, and object),
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which, in Datalog, corresponds to only using unary and binary predicates. A
method of reifying the rules for higher-arity Datalog predicates into binary pred-
icates allows RDFox to calculate any-arity Datalog programs. However, this re-
quires separate rules for each component (argument) of the predicate, and when
doing incremental evaluation, the FBF algorithm’s backward chaining step then
examines all combinations of components (arguments) potentially involved in
such a higher-arity predicate. Because of this problem, using RDFox incremen-
tally did not improve running times in our case study, suggesting a need for
native support for n-ary predicates in RDFox.

LogicBlox is a programming platform [6] for combining transactions with ana-
lytics in enterprise application areas including web-based retail planning and
insurance. It uses a typed, Datalog-based custom language LogiQL and has a
comprehensive development framework. It claims support for incremental ver-
ification, but we could not evaluate it on our railway example due to absence of
freely downloadable distributions.

Dyna is a promising new Datalog-like language for modern statistical AI systems
[55]. It has currently not matured sufficiently for our application, but its tech-
niques are promising, and we hope to see it more fully developed in the future.

Many other Datalog tools are available (around 30), few of them supporting
incremental evaluation. An overview and our brief evaluation of them can be found
in the technical report [110], and a more general overview of Datalog tools can be
found in the Wikipedia page.⁶

2.4.3 Performance

Table 2.2 compares the running time and memory usage for the verification case
study of Arna station presented in Section 2.3, extended to use the incremental ca-
pabilities of XSB Prolog. The extra bookkeeping required in XSB to prepare for in-
cremental evaluation requires more time and memory than non-incremental eval-
uation, so we include both non-incremental and from-scratch incremental evalu-
ation in the table for comparison. We show how updates can be calculated faster
than from-scratch evaluation by moving a single object (an axle counter) in and
out of a disallowed area near another object (regulations require at least 21.0 m
separation between train detectors). Without using abstraction methods, the case
study verification uses over 2 GB of memory. So, for any hope of handling larger
stations on a standard laptop or workstation, this must be reduced. We were not
able to reduce memory usage in this case study using the abstraction methods in
XSB (version 3.6.0).

⁶https://en.wikipedia.org/wiki/Datalog#Systems_implementing_Datalog

https://en.wikipedia.org/wiki/Datalog#Systems_implementing_Datalog
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Testing
station

Arna
phase A

Arna
phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog input facts 85 8283 9159
XSB:

Non-incremental verif.: Running
time: (s) 0.015 2.31 4.59

Memory (MB) 20 104 190

Incremental verif. baseline: Runningtime (s) 0.016 5.87 12.25

Memory (MB) 21 1110 2195

Incr. single object update: Running
time (s) 0.014 0.54 0.61

Memory (MB) 22 1165 2267

Table 2.2: Case study size and running times on a standard laptop.

While currently none of the tools seem to satisfy all conditions we hoped for
in our integration, notably efficiency, but also maturity and stability, it should also
be noted that the need for incremental evaluation has been identified by the com-
munity not only as theoretically interesting, but also as of practical importance.
The RDFox developers aim to support incremental updates of higher-arity predi-
cates in a later version. The XSB project has made efforts to improve its abstraction
mechanisms, so future versions might become feasible for our use. If reducing the
memory usage would require adapting a Datalog algorithm (such as DRed), then
XSB’s unrestricted Prolog might be a challenge. A different approach would be to
extend another efficient Datalog tool, such as Soufflé⁷ to do incremental evaluation,
which could require a significant effort.

2.5 Conclusions

We have demonstrated a logical formalism in which railway layout and interlock-
ing constraints can be modelled and technical regulations can be expressed, and
which can be decided by logic programming methods (Datalog in particular) with
polynomial time complexity. This allows verification of railway signalling designs
against infrastructure manager regulations. It also allows to build and maintain a
formally expressed body of expert knowledge, which may be exchanged between
engineers and automatically checked against designs. We have demonstrated this
approach on an ongoing railway design project from the Anacon AS company and

⁷Soufflé: a Datalog compiler, http://souffle-lang.org/

http://souffle-lang.org/
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using the standard regulations from the Norwegian railway authorities. We have
implemented a prototype and integrated it in the engineer’s CAD design tool suite.
Even though preliminary tests show good performance, we saw the need for faster
verification methods, and thus looked into incremental verification tools for Data-
log. In this respect we presented our summary of findings and our test results on
our railway use case.

2.5.1 Related work

Logic (programming) languages, like Prolog or Datalog, have been used for repre-
senting and checking various aspects of railway designs. For the verification of sig-
nalling of an interlocking design [88] uses a Prolog database to represent the topol-
ogy and the layout, where for the the verification, the work uses a separate SAT
solver. Similarly, the work of [119, 120] uses logic programming for verification of
interlocking systems. In particular, the work uses a specific version of so-called an-
notated logic, namely annotated logic programs with strong negation (ALPSN). In
general and beyond the railway system domain, recent times have seen renewed
research interest in Datalog, see for instance the collection [41]. Datalog has in
particular been used for formalizing and efficiently implementing program analy-
ses [157, 171], whereas [156] presents Doop, a context-sensitive points-to analysis
framework for Java.

The mentioned works generally include dynamic aspects of the railway in their
checking, like train positions and the interlocking state. This is in contrast to our
work, which focuses on checking against a formalization of the general design
rules issued by the regulatory bodies, thus concentrating on static aspects such
as the signalling layout. This makes the notorious state-space explosion problem
less urgent and makes an integration into the standard design workflow within the
existing CAD tool practical.

Lodemann et al. [103] use semantic technologies to automate railway infras-
tructure verification. Their scope is still wider than the approach described in this
chapter, in the computational sense, with the full expressive power of OWL on-
tologies, running times on the order of hours, and the use of separate interactive
graphical user interfaces rather than integration with design tools.

2.5.2 Future work

In the future work with Railcomplete AS, we will focus on extending the rule base
to contain more relevant signalling and interlocking regulations, and also on eval-
uating the performance of our verification on a larger scale. Design information
and rules about other railway control systems, such as geographical interlockings
and train protection systems could also be included. The current work is assum-
ing Norwegian regulations, but the European Rail Traffic Management System is
expected to dominate in the future.
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Involving railway engineers in knowledge base development is somewhat hin-
dered by the fact that Datalog and logic programming, though declarative and con-
cise, are still programming languages, and a good intuition about language seman-
tics is required for efficient and correct development. One possible mitigation for
this using Controlled Natural Language as a front-end for inputting verification
properties is presented in Chapter 5

Finally, the Datalog language is not well suited to model dynamic analyses in-
volving trains moving on the track and how the signalling design impacts capacity
and capabilities. This question is treated in the two following chapters.



3Dynamic analysis using local
capacity specifications

Railway capacity is complex to define and analyse, and existing tools and meth-
ods used in practice require comprehensive models of the railway network and
its timetables. Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-basedmethods of capacity analysis are
available to them. Designs have subtle capacity pitfalls which are discovered too
late, only when network-wide timetables are made – there is a mismatch between
the scope of construction projects and the scope of capacity analysis, as currently
practised.

In this chapter, we suggest a language for capacity specifications suited for
construction projects, expressing properties such as running time, train frequency,
overtaking and crossing. Such specifications can be used as contracts in the inter-
face between construction projects and network-wide capacity analysis.

We show how these properties can be verified fully automatically by building a
special-purpose solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and a continuous-domain dynamics and timing constraints eval-
uated using discrete event simulation. The two components communicate in a
CEGAR-loop (counterexample-guided abstraction refinement). This architecture is
beneficial because it clearly distinguishes the combinatorial choices from continuous-
domain calculations, so that the simulation can be extended by relevant details as
needed. We describe how loops in the infrastructure can be handled to eliminate
repeating dispatch plans, and use case studies based on data from existing infras-
tructure and ongoing construction projects to show that our method is fast enough
at relevant scales to provide agile verification in a design setting.

3.1 Capacity in railway construction projects

The planning and engineering of a railway control system has safety as primary
requirement. Secondary to safety, the notion of performance and capacity of a
railway control system remains more elusive. The capacity of a railway control
system, and thus of railway infrastructure in general, is hard to define precisely
(see [70, 3, 97]). Any capacity measure will necessarily make assumptions about
the operation of the railway. One can say that the railway infrastructure does
not have an inherent capacity, only capacity for specific use cases. A fully accu-
rate assessment of capacity can only be made under a fully specified timetable,
meaning that every train’s arrival and departure times at all stations in the net-
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work must be known. This makes for a highly coupled analysis, as constructing
an actual timetable requires bringing together details about infrastructure, rolling
stock, transportation demands, and crew schedules. Systematic capacity analysis
for railways is typically performed on the scale of national railway networks, us-
ing comprehensive input on infrastructure and timetables, and only after planning
and engineering has produced a final design. Moreover, the widely used methods
and tools for capacity analysis are heavy-duty methods, consisting of complicated
simulations, and require specialized knowledge, thus not being suitable for more
agile design-time verification of railway stations.

For construction projects and control system engineering, it would not be fea-
sible to use a fully specified timetable for verifying that the control system will be
able to provide the required capacity, because (1) detailed timetabling and capacity
analysis takes too much effort and specialized knowledge, and is usually saved for
later stages of design, and (2) the design of a control system cannot or should not
depend too heavily on other parts of the network, as these parts may also change
in the future.

Another approach to capacity analysis is the so-called analytical capacity ap-
proach, which views the railway network as a network of queues, or a maximum
flow problem, abstracting away the low-level discrete behaviour while preserving
the high-level continuous behaviour. These methods can give preliminary or low-
precision network-wide results, but fail to account for the critical factors which
arise when performance is pushed to the limit. Simplifying assumptions that can be
suitable for network-scale capacity analysis, such as instantaneous speed changes,
or fixed travelling times between different locations, are usually not suitable for
infrastructure design. Specifically, disregarding the discrete allocation logic of the
interlocking system, and the position and velocities of individual trains, makes
these methods unsuitable for analysis of signalling design. The detailed optimiza-
tion of signal and detector locations needs to account for a detailed model of train
dynamics and control system behaviour exactly because higher-level analysis re-
quires this assumption of local optimization to the simplified behaviours used in
network-global analysis.

As none of these techniques are particularly well-suited, railway engineers
working on construction projects usually rely on informal, vague, or even non-
existent capacity specifications, and need to make ad-hoc analyses of how the con-
trol system might provide this capacity.

In consequence, we address the following problem: in the context of designing
the layout and control systems for railway stations, does the station infrastructure
have the capacity to handle the amount of trains and the desired travelling times
to provide adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on a railway station.
Figure 3.1 shows two sequences of movements which result in such a crossing.
There are a number of details of the railway design which can cause this scenario
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Plan 1: Plan 2:
S1

S2

S1

S2

Figure 3.1: Two alternative plans for achieving a crossing of two trains on a two-
track station. The green areas show track segments which are currently occupied
by a train going from left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

to become infeasible (or take an unacceptably long time), such as signal placement,
detector placement, correct allocation and freeing of resources, track lengths, train
lengths, etc.

Railway design and construction planning is an old engineering discipline with
long-standing traditions. Demands for the highest safety, compatibility with ex-
isting infrastructure and practices, and high investment costs, make railway engi-
neering a conservative domain. The design process of railways is in practice highly
sequential, leading to the well-known effects of so-called waterfall process models.

Waterfall-style design processes require that high-level specifications can be
written up-front and afterwards implemented without feedback from the imple-
mentation process back to the high-level specifications. This also means that veri-
fication and validation in waterfall-style design processes is confined to the scope
of each separate design activity, or destined to have little hope of improving the
design when weaknesses are uncovered.

Unfounded design assumptions made early in the early process stages have
been known to trickle all the way down to the final stages and require new rounds
of design starting from the top, a process which can take several years.

These negative effects are typically mitigated by:

1. Re-using proven design concepts, i.e. doing something the same way as some-
where else, where it has already turned out to work well.

2. Allowing sizeable margins, e.g. planning the track with more than enough space
for safety distances so that it is highly likely that control system engineers will
later be able to come up with a safe and performant design.

These mitigations exploit tradition, experience and cross-discipline knowledge
in the railway engineers, which in turn contributes tomaking the engineering com-
munity slow-moving and conservative.
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However, modern construction practice expects and demands optimization.
When space requirements, performance requirements and cost limitations are squ-
eezed to the limits of the possible, the tradition-based railway engineering ap-
proach lacks the methods to accurately reason about the limitations of the finished
system from partially finished design plans.

Using agile verification of high-level properties from the beginning of a design
project, and in every step of the process, allows engineers to better see the con-
sequence of each decision, and immediately uncover errors and shortcomings that
would otherwise be discovered only months or years later.

Our goal is to develop a verification technique and tool to help engineers specify
capacity properties at design time and to check these automatically. To be agile, the
tool needs to (1) have reasonable running times so that the verification can be run
on the fly as the design is being updated by an engineer working in a drafting CAD
application, and (2) keep the required input to the minimum of information needed
to verify relevant properties. This style of verification gives engineers immediate
feedback on their design decisions while requiring small amounts of specification
and verification work.

3.1.1 Problem definition

We consider the low-level railway infrastructure capacity verification problem,
which we define as follows:

Given a railway station track plan including signalling components,
rolling stock dynamic characteristics, and a performance/capacity spec-
ification, verify whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

This problem concerns the following railway infrastructure design activities:

• Low-level running time analysis – verify the time required for getting frompoint
A to point B.

• Low-level schedulability analysis – verify frequency of trains arriving at a sta-
tion, and simultaneous opportunities for crossing, parking, loading, etc.

• Combinations – verify running time requirements on schedulable operations.

3.1.2 Approach

Toworkwith capacity in away that is suitable for construction projects, we suggest
a formalization of capacity requirements as a set of operational scenarios involving
a set of trains, a set of locations to visit, and a set of timing constraints.

Verification in this domain can in principle be encoded into the SMT [10, 42,
123] or PDDL+ [59] languages, essentially resulting in a SAT modulo non-linear
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real arithmetic problem [60, 84]. Many solvers can handle such problems [43, 62,
51], but we found that the problem size of our test cases, in terms of the number
of planned actions and in terms of number of interacting Boolean and non-linear
real logic terms, were out of reach for agile verification. Also, train dynamics using
only constant acceleration x′′ = c is in some cases too simplistic for engineering.
We would like to be able to extend the dynamics equations using e.g. polynomials
of higher order or even numerical integration.

Therefore, we have developed a verification tool chain that uses a simple CE-
GAR loop [34] between a SAT-based planning tool that works on a discrete abstrac-
tion of control system commands, and a discrete event simulation engine (DES)
[147] that calculates detailed continuous results for a specific plan, taking the physics
of moving trains into account.

The SAT-based planner uses bounded model checking (BMC) [12] where time
is reduced to a series of partially ordered actions with unknown durations, and
the choice of actions are the available commands in the control system. The DES
component verifies the continuous time/space results given the Boolean decisions
of control system commands, and adds new SAT constraints excluding unsatisfac-
tory solutions.

The separation of discrete and continuous domains also has the advantage that
the simulation component can be extended to handlemore complexmodels, such as
engine power curves, tunnel air resistance, curve rolling resistance, train weight
distribution, etc., without affecting the planning logic or its computational com-
plexity.

We have tested our method and tool on practical examples from existing infras-
tructure and ongoing construction projects in collaboration with railway engineers
in Railcomplete AS.

3.2 Dynamic behaviour

To verify performance properties, we need to find a sequence of trains and elemen-
tary routes for the train dispatcher, i.e., a dispatch plan, whichwhen executed under
the safety and correctness constraints decribed below, demonstrate the properties
described in the performance requirements (detailed in Sec. 3.3).

Low-level analysis of train movements covers a wide range of constraints given
by the track layout, the control system, and operational procedures, to be certain
that the analysis produces detailed, realistic results. The following subsections give
an overview of these constraints, divided into four classes. See [131] for a more in-
depth description of railway operation principles.
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3.2.1 Physical infrastructure

Trains travel on a network of railway tracks which have physical properties such
as length, gradient, curvature, etc. Tracks branch off using switches, whose setting
determines where the train goes. Detectors on the track are used by the control
system to determine whether track segments are occupied. The physical infras-
tructure also determines the sight areas: the set of locations where a train receives
information from a given signal.

3.2.2 Interlocking: allocation of resources

The safety-critical control systems for railway infrastructure are called interlock-
ings. An interlocking takes requests for activating routes from a dispatcher. When
a route is activated, switches are moved into correct positions and signals are set to
show the go aspect. The interlocking is also responsible for assuring that activating
the route, i.e. allowing the train to travel the route, is safe. This safety is ensured
through the following requirements:

• Routes require the exclusive allocation of track segments, so that two routes
which use some of the same track segments cannot be activated at the same
time. Routes must be allocated as a unit, i.e. all segments must be free at the
time of allocation. However, track segments may be de-allocated to other routes
as soon as the train has passed a segment.

• Switches need to be in the correct position for the train to travel along the route.
Also, the switches must be locked, so that they cannot accidentally be moved
while the train is travelling, and detectors on the switch must report that the
switch is in the correct position, and correctly locked.

• A safety zone (also called overlap) beyond the end of the route must be vacant,
but not necessarily exclusively allocated, i.e. two safety zones may share track
segments. The safety zone is released after a given time which is long enough
that it is unlikely that the train is still moving forward. This timeout is calculated
based on the length of the route.

• Routes which pass through switches require specific track elements to cover any
potential movements into the route path. This is known as flank protection, and
cover can typically be provided by signals, switches or other objects.

• Signals can only show the go aspect when it is the starting point for a currently
active route, in all other states, the signal must show the stop aspect. Distant
signals, i.e. additional signals showing information about the next upcoming
route, must give information consistent with the upcoming signal.
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These constraints are explicitly expressed for a given railway station through
the interlocking specification, which is an artifact of the design process.

Avoiding collisions by exclusive use of resources is the responsibility of the
interlocking, which takes requests from the dispatcher for activating elementary
routes. An elementary route is the smallest unit of resources that can be allocated
to a train, see Figure 3.3. Route activation is a process which proceeds as follows:

1. Wait for all required resources, such as track segments and switches, to be free.
Resources required by a route are typically any resource in the train path (or
sometimes outside of it), which ensure that all movements are performed at a
safe distance from each other.

2. Movable elements (e.g. switches) must be set to correct positions. If they are
not, start a sub-process which moves the element into place, and wait for this
process to finish before proceeding.

3. Signals are then set to show the ’proceed’ aspect to the train when the above
steps are finished. When the front of the train has passed the signal, it is imme-
diately reset to show the ’stop’ aspect.

4. A release process is started, whichwaits for the train to finish using the allocated
resources (i.e. to travel over them) and frees them when this has happened.

3.2.2.1 Influence of safety zones on capacity

The safety zone, as described above, is a set of track sections and switches allocated
together with a route to ensure that slightly overrunning a signal showing the stop
aspect is safe. Different manufacturers and national regulations have various ways
of specifying how a safety zone is released and how alternative safety zones are
implemented. The main variations are:

1. The safety zone from a route end point persists until a route is allocated from
the end point. This can be problematic if the safety zone blocks other traffic or
if the train is changing directions and not proceeding past the end point. The
following two methods are the usual mitigations for these problems.

2. The safety zone is released after a pre-set time. This time should be long enough
so that the probablilty that the train is still running towards the end point is very
low.

3. The safety zone it not released, but can be replaced by another safety zone from
the same route end point. This method is called swinging overlap in British En-
glish.

See Figure 3.2.
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Signal A

Route 1

Safety zone 1

Safety zone 2

Route 2

Figure 3.2: An elementary route 1 ending in signal A can protect trains from over-
running the signal by allocating one of the safety zones (shown as safety zone 1 and
2). In some situations, safety zone 1 might be preferred so that the switch following
signal A is in the correct position for letting the train in route 1 proceed quickly.
However, allocating safety zone 1 blocks route 2 from use. So in other situations,
safety zone 2 might be preferred, for example for two trains to concurrently enter a
station. Some control systems may allow one safety zone to be replaced by another
after the route has been allocated.

Signal A Signal C

Figure 3.3: Elementary route AC from signal A to the adjacent signal C. The thick
line indicates track segments on the train’s path which are reserved for this move-
ment, and the dashed lines indicate reserved track segments outside the path.

3.2.3 Communication constraints

After movement has been allowed by the control system, the driver must be in-
formed of this fact. When a route is activated, a train inside the sight area of the
route’s entry signal reads the signal’s message that movement authority is given.
The train driver may then drive the train forward until the next signal. The follow-
ing types of signalling systems are common in railways:

• Traditional signaling with trackside lamps. Communication is limited by how
many different aspects the lamps can show. To avoid high-speed trains slowing
down at every signal, several consecutive elementary routes can be signaled in
advance using so-called distant signals.
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• Automatic train protection systems (ATP) work similarly to signals, but may
give more information. Many ATP systems communicate information through
magnets or short-range radio at specific locations on the track, corresponding
to a signal sight area of zero length.

• The European Rail Traffic Management System (ERTMS) currently being imple-
mented inmany European countries replaces lamp signals with tracksidemarker
boards, and uses long-range radio for communication. This effectively removes
the communication constraint, as the radio can be used to update any train’s
movement authority at any time.

To avoid trains slowing down or stopping at every signal, several consecutive
routes can be allocated and signaled in advance using so-called distant signals.
The amount of information that can be transmitted to the train drivers through the
signaling puts a constraint on how far ahead the routes can be pre-allocated.

• Traditional signaling with track-side lamps are limited by how many different
aspects the lamps can show. Signals can typically show information about either
one or two routes, but some countries have extended to information about three
consecutive routes. It is also common to extend the information given by signals
using track-side electronic communication.

• In the version of ERTMS called Level 2, which is currently the most used system,
lamp signals are replaced by trackside marker boards, and the actual communi-
cation goes over radio. This effectively removes the communication constraint,
as the radio can be used to communicate any movement authority at any time.

3.2.4 Laws of motion

Trains move within the limits of given maximum acceleration and braking power,
so train drivers need to plan ahead for braking so that the train respects its given
movement authority and speed restrictions at all times.

The speed increase from v0 to v over a time interval∆t is limited by the train’s
maximum acceleration a:

v − v0 ≤ a∆t.

However, when there is a more restrictive speed restriction ahead, the driver
must start braking in time to meet the restriction. A signal showing the ’stop’
aspect can be treated as a speed restriction of zero. Since speed restrictions change
with time, the driver must re-evaluate their actions whenever new information is
received.

A train has the following constraint on its velocity v for each restriction,

v2 − v2i ≤ 2bsi,
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where vi is the maximum allowed speed, si is the distance to the location where
the restriction starts, and b is the maximum retardation achieved by braking. These
restrictions are given as (1) constant maximum velocity restrictions given by signs
beside the track, or (2) dynamical velocity restriction given by the distance to the
next stop signal (i.e. the length of the movement authority).

3.3 Performance requirement properties

To capture typical performance and capacity requirements in construction projects,
we define an operational scenario S = (V,M,C) as follows:

1. A set of vehicle types V , each defined by a length l, a maximum velocity vmax,
a maximum acceleration a, and a maximum braking retardation b.

2. A set of movementsM , each defined by a vehicle type and an ordered sequence
of visits. Each visit q is a set of alternative locations {li} and an optional mini-
mum dwelling time td.

3. A set of timing constraintsC , each constraint consisting of two visits qa, qb, and
an optional numerical constraint tc on the minimum time between visit qa and
qb. The two visits can come from different movements. If the time constraint tc
is omitted, the visits are only required to be ordered, so that tqa < tqb .

To demonstrate how an operational scenario captures requirements of railway
construction projects, we give some examples using the syntax of the file format
used in our tool¹. First, we define the following vehicle types:

vehicle passengertrain length 220.0
accel 1.0 brake 0.9 maxspeed 55.0

vehicle goodstrain length 850.0
accel 0.5 brake 0.5 maxspeed 20.0

The following set of performance specifications are selected prototypical ver-
sions of specifications that railway engineers have suggested as useful for auto-
mated verification:

• Running time: expresses an expectation of how long it should take for a train to
travel between two locations. To specify this, we simply require that a train visits
some location b1 and later visits some other location b2. A timing constraint of
90.0s between these visits sets the running time requirement.

¹For details of the input file formats, see https://luteberget.github.io/rollingdocs/usage.
html

https://luteberget.github.io/rollingdocs/usage.html
https://luteberget.github.io/rollingdocs/usage.html
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movement passengertrain {
visit #a [b1]; visit #b [b2] }

timing a <90.0 b

• Train frequency: a train station processes a set of trains arriving and departing
with a fixed frequency. On a two-track station, we exemplify a sequence of four
trains and their relative departure times.

movement passengertrain {
visit [b1]
visit [platform1,platform2] wait 60.0
visit #e1 [b2] }

// ...3 more trains with visits e2, e3, e4.
timing e1 <90.0 e2
timing e2 <90.0 e3
timing e3 <90.0 e4

• Overtaking: trains travelling in the same direction can be reordered. For exam-
ple, we specify a passenger train travelling from b1 to b2, and a goods train with
the same visits. Timing constraints ensure that the passenger train enters first
while the goods train exits first.

movement passengertrain {
visit #p_in [b1]; visit #p_out [b2] }

movement goodstrain {
visit #g_in [b1]; visit #g_out [b2] }

timing p_in < g_in
timing g_out < p_out

• Crossing: trains travelling in opposite directions can visit this station simultane-
ously. This example is similar to the previous one, but the goods train now trav-
els in the opposite direction, and the timing constraints require that the trains
are inside the model simultaneously.

movement passengertrain {
visit #p_in [b1]; visit #p_out [b2] }

movement goodstrain {
visit #g_in [b2]; visit #g_out [b1] }

timing p_in < g_out
timing g_in < p_out

Similar specifications, and combinations of such specifications, are relevant in
most railway construction projects. Since we typically only need to refer to lo-
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cations such as model boundaries and loading/unloading locations, these specifi-
cations are not tied to a specific design, and can often be re-used even when the
design of the station changes drastically.

Stations can be designed to be either intermediate stops, or end-of-line stops.
Also, some stations are intermediate stops for some trains while also being the
end-of-line stop for other trains. A challenge of planning for end-of-line stops is
that the train must usually be allowed to turn around and go back in the direction
it came from. Allowing an unbounded number of such turns can in principle lead
to an infinite number of dispatch plans.

The turning is also related to the challenge of having loops in the infrastructure.
This is uncommon within a single station, but can sometimes occur in construc-
tion projects where several stations together form a loop topology. Also here, we
must take care not to explore or suggest an infinite number of ways to execute an
operational scenario. These aspects are treated in Section 3.4.2.

3.4 Tool chain and solver architecture

Being able to do performance verification (i.e., capacity analysis) automatically,
using only information typically available in a construction project, is potentially
a valuable tool for railway engineering in the disciplines of signalling and inter-
locking. In this section, we describe our approach to verifying capacity properties
using the formalization of capacity given in the previous section.

We have investigated several logic-based approaches for the domain and prob-
lem described above. The PDDL+ language has been designed to express planning
problems in mixed discrete/continuous domains. As each discrete change is rep-
resented by a planning step, our test case problem instances would need at least
50-100 steps to be solvable. We were only able to solve the most trivial test cases
in less than one second using the SMTPlan+ solver.

Encoding into SMT can be done by expressing planning as a BMC problem.
This approach suffers from the same problem of having a high number of planning
steps (some improvements can be made, s.a. making train driver choices implicit
in constraints on the relation between velocity, distance and time).

To address these limitations, we developed a CEGAR-style tool which exploits
the limited number of control system commands to make an abstraction of the
planning problem, see Figure 3.4.

A verification tool chain which solves the low-level railway infrastructure ca-
pacity verification problem and supports agile verification in railway construction
projects is outlined in Figure 3.5. The manual, source code and test cases are avail-
able online². The tool uses the MiniSat v2.2.0 solver.

²https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

https://luteberget.github.io/rollingdocs
https://github.com/koengit/trainspotting
https://github.com/koengit/trainspotting
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activation sequence
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representationCandidate plan

Eliminate plan prefixUNSAT SAT

Figure 3.4: Conceptual diagram of CEGAR architecture. Infrastructure, routes,
train types, and movement specifications are transformed into (1) the planner’s
abstract representation, containing only elementary routes and train lengths, and
(2) the detailed graph representation used in the simulator component.

The tool is complementary to other verification techniques in railway design,
such as static layout verification [109, 107, 105], static interlocking verification [75,
107], interlocking program verification [20], and timetable analysis [74].

The following input documents are used:

• Operational scenarios defining the performance properties to verify. Examples
are given in Section 3.3.

• Infrastructure given in the railML format [121, 139]. In our case studies, we
exported railML files using the RailCOMPLETE software, a plugin for the widely
used AutoCAD drafting software. Using a model taken directly from the drafting
program means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format which is compatible with
the upcoming railML interlocking format. Although subject to design, a decent
guess of the content can be straight-forwardly derived from the infrastructure
by listing resources on paths between adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each operational scenario. The veri-
fication tool can produce dispatch plans fulfilling the performance specification,
so this input is optional.
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Figure 3.5: Capacity verification tool chain overview. Yellow boxes represent input
documents. Note that only infrastructure and operational scenarios are strictly re-
quired – interlocking tables can be derived, and dispatch plans can be synthesized.
Blue boxes represent programs. The green box represents the output document
from the simulator, which is a history of events which is the witness that proves
the performance requirement.

An advantage of the separation of planner and simulator is that each compo-
nent can be used separately. The planner alone may be used to enumerate different
possibilities for train movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the execution of a specific
dispatch plan to examine performance deficiencies, and educationally for demon-
strating the workings of the railway system. Put together, the two components
provide automated verification, which is the main goal of our efforts. It would
also, in principle, be possible to use one of the commercial simulation packages,
such as OpenTrack or RailSys, provided that all input and simulation control can
be given though a programmable interface (API).

3.4.1 Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem of finding a dispatch
plan, i.e., determining a sequence of trains and elementary routes which make the
trains end up visiting locations according to the movements specification.

We encode an instance of the abstracted planning problem into an instance of
the Boolean satisfiability problem (SAT). We consider the problem a model check-
ing problem, and use the technique of bounded model checking (BMC) to unroll
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the transition relation of the system for a number of k steps, expressing state and
transitions in propositional logic.

Using BMC for planning works by asserting the existence of a plan, so that
when the corresponding SAT instance is satisfiable, it proves the fulfillment of the
performance requirements and gives an example plan for it. When unsatisfiable,
we are ensured that there is no plan within the number of steps k. In practice plans
with higher number of steps are not of interest; i.e., the bound k is chosen based
on practical considerations (e.g., twice the number of trains was sufficient in our
case studies). The SAT instance is built incrementally by solving with k − 1 steps
and then adding the kth step if necessary.

The abstracted planning problem is encoded as a SAT instance by representing
states, constraints on each state, and constraints on consecutive states. State i of
the system in the planner component is represented as:

1. Each route rj has an occupancy status oirj which is either free (oirj = Free) or
occupied by a specific train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write constraints with oirj as a
variable from the set of trains.

2. Each route also has a choice from its associated safety zones zjrj ∈ {1 . . . n}
which determines which other routes are considered to be in conflict (see Fig-
ure 3.6).

3. Each train tk has a Boolean representing appearance status bik , used to propagate
to future states that a train has started (used in constraint C2 below).

4. Each visit l has a Boolean representing required visits vil , which is used to propa-
gate to future states that a visit requirement has been fulfilled (used in constraint
C5).

5. Each combination of route rj and train tk has a Boolean representing deferred
progress pij,k , used to propagate to future states that a train is not progressing,
and must resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy status oirj and safety
zone choices zjrj of states by taking the difference between consecutive states and
then dispatching any trains and routes which become active from one state to the
next. If swinging safety zones (also known as swinging overlaps) or safety zone
timeouts are enabled, then consecutive steps can have different safety zones, and
when this happens, a swing command is also added to the dispatch plan.
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Figure 3.6: The planner component takes an abstracted view of the railway infras-
tructure. Lines represent elementary routes with traveling direction given by the
arrows. Boxes indicate routes in conflict, i.e. only one of them can be in use at a
time.

Constraints are applied to each state and each pair of consecutive states to en-
sure that:

• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one contiguous path.
(C3) An elementary route must be allocated as a unit, but its parts may be deallo-

cated separately.
(C4) (Partial) routes are deallocated only after a train has fully passed over them.

• The plan fulfills capacity specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):

(C7) Routes are deallocated immediately after the train has fully passed over them.
(C8) A train’s path is extended as far as possible in the current time step, unless

hindered by a conflicting train (i.e., maximal progress).

Equivalent plans, which result in the same trains traversing the same paths and
conflicting in the same locations, should have the same representation so that enu-
meration of different plans produces meaningful alternatives. For example, the
two dispatch plans for crossing shown in Figure 3.1 are the only two alternatives
given by the planner for this operational scenario. See Figure 3.7 for other dis-
patch plans which fulfil the correctness constraints (C1-6) but which do not have
maximal progress in each state.

The simulator component, which evaluates the time consumption of plans, re-
ports which parts of the plan fail the timing constraints, and the negation of this
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Dispatch plan without (C7)/(C8): Dispatch plan without (C8):
S1

Path not extended as
far as possible (C8)S2

Route not freed when
train has passed (C7)S3

Route not freed when
train has passed (C7)S4

S1

Path not extended as
far as possible (C8)

S1

S3

Figure 3.7: Examples of dispatch plans which are correct plans (constraints (C1-6)),
but which have better equivalent descriptions that allocate and deallocate as soon
as possible. These plans do not fulfil constraints (C7) and (C8). Compare with plan
1 in Figure 3.1.

partial plan is added to the SAT instance. Since the timing calculations are path
dependent, we use the part of the plan starting from the beginning and going up
to the step where the timing specification violation occurs. This way of refining
the abstraction can cause performance problems when many different choices are
possible early in the plan, and the timing violation can only be found near the end
of the plan, as demonstrated in Section 3.6. Finding a way to make more precise
refinements could be necessary for larger problem instances.

The implementation of each of these constraints as propositional logic state-
ments is described below. Constraints apply separately to all states i unless noted
otherwise.

3.4.1.1 Resource conflicts (C1)

Any two routes which require the same resources cannot both be allocated in the
same state.

∀ra ∈ Routes : ∀rb ∈ conflict(ra) : oira = Free ∨ oirb = Free.
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3.4.1.2 Train path (C2)

At most one alternative route is taken by a train in a single state. First, ensure that
only one route from a given start signal may be taken at any time.

∀t ∈ Trains : ∀s ∈ Signal : atMostOne(
{
oir = t | entry(r) = s

}
) .

We use a standard sequential encoding to encode atMostOne and other similar con-
straints, as explained in e.g. [155]. Note that entry signals for all routes entering
from a model boundary share the same null value, so that this constraint also ex-
cludes plans where a single train appears in several positions at once. Each train
should only enter the plan once, thus the appearance Boolean changes to true in
exactly one transition.

∀t ∈ Trains : bit ⇒ bi+1
t .

∀t ∈ Trains : exactlyOne
({
¬bjt ∧ bj+1

t | j ∈ States
})

.

A train appears when an entry boundary route is allocated:

∀t ∈ Trains : ∀r ∈ {r ∈ Routes | entry(r) = null} :
(
oir ̸= t ∧ oi+1

r = t
)
⇒ bi+1

t .

Routes which are not entry routes can only be allocated to a train when they extend
some other route which was already allocated to the same train, i.e., consecutive
routes must match so that the exit signal of one is the entry signal of the next:

∀t ∈ Trains : ∀r ∈ {r ∈ Routes | entry(r) ̸= null} :(
oir ̸= t ∧ oi+1

r = t
)
⇒
∨{

oi+1
rx = t | rx ∈ Routes, entry(r) = exit(rx)

}
.

Note that this constraint ensures that the trains’ allocation to routes locally
forms a path in the graph of routes. In the presence of cycles, this constraint does
not rule out cyclic allocations disjoint from the rest of the train’s path. This problem
is handled separately in Section 3.4.2 below.

3.4.1.3 Partial release (C3)

Partial release is represented by splitting each elementary route into separate routes
for each component which is released separately. The set Partial contains such sets
of routes. Partial routes are allocated together (see Figure 3.8):

∀t ∈ Trains : ∀q ∈ Partial : allEqual(
{
oir ̸= t ∧ oi+1

r = t | r ∈ q
}
)
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Figure 3.8: The planning abstraction of the train dispatch allocates a set of partial
routes to each train. Elementary routes are sets of partial routes whichmust always
be allocated together.

Route A (200 m) Route B (100 m) Route C (400 m)

Route D (100 m) Route E (400 m)

Figure 3.9: When a train of length 200.0 m has been allocated to route A, that route
can only be freed when the train has been allocated to either both B and C or both
D and E.

3.4.1.4 Deallocation (C4, C7)

Routes are freed when sufficient length has been allocated ahead to fully contain
the train.

∀t ∈ Trains : ∀r ∈ Routes :
oir = t⇒

(
(oi+1

r = t)⇔ freeabler,t(
{
oi
}
)
)
.

Note that the equality sign on the right hand side implies that deallocation is both
allowed (C4) and required (C7). The freeable predicate is a disjunction of paths
(conjunction of routes) ahead which are long enough to contain the train. For
example, on the routes shown in Figure 3.9, if route A holds a train t of length
200.0 m, freeing A is constrained by:

Ai ⇒
(
Ai+1 ∨ (Bi ∧ Ci) ∨ (Di ∧ Ei)

)
.

3.4.1.5 Visits (C5, C6)

Visits and their order are given by the set VisitOrder, which contains pairs of (t, v),
where t is a train and v is a set of alternative routes. Visits must happen using any
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of the alternative routes, and must be in an order such that the visit (t1, v1) comes
before (t2, v2):

∀((t1, v1), (t2, v2)) ∈ VisitOrder :∨{
oira = t1 ∧ ojrb = t2 ∧ i ≤ j | ra ∈ (v1), rb ∈ (v2), i, j ∈ States } .

3.4.1.6 Forced progress (C8)

In addition to the constraints on allocation and freeing required to produce a valid
plan, we also add constraints which force each train to get allocated routes further
along a path forward unless there is a conflict. Routes ahead are either allocated,
or the train is deferred p:

∀t ∈ Trains : ∀r ∈ Routes : oir ⇒ pit,r∨
∨{

oirx | rx ∈ Routes, entry(rx) = exit(r)
}

Deferred progress must be resolved by freeing a conflicting route, and then allo-
cating it to the train in the following step:

∀t ∈ Trains : ∀r ∈ Routes :

pit,r ⇒ pi+1
t,r ∨

∨{
oirc ̸= Free ∧ oirx ̸= t ∧ oi+1

rx = t

| rc, rx ∈ Routes, exit(r) = entry(rx), rc ∈ conflict(r)}

When i is the last state, pi+1
t,r is considered to be false, which forces the deferred

progress to be resolved eventually. Note that it is not required that the conflicting
trains are distinct.

3.4.2 Handling turning and loops

Many railway construction projects have only acyclic infrastructure, in the sense
that trains enter from one side of the station and exit on the other side, and all
paths from one side to the other are acyclic. However, if the infrastructure has a
same-directed cycle which can be allocated without conflicting with other routes,
the constraints C2 above are insufficient to ensure train path consistency, see Fig-
ure 3.10. The train path consistency constraints described in the previous section
require each active route to have a route before it already being active. This works
in the acyclic case, because the chain of routes always leads back to either a model
boundary or a route already allocated in the previous step. With cyclic infrastruc-
ture, however, a sequence of routes can justify each other, which would lead to a
train appearing out of nowhere. It is a known problem that expressing this kind of
constraints in SAT can be very inefficient (see e.g. [100, 63]), and to handle same-
directed cycles in the infrastructure, we add instead a refinement step around the
SAT solver which searches each state for this kind of circular reasoning and adds
a single constraint each time this situation appears.
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The loop check procedure checks for each train ti and for each state sj , whether
the set of routes Rj

i allocated to the train has any strongly connected components
sccji ⊆ Rj

i with |sccji | > 1, and in that case adds a new constraint to the SAT
problem: ∨{

¬(ojr = tji ) | r ∈ sccji
}

.

Fixing these consistency errors gives valid plans even in the presence of same-
directed infrastructure cycles, but even planning on infrastructure without cycles
may cause repetition to appear in the dispatch plans. For example, at the end of a
railway corridor, trains must be able to switch directions and go back to where they
came from. In the description of dispatch planning above, if trains are allowed to
stop and reverse their direction, the directed graph of routes becomes cyclic, and
there is in principle an infinite number of different possible dispatch plans for any
train movement.

Allowing trains to turn, and allowing loops in the infrastructure, will lead to the
bounded model checking planning method finding more and more solutions when
increasing the number of steps. Most of these solutions will exhibit some amount
of repetition in the movement of trains, and this makes them of little value to the
railway engineer. We suggest some different solutions to this challenge below,
roughly ordered by how complex the implementation would be and how much
quality would be improved:

• Unlimited: it could be feasible to have no limit on turning of trains, and no limit
on the use of loops in the infrastructure. Since the boundedmodel checking tech-
nique will find the shortest plans first, they will often be the most valuable plans
for the engineer, and the planner can be aborted when plans get too long and

Route 1

Route 2

Figure 3.10: Example of cyclic infrastructure. Here, to ensure train path consis-
tency (C2), additional constraints are needed over the acyclic case. Route 1 and
route 2 both provide each other’s justification for a train appearing there, possibly
making an error of circular reasoning.
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repetitive and as such are no longer valuable for the verification of the design.
However, the fully automated verification tool would have to set a carefully con-
sidered upper bound on the number of plan steps.

• Specified turning: the specifications of the operational scenarios can be ex-
tended to include turning explicitly at visits. This increases the specification
burden on the engineer, but ensures that there cannot be an unbounded number
of distinct plans. However, it could also cause some plans to stay undetected if
they require turning and the engineer did not think of it. Also, this method does
not help the situation with loops in the infrastructure.

• Bounded number of turns: instead of writing out each turn explicitly, the ca-
pacity specifications could be extended to include an upper bound on the number
of turns. The bound would have to be adjusted to balance running time and plan
quality (low bound) with the possibility of detecting more complex plans (high
bound).

• State space repetition constraint: to ensure that the whole state of the system
does not repeat from one stage to another. This requires adding a constraint on
each pair of states, which could make the SAT instance significantly larger.∧

0≤i<j<k

Si ̸= Sj .

Such constraints may also be added lazily, i.e. by incrementally adding the con-
straints only when they are violated in a SAT solution (see [53]). This con-
straint would eliminate the possibility for an infinite number of distinct plans,
but could still cause unnecessary repetition locally, since repetition in one part
of the model could be accompanied by progress in another part of the model.

• Repetition filtering: even when the state as a whole does not repeat, there
may be sequences of allocation to a subset of trains which can be considered
repeating. We would like a more domain-specific definition of repetition, based
on a graph analysis of the dispatch plans produced. This can be implemented by
rejecting solutions which exhibit such repetition. We define this more carefully
in the section below.

As we find the last option to be the most complete solution requiring no change
to the specifications, we describe its implementation here in more detail.

3.4.3 Filtering out unnecessary repetitions

We now define the notion of unnecessary repetitions and show how to identify them
on a given dispatch plan. First, we define the notions of yield and repetition.
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Figure 3.11: Examples of repetition justification using yields, demonstrating ac-
ceptable and unnecessary repetitions. Each of the routes A, B, C, D, E, and F shown
in the infrastructure route graph is long enough to contain each train completely.
Examples use trains t1, t2 and states s1, s2, s3, s4. Repetitions are shown as red
dashed boxes, and yields are shown as arrows between repetitions.

 

A train t1 yields to another train t2 if t2 is occupying a route whose resources
are needed for t1 to proceed (thereby allowing t1 to defer its progress as defined
in constraint (C8), Section 3.4.1.6). More precisely, if t2 occupies some route r2 in
state s, and t1 allocates a route r1 in state s+1, where r1 conflicts with r2, we say
that t1 yielded to t2 in state s.

Now, consider a train t that enters the model from some model boundary and
exits through another boundary by traveling a sequence of routes r1, . . . , rm+1,
which we call the train’s path. For each pair of consecutive routes ri, ri+1, the
exit signal of ri is the same as the entry signal for ri+1 (described as constraint C2
in Section 3.4.1.2), which we call the delimiting signal ui = delim(ri, ri+1) be-
tween the routes ri and ri+1. We say that the train visits the sequence of signals
u1, . . . , um defined in this way.

A signal appearing several times in this sequence (ui = uj with i < j) indicates
a cycle in the train path. Let sa = alloc_statet(ri) be the state where route ri
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starting in ui is allocated to t, and let sb = alloc_statet(rj−1) be the state where
route rj−1 ending in uj is allocated to t. We say that the train t repeats on the
interval sa to sb and write repeat(t, sa, sb).

In most cases, we would like to disallow such repetitions, but there are two
exceptions. Firstly, if the train fulfils a specified visit on the state interval sa to sb
(see constraint (C5), Section 3.4.1.5), the repetition is acceptable. Secondly, if the
train yields to another train in a state sy such that sa ≤ sy ≤ sb, we say that the
yield justifies the repetition. For example, if a train goes into a siding track to allow
another train to pass by, the first train could reverse into the main track again to
proceed, thereby performing a repetition that is acceptable. See Figure 3.11 for a
few examples. However, if one repetition is justified by yielding to another train
in a state which also has a repetition that is justified by yielding back to the first
train, this does not make these repetitions acceptable. We would like to disallow
such circular justifications, and we formalize this using the yield justification graph,
G = (V,E), defined as the directed graph where:

• The set of nodesN contains each repetition, repeat(t, sa, sb), and a special non-
repetition node Ω.

• The set of edgesE contains the edge n1 → n2, where n1 = repeat(t1, sa, sb) and
n2 = repeat(t2, sc, sd), whenever these nodes n1, n2 exist in N and t1 yields to
t2 in a state s where a ≤ s ≤ b and c ≤ s ≤ d.
However, if repeat(t1, sa, sb) exists, and t1 yields to t2 in state sa ≤ s ≤ sb, but
there are no matching repetitions n2, then the edge n1 → Ω is included instead.

We say that a repetition is acceptable if Ω is reachable from the repetition’s corre-
sponding node in the yield justification graph. A repetition that is not acceptable
by these two criteria, is an unnecessary repetition, and we discard the candidate
dispatch plan and add a new constraint to the SAT problem to disallow it using
the relevant component of the yield justification graph. This adds another kind of
abstraction refinement to our algorithm, see Figure 3.12.

The methods for handling both loops and repetitions described here may cause
performance problems on certain inputs. However, we have not encountered any
real-world examples where this dominates the solver’s performance.

3.5 Timing evaluation using simulation

For evaluating the behaviour of a railway system in full detail, there are various
well-known simulation approaches which are routinely successfully used to anal-
yse railway capacity. Because a simulation works by starting in a known state and
applying known input to the system, it proceeds by executing imperative code to
change the system state and to register event handlers to processes. Deterministic
simulation models can handle very complex models in a short amount of time, but
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Figure 3.12: Main algorithm for local capacity verification (extended from Fig-
ure 3.4) with two more tests for handling loops and repetitions.

unlike a planning model, one cannot prescribe which state the simulation will end
up in, only measure the outcome. Simulation methods are commonly used to de-
velop and assess time tables, and by introducing stochastic elements in the model
and repeating the simulation a large number of times, the robustness of a time table
can be analysed (e.g., see [129]).

Discrete event simulation (DES) is a simulation technique based on assuming
that changes to system state happen only at a set of discrete points in time, so that
the simulation can progress efficiently by jumping from one point in time to the
next point in time where an event is scheduled. This simulation assumption can
be made to work even for the continuous dynamics of train movements, because
we assume that each train’s dynamics do not interact directly with other train’s
dynamics. Trains exist in separate worlds which are only connected to each other
through the control system, and the control system has only discrete state changes.
Each train acts separately on the information it has received from signals so far, and
needs only to predict how long it will take to reach the next signal or sensor where
it interacts with the control system.

In our tool architecture, the planner component works on an abstraction of the
simulation problem that is just detailed enough to ensure that trains end up where
they are specified to go, and that the system does not enter a dead-lock state. This
is the reason that the planning model must include safety zones, partial release and
the lengths of routes and trains – the sequences of routes and trains are represented
exactly so that we know what to expect during the simulation. If it turns out that
the planner’s assumptions about where the trains end up does not work out cor-
rectly in the simulator, then the correspondence between planning and simulation
is broken, which may be a modelling error in the simulator or errors in the route
specifications, for example if the switches are configured to turn in the wrong di-
rection. Running the capacity verification assumes that the route specifications are
correct, and this may be verified through other means (see [168]).
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Figure 3.13: (a) On the railway network, paths p-q-r and p-q-s exist, in both direc-
tions. (b) In a conventional undirected graph representation, there would also be a
path r-q-s. (c) When the graph is extended to include two sides of each node, there
is no longer a path r-q-s.

3.5.1 Implementation

For our capacity verification tool for railway construction projects, we have im-
plemented a simulation program using techniques described in [78]. We provide a
brief overview here of the main components of this simulation program.

3.5.1.1 Infrastructure and interlocking specifications

For the purpose of developing a complete proof-of-concept capacity verification
tool, we implemented a simplified simulation system for railways with main sig-
nals, detector, switches, routes, trains, partial release, safety zones and more.

The input of railway infrastructure consists of nodes, representing locations on
the tracks where transfer of information between the infrastructure and the train
can happen. Objects include switches, detectors, signal sighting locations, and
points of discrete changes in track properties such as radius and gradient. Nodes
are connected by edges, which have a specified length. Edges are not directed,
because tracks can be traversed in both directions, so each train refers to the edge
it is travelling on as an ordered tuple of nodes. For example, a train travelling from
node a to node b will store its current location as either (a, b) or (b, a), depending
on the direction of travel.

However, a simple undirected graph model also lacks the information that the
train needs to figure out which edges can be followed while still travelling in the
same direction. Representing this as a directed graph would require deciding on a
global notion of direction, which is not directly compatible with cyclic infrastruc-
ture graphs where a train can travel forwards from one track and arrive at the same
track, now in the opposite direction.

A more suitable data structure for simulating railway networks is the double
node graph described in [116] where each node of a conventional graph is repre-
sented as a two linked nodes representing each of the two sides for approaching
each track location, see Figure 3.13. A train reaching a node may only proceed by
travelling on edges starting in the opposite node. Also, signals typically only apply
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Figure 3.14: The balloon loop infrastructure is an example where directionality of
travel cannot be suitably captured as a directed graph.

in one of the travelling directions, so a train passing a pair of nodes only reacts to
the objects that are located on the exit side of the node pair. This model allows
for a local notion of directedness, and avoids deciding on a global direction con-
cept such as up/down or outgoing/incoming often used in railway engineering. A
global directionality requires considering special cases to handle railway networks
where a train’s up/down direction may change without the train reversing its di-
rection, such as the balloon loop example which is commonly seen on tram lines,
see Figure 3.14.

3.5.1.2 Dispatching trains

From the planner we extract the following dispatch plan, which serves as the ex-
ternal events input to the simulation.

• Start train: start a new train process with given train parameters, initial velocity,
and a route entering from a model boundary.

• Activate route: start a new route activation process for the given route.

• Swing safety zone: replace one active safety zone with another.

Note that the times at which these events happen are not given by the planner,
only their order in time.

All the rest of the simulation output is determined from these inputs. The inputs
start processes in the simulator, which may in turn start other processes. When all
processes have finished, the simulation is done.

3.5.1.3 Dynamic infrastructure data

Our DES for railway simulation uses the following observable state:

• Switches: objects that fire events when they enter their left or right traversable
state, and which can be called from the route process to start switching.

• Detection sections, objects that have an allocation and an occupancy status,
which are observable through events.
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• Signals: objects that have a movement authority length which can be observed
by a train.

3.5.1.4 Processes

The core of the discrete event simulation technique can be implemented in a main-
stream programming language as coroutine-like processes which can manipulate
the state of the world at the current point in time or choose to wait for events
which will be caused by other processes in the future. We used the Rust program-
ming language, where coroutines are only experimentally available, so we used an
explicit state machine model to represent the progress of each process. The overall
simulation process maintains a global clock, and when all processes are waiting for
events, the global clock is advanced until the next scheduled event.

The main processes in railway simulation are:

• Elementary route activation waits for resources, allocates them, sets switches
to given positions and starts the following sub-processes:

– Release trigger: listens to a trigger detection section which is designated as
the release trigger for a partial route. After the detection section has first been
occupied, and later freed, resources are released for use in other elementary
routes.

– Signal catcher: sets the route entry signal to the ’proceed’ aspect, then waits
for a given trigger section to become occupied before setting the signal to back
’stop’.

– Overlap timeout: releases some resources after a given timeout. The timeout
is started on the allocation of a specific track section (the trigger).

• Swing safety zone: replace one active safety zone with another. First, wait to
allocate the additional required resources. Then release the resources which are
no longer required.

• Train evaluates movement authority using information from signals currently
in sight, and takes one of the following actions: accelerate, brake, or coast/wait.
Braking curves from velocity limitations are calculated, representing the train
driver’s plan for when to start braking. We calculate a guaranteed minimum
time until further action is required from the driver by taking the minimum time
until one of the following happen (see also Figure 3.15):

– train arrives at a new node
– train reaches maximum velocity
– train enters the area of a new velocity restriction
– acceleration/coasting curve intersects the braking curve
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Figure 3.15: The train driver’s decision about when to accelerate/brake/coast hap-
pens at intersections between acceleration curves, braking curves and velocity re-
striction curves. In this example, the train can accelerate until the critical time
where the acceleration intersects with the braking curve towards the second ve-
locity restriction ahead (the first one is not critical).

After this minimum time has passed, or any signals currently in sight have
changed state, the train updates its position and velocity according to the chosen
driver action and the laws of motion.

Note that sincewe assume a constantmaximum acceleration and braking, the equa-
tions of motion can be solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the equations of motion at
discrete events. This ensures that the train starts braking in time using only the
information available to the driver at any given time.

3.5.2 Extensions and alternative simulators

In our simulation model, trains re-calculate braking curves analytically on every
possibly relevant event. This makes for a high-performance system, but in real-
world engineering there are other complexities that we do not yet handle in this
system, such as:

• More complex signalling and automated train protection systems.

• Local variations and details of infrastructure, such as the inner workings of com-
ponents from different vendors performing various tasks like route allocation,
de-allocation, safety zones, partial release, level crossings, etc.
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• Train dynamicsmodels using curve radius, gradient, air/tunnel resistance, weight
distribution, etc.

• Stochastic variation in simulation output.

Our system can be extended with these features, or it would also be possible
to swap out our simulation module with a more comprehensive solution or a com-
mercially available offering (see [129, 104]), as long as this simulation program can
be run in batch mode using the range of input described above. Also, implement-
ing a discrete event simulation is most elegantly done through co-routines, such
as in the SimPy³ Python library, or though specialized languages for simulation
such as ABS⁴. However, for the simple simulation system we have implemented,
the number of distinct states in each type of process is so low that it can easily be
managed by explicit state machine logic.

3.6 Case studies and performance

This section presents running times for different typical performance specifications
on different types of railway infrastructure where the size and complexity of the
model is typical for the scope of railway construction projects. Verification perfor-
mance on various test examples as well as real stations is presented in Table 3.1.
The table shows the time spent in each solver component, and also shows the num-
ber of invocations nDES of the simulator, which is very low in most of the practical
cases. This supports our hypothesis that the chosen abstraction and CEGAR loop
is efficient. The two-track station used in Figure 3.1 is not too complex, having
only 6 elementary routes. Even so, this scale is still interesting for verification in
practice, since there are many possible mistakes to uncover.

The Norwegian railway infrastructure manager Bane NOR has supplied a in-
frastructure model in the railML format of the whole national railway network
[138] from which we have extracted some more complex examples. Figure 3.16
shows cut-outs from the visual representation of these models, i.e., the stations
Kolbotn, Eidsvoll, and Asker were converted from the railML models.

We have also tested against an infrastructuremodel from the Arna construction
project that uses the RailCOMPLETE CAD design software, a realistic use case for
agile verification.

Finally, to test the limitations of scalability in our method, we construct a set of
examples where m stations each with n parallel tracks each are serially connected
by a single track. In this case, when a timing bound is slightly too small to be
satisfiable, the planner will have to come up with nm plans for timing evaluation.
This scenario is outside the intended use case for our method: path selection can

³See https://en.wikipedia.org/wiki/SimPy
⁴See http://abs-models.org/

https://en.wikipedia.org/wiki/SimPy
http://abs-models.org/
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Infrastructure Property Result nDES tSAT tDES ttotal
Simple
(3 elem.)

Run.time Sat. 1 0.00 0.00 0.00
Crossing Unsat. 0 0.00 0.00 0.00

Two track
(14 elem.)

Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01

Kolbotn (BN)
(56 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06

Eidsvoll (BN)
(64 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21

Asker (BN)
(170 elem.)

Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77

Arna (CAD)
(258 elem.)

Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74

Gen. 3x3
(74 elem.)

High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19

Gen. 4x4
(196 elem.)

High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34

Gen. 5x5
(437 elem.)

High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

Table 3.1: Verification performance on test cases, including Bane NOR (BN) and
RailCOMPLETE (CAD) infrastructure models. The number of elementary routes
(elem.) is shown for each infrastructure to indicate the model’s size. nDES is the
number simulator runs, tSAT the time in seconds spent in SAT solver, tDES the time
in seconds spent in DES, and ttotal the total calculation time in seconds.
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Figure 3.16: Stations Kolbotn, Eidsvoll, and Asker from Bane NOR’s model of the
Norwegian national network [138].

on this scale instead be based on static speed profiles. Capacity over many stations
is better suited for the established timetabling tooling.

We attempted an alternative implementation using the PDDL+ solver SMT-
Plan+, but found that even for greatly simplified models, the required number of
steps and numerical constraints put all our case studies out of reach for sub-second
verification times.

3.7 Related work

Railway timetabling and capacity analysis has often been posed as a planning prob-
lem and solved using mixed integer programming and similar approaches. Zwan-
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eveld et al. [176] use integer programming on a problem closely related to our
low-level railway infrastructure capacity verification problem. Isobe et al. [79] for-
mulate a similar model in timed CSP, representing train locations, velocities, and
control logic. Our definition of the problem above includes non-linear constraints
on train dynamics (acceleration/braking power) and communication constraints
(trains must slow down if they have not been informed of movement authority),
which are relevant in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in railway dynamic anal-
ysis, see e.g. [116, 78, 86].

In the planning literature, the PDDL+ language [59] has been introduced to
capture mixed discrete/continuous planning problems such as the one studied in
this chapter. General-purpose solvers have recently been developed, using time
domain discretization (DiNo [135]) or the SMT theory of non-linear real arithmetic
(SMTPlan+ [32]).

3.8 Conclusions and future work

Railway signalling have few design tools which allow rapid prototyping by antic-
ipating the verification which is to be performed in later stages. Such tools are
needed to improve quality and efficiency of the design process, according to Nor-
wegian railway engineers of Railcomplete AS and Norconsult AS.

This chapter has demonstrated a control system design tool which can verify
performance properties in the scope of a single project fromhigh-level specification
by synthesizing schedules. It automates the following activities:

• Detailed running time analysis – verify the time required for getting from point
A to point B, taking into account train dynamic characteristics, communication
constraints, and control system logic and latency.

• Detailed schedulability analysis – verify frequency of trains arriving at a station,
and simultaneous opportunities for crossing, parking, loading, etc.

Our approach carves a new niche in the following sense: the level of detail sup-
ported by this tool is much greater than the traditional by-hand approaches for
running time and schedulability analysis – and the amount of background data and
work is much less than the whole-network stochastic operational analysis typically
used for later-stage verification. To make the method approachable for engineers,
the required input is the minimum of information required to verify the relevant
properties. For example, the specific paths each train takes through the station
is not an input, but different possibilities for realizing paths are explored by the
verification procedure. This also makes the method more appropriate for early-
stage design, where track lengths, topology, and component placement might be
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adjusted to achieve design goals, and engineers can in this way get feedback on
design choices without requiring large efforts to repeat the verification.

The goal of our suggested tool chain for railway engineering is (1) to allow fully
automated performance verification and (2) use minimal input documentation for
the verification. Both of these aspects encourage bringing in performance veri-
fication into frequently changing early-stage design projects, avoiding the costly
and time-consuming backtracking required when later-stage analysis reveals un-
acceptable performance.

As future work we plan to integrate the current verification prototype tool in
the RailCOMPLETE CAD environment and test the usability with the engineers
using this tool in their design work.



4Optimization and synthesis of
signalling component layouts

This chapter presents an optimization-based synthesis method for laying out rail-
way signalling components on a given track infrastructure to fulfil capacity speci-
fications in the context of a construction project.

The main synthesis algorithm starts from an initial heuristic over-approxima-
tion of required signalling components and iterates towards better designs using
two main optimization techniques: (1) global simultaneous planning of all opera-
tional scenarios using incremental SAT-based optimization to eliminate redundant
signalling components, and (2) a derivative-free numerical optimization method
using as cost function timing results given by a discrete event simulation engine.

Synthesizing all of the signalling layout might not always be appropriate in
practice, and partial synthesis from an already valid design can be an alternative. In
consequence, we focus also on the usefulness of the individual optimization steps:
SAT-based planning is used to suggest removal of redundant signalling compo-
nents, whereas numerical optimization of timing results is used to suggest moving
signalling components around on the layout, or adding new components. Such
changes are suggested to railway engineers using an interactive tool where they
can investigate the consequences of applying the various optimizations.

4.1 Specification-based design synthesis

Building on the verification work presented in the two chapters above, we present
here an optimization method where signalling components, i.e. mainly signals and
detectors, but also balises, derailers, and catch points can be moved or removed
from the design to improve capacity.

We show how our SAT-based planning procedure can be extended to find re-
dundant signalling equipment, and how a simulator can be extended to move sig-
nalling equipment around using continuous-domain mathematical optimization
methods and discrete event simulation. With the use of a heuristic initial design
algorithm, the optimization procedures can be applied even if the user has not yet
supplied any working signalling design, and in this way we get a synthesis algo-
rithm. If a working design is already in place, our method suggests possible design
improvements to the user of an interactive tool, so that the engineer has the final
say inmaking changes to the design, and can investigate how the changes influence
the infrastructure and operational scenarios.
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These methods are a step towards a railway signalling engineering methodol-
ogy based on explicit specifications, and using analysis and verification tools every
step along the way, which we believe can improve decision-making.

The main goals of this chapter are: (1) suggesting and demonstrating a novel
specification-based design methodology for the layout of railway signalling com-
ponents, (2) extending existing planning and simulation methods to make changes
in the designs which improve their quality with respect to given specifications,
and (3) showing how incremental optimization and partial synthesis can be used
in specification-based design through an interactive tool.

4.2 Design principles for local railway capacity

The basic safety principles used in most railways around the world are based on
dividing railway lines into fixed blocking sections, and use signals and train detec-
tors together in an automated interlocking system which prevents one train from
entering a blocking section before it has been cleared by the previous train.

The block section principle directly impacts the maximum frequency of trains,
and consequently the capacity of the railway, through the interplay between train
parameters (length, acceleration and braking), track layout (how many tracks are
available at which stations), and the location of signalling equipment. The topic of
this chapter is how to choose the number and locations of signals and detectors to
optimize capacity.

There are two main design methods for signal and detector locations, which
have different application areas. The first method is the blocking time diagram
where a single track on a railway line, or a single path through a railway station,
is presented on the horizontal axis, and consecutive trains travelling the same path
are plotted with the blocking time of each section shown as rectangles stretching
out on the vertical time axis (see Figure 4.1).

The second design method is to use a schematic track plan showing the topol-
ogy of tracks and the locations of signals, detectors, and other signalling system
components. The schematic plan is not geographically accurate (for the sake of
readability) but is annotated with travelling lengths between relevant locations,
such as from one signal to the next signal or detector. This plan is used in the de-
sign of route-based interlocking systems tomake assessments of the effective lengths
of station tracks, safety distances from a signal to other tracks (so-called overlaps),
and more (see Figure 4.2).

Note here how the the blocking time diagram and the schematic plan provide
views in different dimensions: the blocking time diagram provides continuous time
and a single spatial dimension but does not treat different choices of path, while the
schematic track plan shows all paths at once, but does not directly show how a train
would travel in time. The latter concerns schedulability, while the former concerns
timing. For detailed signalling design, the decisions that impact the interaction
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Figure 4.1: Blocking time diagram showing two (non-stopping) trains travelling
from a line blocking section into a station and back onto a line blocking section.
Dashed lines indicate train locations and velocity, and grey boxes indicate lengths
and times of sections exclusively allocated to the trains. Figure adapted from [131].
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Figure 4.2: A schematic track plan, a key artifact in designing the signalling system
in route-based interlockings. The plan is annotated with signalling components
and distances between locations relevant for interlocking safety requirements.
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Layout design

Figure 4.3: Railway signalling layout design places a set of signalling components
on a given track layout to ensure that a set of capacity specifications can be fulfilled
by dispatching trains in some way.

between these two analysis domains is a complex task where an engineer balances
a high number of diverse concerns.

Placing signals, detectors, and other components so that trains can be guided to
their intended tracks and platforms safely and efficiently is the problem of railway
signalling layout design.

To be precise, we define the railway signalling layout design problem as follows:
given a track plan, and a set of intended operational scenarios, decide on a set of
signalling components (signals, detectors, etc.) and their locations, such that it is
possible to implement a safe interlocking control system with which the specified
operational scenarios can be dispatched efficiently.

We now consider the main constraints imposed on a signalling design, as first
presented in the previous chapter, in the light of creating a design with capacity in
mind:

1. Physical infrastructure: all the trains are guided by the rails and can only travel
where the rails guide them. The space that trains move on is a graph with linear
connections between nodes.

2. Allocation of resources: railway signals are connected to a control system called
the interlocking, which ensures mutual exclusion of trains by reading from de-
tectors and ensuring that signals can only signal movement authority when it is
safe to do so. This entails that one can only allocate and free resources in certain
groupings.

3. Limited communication: the most obvious way to improve capacity on an exist-
ing railway line is to install more signals to more finely subdivide the allocation
of space so that trains can be travelling more closely on the line. However, since
the train driver always has to be able to stop the train within the limits of the
currently given length of movement authority, putting signals too close together
will lower the speed that the train can travel with. This means that there is a
limit to how many signals one can install before the capacity starts to decrease
because of this (see Figure 4.5).
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Figure 4.4: Allocation and freeing of resources can only be done within the limits
of what information the control system can send and receive. In the left figure, a
train travelling from Signal A must travel at least until signal C, and all resources
in this path must be allocated and in a safe state before the train can proceed from
A. Meanwhile, in the right figure, no train can proceed from Signal B because parts
of the path require the same resources, which means that the elementary routes
are conflicting and cannot be used simultaneously.

Velocity
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Figure 4.5: Signal information only carries across two signals (so-called distant
signals).

4. Laws of motion: when a train is given a movement authority, this authority has
a limited length and a limited maximum velocity. The driver must choose when
to accelerate and brake to stay within the given authority.

v − v0 ≤ a∆t, v2i − v2j ≤ 2bs.

In the methods for optimization and synthesis proposed below, we assume that
the above constraints are absolute. In practice, engineers have subtle workarounds
for each of these constraints whenever the situation requires a non-standard solu-
tion. Physical infrastructure (1) can often be modified by taking a step back in the
planning process and re-evaluating the track layout together with track engineers.
Allocation of resources (2) can be overcome by designing certain movements to
be performed as shunting movements, i.e. a second-grade class of movement au-
thority with lower safety requirements. Limited communication (3) can also be
overcome by increasing the number of different aspects that the signals can com-
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municate, or by using cab signalling giving additional communication between the
interlocking system and the train driver. The ETCS Level 2 system currently being
implemented in many European countries is capable of signalling any number of
routes simultaneously through digital radio communication, effectively lifting the
infrastructure-to-driver communication restriction. Finally, the laws of motion (4)
cannot be overcome in themselves, but increasing the requirements for vehicles’
acceleration and braking power may improve a layout design’s expected perfor-
mance.

4.3 Algorithm for synthesis and optimization

The following list is a summary of components in our work-flow for solving the
railway signalling layout design problem:

1. Track plan and capacity specification input: track plans are graph-like struc-
tureswith information about track lengths, boundary nodes, switches, and cross-
ings, and we read this data from the railML format¹. The capacity specifications
are described in Section 3.3 above.

2. Initial design: a heuristic algorithm is used to over-approximate the signalling
components required to plan any set of movements on the infrastructure, if they
are possible with the given track plan. See Section 4.3.1 below.

3. Derived interlocking specification: we rely on an automatic derivation of inter-
locking specifications from the layout, allowing only customizations which are
global parameters (e.g. overlap policy). Such derivation algorithms have been
described in the literature, see [168].

4. Planning optimization: ignoring all timing aspects, we calculate the smallest set
of signals and detectors that are able to dispatch all of the scenarios described
in the local capacity specifications. This is done by solving a planning prob-
lem where all scenarios are planned simultaneously. An incremental SAT solver
solves the plans and optimizes the number of signals that are used. See Sec-
tion 4.3.2 below.

5. Numerical optimization: a measure for the performance of the design is calcu-
lated by dispatching all of the planned ways to realize the performance specifica-
tions and measuring the difference between the required time and the simulated
time. This measure is used as a goal function for a meta-heuristic numerical op-
timization algorithm for moving the signals around, and when this algorithm
converges, each track is tested for how much improvement would be had by
adding signals to it and repeating the optimization process. See Section 4.3.3
below.
¹See https://railml.org/

https://railml.org/


83

Track
plan

Capacity
specs.

Initial
design

Planning
SAT-based

dispatch planning
with min.

no. of signals

Numerical
Powell/Brent

numerical method
optimizing
signal and

detector locations

Simulation
Discrete event
simulation as
optimization
cost function

Output
Signalling
layout and
simulations

demonstrating
specs.

fulfillment

Add new
signals/
detectors

Dispatch
plans

Figure 4.6: Synthesis process overview. Track plan and capacity specifications are
given as input, and together with an initial design based on a heuristic algorithm
they are given to the SAT-based planner for simultaneous dispatch planning of
all usage scenarios. A numerical method takes the dispatch plans and adjusts the
locations and number of signals and detectors until no better result from simulation
is achieved.

6. Output: after the process is done, the user is left with a design and a set of
dispatch plans and simulated train movements which describe how the capacity
requirements are fulfilled by this design.

4.3.1 Initial design

When starting from an empty set of signalling components, most operational sce-
narios are not possible to even dispatch, because the railway interlocking safety
principles require detectors and signals to have control over movements for safety
purposes. Instead of searching for signalling components to add to the design to
allow dispatching to happen, we start the synthesis procedure by heuristically over-
approximating the components required to perform dispatch. We insert a signal
and a detector in front of every trailing switch, and at a set of specified lengths
corresponding to the choices of length of safety zone. We also insert a detector
in front of every facing switch. See Figure 4.7. If more than one train is required
on the same track for overtaking or crossing, we can also choose to insert signals
at multiples of the trains’ lengths. When there are several paths of the specified
length leading to a trailing switch, we put signals and detectors at all the relevant
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Figure 4.7: Initial design: put signal
in place before every trailing switch,
i.e. where tracks join together.
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Figure 4.8: The planning abstraction
of the train dispatch allocates a set of
partial routes to each train. Elemen-
tary routes are sets of partial routes
which must always be allocated to-
gether.
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Figure 4.9: The planning matrix consists of the occupation status of a set of partial
routes for each state required for dispatch planning, and for each scenario in the lo-
cal capacity requirements. The top left cells show an example dispatch of a crossing
movement where green areas show track segments which are currently occupied
by a train going from left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

locations. This design aims to allow all possible dispatches and we rely on the next
stage of the synthesis to remove redundant equipment.

4.3.2 Planning optimization

The operational scenarios of the local capacity specifications describe train move-
ments only declaratively, so the first step to analysing concrete states of the system
is to solve a planning problem which gives us a set of dispatch plans, i.e. deter-
mining sequences of trains and elementary routes which make the trains end up
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visiting locations according to the movements specification.
Instead of using a constraint solver system (e.g. SMT solvers) to solve for route

dispatching and train dynamics simultaneously, we have chosen to separate the
abstracted planning problem (i.e. selecting elementary routes to dispatch) from the
physical constraints of train dynamics. This choice was made for performance and
extensibility reasons (see Section 3.4 above).

To find a subset of the signalling components from the initial design that is
sufficient to successfully plan all the dispatches, we use the planning approach
described above and add a set of signal usage Booleans u indicating whether the
signal is needed. The set of occupancy status Booleans o is repeated once for each
operational scenario, resulting in a SAT instance with parallel execution of each
scenario on copies of the same infrastructure (see Figure 4.9). We link the signal
usage status u to each copy of the state so that the signal is marked as needed if it
is used independently of other signals:

∀i ∈ State : ∀s ∈ Signal : ∀t ∈ Train : ¬us ⇒∨{(
oir ̸= t ∧ oi+1

r = t
)
| exit(r) = s

}
⇒∨{(

oir ̸= t ∧ oi+1
r = t

)
| entry(r) = s

}
Similar approaches are taken for other signalling component types.
Now we find the smallest set of signalling equipment which is sufficient to

allow dispatching all scenarios. We use a simple technique to minimize number
of signals: take the sum of u variables as a unary-encoded number (see [15]) and
solve SAT incrementally with a binary search on the upper bound on the sum.

4.3.3 Numerical optimization

Whenwe have a design where dispatching is possible, we have fulfilled the discrete
part of the dispatch plan. However, timing constrains might not yet be fulfilled, and
we might also want to improve on the total execution time of the various dispatch
plans. To improve on the basic design found by the planner, we solve a numerical
optimization problem with a cost function f defined as a weighted sum of dispatch
timing measures:

fb(
−→x ) =

∑
s

ws

(
1

ns

∑
d

tb+−→x (d)

)
,

where−→x is a vector with components representing the location of each signal and
detector, s indexes operational scenarios from the set of capacity specifications, ws

is weight assigned to the operational scenario, d indexes the set of ns alternative
dispatch plans derived by the planning algorithm for each operational scenario,
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and tb+−→x (d) is the time measure calculated by executing the dispatch plan d by
discrete event simulation on the infrastructure constructed by adding the signal
and detector locations −→x to the base track plan infrastructure b.

We define two basic operations for optimizing the timing performance of a
signalling layout:

1. Searching for the optimal signalling component locations −→x for a fixed set of
components located on a fixed set of tracks in a fixed order using Powell’smethod
and Brent’s method of derivative-free numerical optimization.

2. Adding a new signal or detector to any track.

4.3.3.1 Powell's method and Brent's method

Since we use simulation to measure the cost of a design, we do not have an expres-
sion for the derivative of the cost function fb, and this function is not even guar-
anteed to be continuous. Even so, it is possible to use numerical methods for local
optimization without taking derivatives. We used Brent’s method for minimization
in the single-parameter case, with the generalization to multivariate functions by
Powell’s method.

Powell’s method works as follows: given a domain D ⊂ Rn, an initial point
−→x 0 ∈ D, and a cost function f : D → R, create a set of search vectors V initially
containing each of the unit vectors aligned with each axis of Rn. Iterate through
the search vectors −→v i ∈ V and do a line search for the parameter α giving the
optimal point of −→x i+1 = f(−→x i + α−→v i). After updating −→x using each search
vector, remove the search vector which yielded the highest α and add instead the
unit vector in the direction of −→x −−→x 0. See [24] for details.

Brent’s method for optimization is used for the line search sub-routine in Pow-
ell’s method. It takes a range of α values for which−→x i+α−→v i is insideD, and does
a robust line search which finds a local minimum even for non-smooth and discon-
tinuous functions. The method keeps a set of the three best points seen so far and
fits a quadratic polynomial with the three best function values as parameters (called
inverse quadratic interpolation). If the predicted optimum by the quadratic fit falls
within an expected range, it used as the new best guess, otherwise the method falls
back to golden-section search. See [125, 24] for details.

To simplify the use of the numerical algorithms, we map each signalling com-
ponent’s position to an intrinsic coordinate in the interval [0, 1], so that the vector
−→x keeps within D = [0, 1]n. For a component with position p relative to the
start of its track, if the component is the only component on a track, we define its
intrinsic coordinate as

x =
p− (la + lmin )

(lb − lmin )− (la + lmin )
,
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where la = 0, lb is the length of the track, and lmin is the minimum spacing be-
tween components. When there are several components on the same track, we
convert the coordinates by processing the components in order of increasing p,
and adjusting la to correspond to the location of the previous component on the
track. In this way the whole of [0, 1]n represents valid component positions and
we do not have to apply constraints to the search space by other methods.

See Figure 4.10 for an example of signalling components being moved.

4.3.3.2 Adding new components

When the above optimization has converged for a fixed set of components −→x , we
iterate over each track (and each direction), adding a new component and including
its dimensions in −→x , re-running optimization, and see which track, if any, most
benefits from adding a signal or detector.

4.3.3.3 Discrete event simulation

The time measure t is calculated by simulation on a fixed infrastructure, which is a
well-established method in railway capacity research. We have developed a simple
custom simulator which we will not describe in more detail here (see [147] for a
methodological overview, and [78, 25, 87] for discrete events simulation for railway
applications). Commercial railway simulation software can also be used instead of
custom solutions.

Figure 4.10: Partial screen capture from our interactive design tool showing be-
fore (left) and after (right) improving signal and detector locations for a two-track
station on an overtaking scenario. Note that the time axis is horizontal in this ex-
ample. A signal at x ≈ 0 m is moved to x ≈ 700 m so that the overtaking train
is unblocked at an earlier time, lowering the overall time taken to perform the
operation.
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Figure 4.11: Partial screen capture from our interactive design tool showing sug-
gestions for design improvement to the user, inspired by integrated development
environments used for programming. The individual optimization steps run their
calculations as a background process, showing an information symbol where the
algorithm is able to provide an improvement over the current design. The user can
decide to implement it or to dismiss this change and similar changes from future
suggestions.

We also use an automated derivation procedure for interlocking specifications
to adjust the behaviour of the control system after making changes in the infras-
tructure, similar to the procedure described in [168].

4.4 Local optimizations and interactive improvement

There are many reasons that a from-scratch synthesis can be unsuitable in prac-
tice. The main reason would be that the synthesis method itself is inadequate, for
example if it fails to recognize a key concern that the design should be based upon,
or if its calculation time prohibits practical use.

Even if the specifications successfully capture the capacity requirements, and
the the synthesis algorithm in itself can adequately come up with designs with
good capacity, there in practice often other constraints which can make a full
from-scratch synthesis unsuitable. For example, in upgrade construction projects,
it might be more useful to search for and suggest small changes which would be
the most effective remedies for bottlenecks in a station’s capacity.

To increase the number of ways that our methods can be useful, we consider
also each optimization step as described below as a possible incremental step to-
wards a better design, which can be performed by a user interactively. Using a
computer-assisted design program for railway, or a drafting program (such as Au-
toCAD) extended with semantic information about railway objects and rail net-
work topology, the user gets suggestions for smaller changes to their design and
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can investigate how applying these changes affects the various scenarios.
Local optimization steps suggested to the user are the following:

• Redundant equipment: if removing a single object from the drawing can still
be made to satisfy all local capacity requirements, the program suggests that
the object is redundant. This class of suggestions is based on the SAT-based
component minimization technique described above.

• Local move of equipment: if moving a single object or a set of nearby objects
can improve the overall capacity measure on the station, the program suggests
moving the object (or set of objects). This class of suggestions is based on the
numerical timing optimization technique described above.

• Adding equipment: if adding a single piece of equipment (and performing local
moves of equipment afterwards) can improve timing, the program suggests this
to the user. This class of suggestions is based on the numerical timing optimiza-
tion technique described above.

When the user accepts any of these changes, they can investigate how the dis-
patch plans and the timings change. The tool meanwhile calculates new sugges-
tions based on the new layout.

We have developed a prototype tool which can calculate and suggest such
changes to a user while they are editing their layout, and we are currently starting
testing of this tool in an industrial setting together with railway engineers to inves-
tigate how useful such suggestions are, and how often they can be used compared
to a from-scratch synthesis.

4.5 Related work

Although the literature is comprehensive on railway engineering in general, the
safety-critical implementation railway interlockings, and operational analysis of
large-scale railway networks, the signalling layout problem in itself has little cov-
erage. We are only aware of the following works: Mao et al. [111] presented a
genetic algorithm solution to signal placement, but the method is limited to the
one-dimensional railway line, and does not handle signal placements inside sta-
tions/interlockings. Dillmann and Hähnle [47] describe a heuristic algorithm for
upgrading German conventional signalling systems to an ETCS system, aiming to
replicate the behaviour and capacity of the existing system.

4.6 Conclusions and future work

We have presented a method for partially or fully automating signalling layout
design using SAT-based planning and discrete event simulation. The automation



90

of verification, optimization and synthesis rely on specifications that are tailored
to the relevant scope, and we hope that this is a step on the way to integrating
explicit formal specifications into the layout design process.

Our planning algorithm uses fixed blocks, so it handles conventional lamp sig-
nalling and the European standard ERTMS/ETCS Level 2, while handling Level 3
(which uses moving block) would require changes to the planning algorithm.

The simulation paradigm is imperative, progressing by calculating train trajec-
tories forward in time, which makes the overall synthesis easily extensible with
timing-related details, such as engine and braking power models, resistance mod-
els, operational regulations, automatic train control systems, etc. which do not
impact the applicability of the dispatch plan but impact the timing performance.

Although our method is capable of making good design choices in several sim-
ple models, we are aware of several limitations. Firstly, the method is not complete
– we cannot guarantee finding an optimum because of the following: (1) the ini-
tial design does not guarantee maximum possible schedulability, (2) although the
global simultaneous planning is exact in finding the smallest subset of the initial
plan which can dispatch the operational scenarios, this set might not be the optimal
starting point for timing optimization, and (3) the cost that we use for numerical
optimization can have multiple local optima, especially when summing the score
for competing operational scenarios, in which case the method described above is
not guaranteed to find the global optimum.

We have also identified the following concerns for scalability of the method:
(1) the specification language is practical to use for passing tracks, junctions, and
medium-sized terminal stations, but on large-sized terminals and larger-scale anal-
ysis across multiple stations, the language is not easy to use because it specifies
single movements separately, (2) optimizing the number of detectors in the SAT
problem requires quantifying over all paths, which will cause scaling problems on
larger track plans with many path choices, and (3) the algorithm for adding new
signals to improve performance is naive, and will be expensive for track plans with
a large number of tracks.



5Controlled natural language
specifications

Automated formal verification techniques have the potential to greatly increase the
efficiency of engineering. However, verification engines are not easy to take up in
industrial practice. Even if the verification process is fully automated, integrating
the tools into the users’ workflow and formalizing properties and models requires
careful thinking and domain expertise. The gap between automated verification
and domain expert users is often caused by the lack of user involvement. The users
are usually not experts in verification techniques, i.e. they do not know how to
write properties in the verifier’s language, nor how to build models for the verifier,
nor how to interpret the output of the verifier when violated properties are found.
In our case, the users are expert engineers from the railway domain, designing
railway infrastructure.

We want to allow the end users to participate in the whole verification process.
Firstly, the domain experts need to understand the verification properties that the
tool actually verifies, as well as the model of the system that the tool works with.
Secondly, we want to allow the users to actively participate in maintaining the ver-
ification properties, i.e. to change and adjust themwhen needed.¹ Thirdly, we want
that the domain experts are able to create their own specifications and feed these
into the verification engine, e.g. define specific expert knowledge as verification
conditions.²

Involving the user in the design of a system is well-studied in the field of par-
ticipatory design [154, 89]. We use the term participatory verificationwhen talking
about methods for including the end user in the verification process. The goal is
to make automated verification techniques accessible to engineers with little pro-
gramming or verification experience.

The efficient verification and troubleshooting tools presented in Chapter 2 per-
forms a lightweight type of verification which we call static infrastructure verifi-
cation, and the results are updated continuously as the engineer is modifying the
station (see Figure 7.4 and Section 7.2). However, the Prolog-like formal logical
specification language that we used for describing railway rules and regulations
is not easy for inexperienced programmers to write. Ideally, railway engineers
should be able to read the logical specifications to ensure that they correctly rep-
resent the engineering domain. Furthermore, engineers should themselves be able

¹Authorities typically make small adjustments to regulations several times per year, whereas en-
gineering best practices can be revised at any time.

²Such expert knowledge is often seen as proprietary valuable assets of the company.
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to maintain and extend the rule base with limited support from verification ex-
perts. When we evaluated our verification prototype with railway engineers from
RailCOMPLETE AS³, they raised yet another concern: how could they trace the
violation, which the tool displays graphically, back to the regulations documents?

These observations have led us to develop a controlled natural language (CNL),
which we call RailCNL, meant to be used as an intermediate representation be-
tween natural language texts (i.e. the railway regulations) and Datalog [165] logic
programs. RailCNL aims to be human-friendly enough for our domain experts to
work with to overcome the above challenges, and thus getting them involved in us-
ing and improving the automated verification tool. At the same time, the language
is a formal language which can be automatically translated into Datalog.

The rest of this chapter is organized as follows:

• We propose participatory verification as an agenda formaking verificationmeth-
ods more accepted by their intended users. Section 5.1 describes a general view
on participatory verification, and the rest of the chapter is concerned with ap-
plying this this view in a specific use case, namely the writing of verification
properties by engineers, with the proposed solution of using controlled natural
languages.

• We present a methodology for designing controlled natural languages for ver-
ification, described in Section 5.2, and the RailCNL made specific for railway
regulations and specifications, which is described in detail in Section 5.3 and
evaluated in Section 5.4.

• To fully evaluate the usefulness of using controlled natural languages for veri-
fication properties, we present two tools making use of RailCNL in Section 5.5.
The concluding Section 5.6 contains some more related works and suggestions
for possible continuations of this work.

5.1 Participatory verification

We propose to adopt techniques from participatory design [154] into formal verifi-
cation processes. We try to convey here how the formal verification process can be
seen as a participatory design process, pointing out what stages and components
from verification can be enhanced by participatory design ideas, so to make veri-
fication more user friendly, and to properly include the user in those verification
tasks where their participation is needed.

Formal verification techniques are developed by theoretical computer science
researchers based on mathematical models, like automata, and logical formalisms,
like temporal logics, aiming to verify complex properties of complex systems, where

³http://railcomplete.no

http://railcomplete.no
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human reasoning or testing techniques cannot encompass the large amount of de-
tails. The formal verification technique is implemented into a verification engine
which takes as input:

• a model (i.e., the system with some details omitted) and

• a property to be verified;

and returns an answer:

• either correct when the model satisfies the property, or

• error when the model violates the property and

• an explanation of why the violation happens.

A plethora of verification engines exists, each for different kinds of systems (avion-
ics, railways, software, microchip) and different kinds of properties of interest
(deadlocks, safety, availability, correctness). Many of these have reached enough
maturity to be usable in industry on more than proof of concept scenarios. A main
impediment in the wider adoption of verification engines and techniques is the
high level of specialized expertise that is required in order to:

• build models that the engine will accept and work nicely with,

• write properties,

• understand the output explanations of these engines,

• understand what the verification engine does (how the verification algorithm
works) so to increase trust.

Usually those that can perform these tasks are the same experts that also built the
respective verification engine, with knowledge of specific types of logics, specific
kinds of mathematical objects representing the models, and deep understanding of
the verification algorithms employed in order to be able to decipher the outputs of
the verification engine and know how to use them to repair the system problem
discovered by the verification process.

However, one would want the users of the verification engine to be the respec-
tive engineers that design and work with the respective real life complex systems
like avionics designers, software engineers, railway engineers. These are persons
with high level of skill in their own field, but not in the field of verification. We
want persons that work with defining the specifications for the complex system
and the various safety regulations and standards, to be the ones writing also the
verification properties. We want those that build the complex systems to be able to
run the verification algorithm, understanding what it is supposed to do for them,
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on the models provided by their peer engineers on the properties provided by regu-
lators, and to understand the explanations of the verification tool when properties
are not satisfied, i.e., to be able to use these explanations to debug their implemen-
tations and designs.

Like in any other product design process, the verification experts should go
out of the loop as soon as they have finished designing and developing a specific
verification engine (e.g., a verification tool built for some specific avionics system
and specific kinds of safety properties as commissioned by some specific company).
The verification engine is the product, and the users are the various field engineers.
The users should be able to use a product in their daily tasks without any help
from experts. However, since the final product is such a complex system, we need
additional tools around the verification engine that would help the users participate
in the verification process without needing interaction with verification experts.

Therefore, in participatory verification we define two phases and two main
classes of software components.

Phase D: The design and development of the verification method and engine for
the specific verification task (or area).

Phase V: The verification time when field engineers use the verification tools to
debug and check their designs against specific regulations/properties.

Verification software components are seen as organized into:

Expert components include the verification algorithm and engine, various opti-
mization modules, various translation tools between various specific mathemat-
ical structures as input to these modules and engine, including models like au-
tomata and property description languages like temporal logics.

User components include the UI tools, e.g., for displaying models, for writing
properties, various modules for interacting with existing field tools and their
UIs, various graphical/diagrammatic languages, editors for domain specific lan-
guages.

We observe that usually most of the resources are spent on expert components,
whereas the user components are often disregarded in favour of hiring verification
experts to use the expert verification components in doing the verification tasks
during the verification phase. If some verification tool suite is becoming so popular
as to attract companies, then investments in user components appear. The rest of
this chapter is concerned with Phase V and User components.

In participatory verification the concept of “participation” comes in two flavors:

(i) Users participate during the Phase D in usability studies [50], helping the veri-
fication experts to develop a tool best fit for the specific verification task and for
the field in which the engineers are supposed to use the new tool.
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(ii) Users actively participate in the verification process, during Phase V, to de-
fine the models and properties for the verification engine and to interact and
understand the outputs from the engine.

Traditionally, participatory design (or interaction design) is concerned with
Phase D of building a product until its delivery on the market, and less concerned
with Phase V, when the product is used, unless subsequent versions of improved
products are planned.

It is a particular challenge of participatory verification to achieve the second
form of participation because of the complexity of the product. It is often the case
with verification tools that the difficult learning curve required to use them is too
big for the field engineers to overcome. Because of this, too many good verification
algorithms and methods are not adopted.

Participatory verification aims to increase adoption of verification techniques,
making two fundamental observations:

Sympathy for the verification tool: if the end user is involved in the development
(specification, testing, etc) of a complex tool for them (thus prone to seeing the
bugs along the way), then the user will be more aware of which features of the
tool are difficult to implement, and thus buggy, and which work well.

Empathy for the intended user: if the developer works with the stated intention
of making the tool for the end user, knowing the capabilities of the end user, how
she normally will use the tool, spending enough time on tailoring the tool to the
actual expressed user needs, then the user will require little learning and effort
for using the new tool with her normal working methods, also making use of all
the features of the tool.

In the work presented in the chapters above, we have had the role of the devel-
opers, building a verification engine for railway designs. We have tried to follow
the Empathy guidelines, working closer with the engineers and integrating our
engine into the engineers’ design tools. We observed their working procedures
and tools as well as interviewed representatives. However, we did not achieve
the Sympathy goals, one of the major impediments being the opacity of the ver-
ification method, including the encoding of the regulations that our engine was
working with. Moreover, it was clear in the end that the engineers would not be
able to write or change any of the verification properties by themselves.

The remainder of the section presents our solution for allowing the user of a
verification method to participate in the definition of the properties to be checked.
The rest of this chapter goes into further details, presenting first a methodology
that we devised and followed for building such front-ends, then defining an actual
constrained natural language that we called RailCNL, and finishing with the way
we use RailCNL in practice both for reading and writing properties.
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Figure 5.1: Verification process overview. Models come directly from the CAD
program, which engineers are already familiar with. Properties come from para-
phrasing the regulations using CNL, which in turn are translated into Datalog.
The reasoner outputs issues (warnings and errors) which are presented to the user
in the CAD program by highlighting the objects involved in the violation. Issues
are traced back to the original text (i.e. the regulations) though identifiers on the
marked-up sentences.

5.1.1 Participatory verification for railway regulations

To promote participatory verification of infrastructure railway designs against reg-
ulations, we design a property specification language for expressing railway reg-
ulations and expert knowledge, integrating it with our previously developed ver-
ification engine. Figure 5.1 presents the overall workflow of using the property
language with special-made tooling, integrated with the engineer’s CAD-based en-
vironment and our verification engine. Specifically, railway infrastructure static
verification requires:

1. Models: railway infrastructure plans, typically created by arranging the station
layout using CAD-based programs, e.g. extensions of Autodesk AutoCAD.

2. Properties: regulations and expert knowledge, extracted from regulatory and
best-practices documents.
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The formalization of these into Datalog, described in Chapter 2, which allows
efficient automatic reasoning. The reasoning happens continuously, in the back-
ground, while the user is working on the CAD drawing. Violations of regulations
and best practices are presented to the user in the CAD program graphically, on
the drawing.

We are not concerned with the model because in our case it is automatically
generated from CAD drawings, which is already the tool of choice for engineers,
thus they are actively involved in making the models while drawing in the CAD-
based RailCOMPLETE framework.

Describing verification properties using logical rules in Datalog is not new
(along with other logics like temporal [9] or dynamic logics [71, 11]), and we ex-
pected that the declarative style of Datalog would make it easy for railway engi-
neers to read and write such properties. However, a pilot project with the Rail-
COMPLETE engineers showed that they were not proficient enough in logic pro-
gramming to understand our encodings.

To allow the engineers to participate in the verification process, we develop
the controlled natural language RailCNL for representing properties on a higher
level of abstraction, making them closer to the original text while still retaining the
possibility for automatic translation into Datalog. This approach has the following
advantages:

• RailCNL is domain-specific, i.e., tailored both to the types of logical statements
needed by the verification engine, and to the regulations terminology. This al-
lows concise and readable expressions, increasing naturalness and maintainabil-
ity.

• The language closely resembles natural language, and can be read by engineers
with the required domain knowledgewithout learning a programming language.

• A separate textual explanation (such as comments used in programming) is not
needed for presenting violations textually, as the properties are now directly
readable as natural text. Comments could still be used, e.g., to clarify edge
cases or to clarify semantics, as is done in the original regulations texts where
commenting is needed since the expected natural semantics of some regulations
needs confirmation in certain cases (e.g., “yes, this rule applies even when (…)”).

• Statements in RailCNL can be linked to statements in the original text, so that
reading them side by side reveals to domain experts whether the CNL paraphras-
ing of the natural text is valid. If not, they can edit the CNL text.

5.2 Designmethodology for a verification front-end language

A controlled natural languages (CNL) is a constructed language resembling a nat-
ural language (such as English) but with added restrictions on its grammar and
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vocabulary. The restrictions are typically aimed at reducing the ambiguity and
complexity of unrestricted natural language. A CNL may or may not also be a for-
mal language, depending on its intended use. Wyner et al. [175] give high-level
recommendations on how to design controlled natural languages ranging from in-
formal to formal, general to domain-specific, simple to complex. For a recent sur-
vey of CNLs, see Kuhn [94], whereas in Section 5.5.2 we survey CNL editors and
their properties.

5.2.1 Using the Grammatical Framework to build CNLs

Grammatical Framework (GF) is a programming language for multilingual gram-
mar applications [140]. A GF program defines a grammar consisting of an abstract
syntax and one or more concrete syntaxes. The project also features the resource
grammar library (RGL), which is a comprehensive linguistic model of natural lan-
guages with a unified API for forming sentences, and implementations of this API
for 32 languages. The RGL encapsulates the linguistic complexity of the underly-
ing natural languages, minimizing the effort needed to map an abstract syntax into
another natural language, often reducing to simply providing the domain-specific
vocabulary. This makes GF a valuable tool for building CNLs.

An abstract syntax consists of categories and constructors (functions), corre-
sponding to a set of algebraic data types, which define the abstract syntax tree
(AST) of the language. The following is an example of abstract syntax used to form
sentences about distance restrictions on railway objects:

abstract Railway = {
cat Object; Length; Restriction; Statement;
fun
Signal, Switch, Detector : Object;
LengthMeters : Int -> Length;
GreaterThan, LessThan : Restriction;
ObjectSpacing : Object -> Object -> Restriction
-> Length -> Statement; }

To express that signals should not be closer than 20m from a switch, we write:
AST: ObjectSpacing Signal Switch

GreaterThan (LengthMeters 20)

The concrete syntax creates a mapping from the tree-structured abstract syn-
tax to text. Applying this mapping is called linearization. GF concrete syntaxes are
invertible so that the concrete syntax also defines a parser for the language. This
inversion is complete except for situations with ambiguities in the concrete syntax.
Therefore, and especially when designing formal language front-ends, it is essen-
tial to limit the possible ambiguities in the language to get an exact correspondence
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between the concrete language (linearization) and the AST. Concrete syntax defi-
nitions in GF assign concrete data types to the abstract categories, e.g. strings or
record types, and provide implementations of the constructors as functions.

A concrete syntax for the above AST concerning railway object spacing is:

concrete RailwayEng of Railway = {
lincat Object = Str; Length = Str;

Restriction = Str; Statement = Str;
lin Signal = ”signal”;
Switch = ”switch”;
Detector = ”detector”;
LengthMeters i = i.s ++ ”m”;
GreaterThan = ”greater than”;
LessThan = ”less than”;
ObjectSpacing o1 o2 r l = ”a” ++ o1 ++ ”must be” ++

r ++ l ++ ”from a” ++ o2;
}

After both an abstract syntax and a corresponding concrete syntax has been
defined, we can parse this language:
Text: a switch must be more than 20 m from a signal
AST: ObjectSpacing Switch Signal

LessThan (LengthMeters 20)

We can also linearize the language from the the abstract syntax:
AST: ObjectSpacing Detector Signal

LessThan (LengthMeters 2)
Text: a detector must be less than 2 m from a signal

Although this example is close to natural language, extending the language in
the same style would quickly run into trouble trying to cover all the linguistic vari-
ation that arises from composing complex sentences. For example, adding words
to the vocabulary which start with vowel sounds would require the article “a” to be
replaced with “an” in these cases, breaking the compositionality of the program.

The resource grammar library defines a comprehensive set of linguistic cate-
gories such as noun phrases (NP), verb phrases (VP), clauses (Cl) and sentences (S)
which can be used to compose texts. The type-safety enforced by the GF compiler
on the constructors which use these linguistic categories ensures that the com-
positions are grammatical. Each language resource in the RGL implements these
categories with the required attributes for that particular language. For example,
the English grammar contains a determiner phrase a_Det, which can be linearized
as “a” or “an”, depending on the composition of the noun phrase in which it is used.
The example from above can be re-written to use the English resource grammar as
follows:
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concrete RailwayEngRGL of Railway = open SyntaxEng, ParadigmsEng,
SymbolicEng, (Res=ResEng) in {

lincat Object = N; Length = NP;
Restriction = A2; Statement = S;

lin Signal = mkN ”signal”;
Switch = mkN ”switch”;
Detector = mkN ”detector”;
LengthMeters i = symb (i.s ++ ”m”);
GreaterThan = mkA2 (mkA ”more”) (mkPrep ”than”);
LessThan = mkA2 (mkA ”less”) (mkPrep ”than”);
ObjectSpacing obj1 obj2 restriction length =
mkS (mkCl (mkNP a_Det obj1)
(mkVP (mkVP must_VV (mkVP (mkAP restriction length)))
(SyntaxEng.mkAdv from_Prep (mkNP a_Det obj2))));

}

Using the resource grammar library allows us to separate the concerns of com-
posing sentences from the concern of inflections and word ordering.

5.2.2 Design methodology overview

Our methodology is based on CNL and GF best practices; in particular, Ranta et
al. [145] describe the construction of a CNL by creating an abstract syntax corre-
sponding to a semantic model, mapping it into natural language, and also how to
avoid or handle ambiguity in parsing and translating. In a later report, Ranta et
al. [144] give explicit best practices, such as: (i) using a modular structure separat-
ing generic and domain-specific parts of the grammar, (ii) letting the AST model
the semantics of the text, as opposed to the logic of the underlying formalism, and
(iii) trade-offs in modelling language restrictions purely in context-free grammar
versus using dependent types. We expand on these best practices as well as on the
works from [82, 5, 31] that created domain-specific CNLs as verification front-ends.

We present here the methodology that we apply in Section 5.3 to design Rail-
CNL, a verification front-end language for describing rules for static railway infras-
tructure verification. This methodology combines concrete advises from the above
works with our own experience from creating a railway infrastructure verification
platform (see Chapter 2).

Themain activities for defining a verification front-end language using GF are:

1. Define an abstract syntaxwhich is able to represent statements of relevant texts.
We suggest two sub-activities to help manage the difficulty and complexity of
modelling domain-specific, yet diverse and informally structured, texts:

a) Logic-driven design where basic (often non-domain-specific) constructs that
are known from the verification logic are added in a “bottom-up” fashion.
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b) Text-driven designwhere highly domain-specific constructs are added to the
language to model specific examples in original texts in a “top-down” fashion.

2. Write a concrete syntax, mapping the abstract syntax into one or more natural
languages, using the Grammatical Framework and its resource grammar library.

3. Create a translation from the abstract syntax to the target logic formalism, i.e.,
the verification properties expressed in the input language of the solver.

In theory, these steps could be performed one after the other, each depending
only on the previous steps in the list. In practice, however, the activities have sub-
tle cross-dependencies, for example the need for reducing ambiguity by encoding
more restrictions in the types, the usage of restricted keywords, or the need for
structure on larger scales than a single sentence. Section 5.2.4 addresses each of
these concerns.

Developing a specialized translation algorithm (see Section 5.3.2) instead of go-
ing through the GF typing system is encouraged when the end result is a complex
logical language, as in our case. In the translation algorithm we can also incorpo-
rate various optimization aspects.

5.2.3 Abstract syntax

Attempting to formally model a body of informal specifications in its entirety may
be neither feasible nor desirable, for a variety of reasons:

1. The text might have some amount of non-normative content intended only to
give readers a better understanding of the subject matter.

2. Parts of the normative content might not be suitable for modelling in the target
verification tool. For example, overly broad statements, such as “the system shall
ensure safety in all possible conditions”, are often part of regulations even if they
do not lend themselves to any direct action. Our railway verification method is
used for static infrastructure properties, whereas any properties requiring dy-
namic analysis are left to other stages (and tools) of the system design. A CNL
can still be designed to model more properties than those which are translatable
into the verification language.

3. The available body of text might be large and complex, and covering all parts
of it could require diverse domain knowledge from various disciplines. In our
railway case, we focus on the disciplines of track and signalling design, as these
are the sub-disciplines of railway engineering for which we have had access to
domain experts during the design of our verification system.

Furthermore, starting from arbitrary sentences in the natural text and trying to
cover it with the CNL will often prove to be a daunting task, given the variety of
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sentence structures, variety of contexts and levels of abstraction, and variety of
domain knowledge needed to make sense of the statements.

Our approach to handling this difficulty is to split the process of designing the
abstract syntax into two parts.

(a) We start with a logic-driven design, where we define basic concepts in a bottom-
up fashion, such as classifying the statement types (constraints, restrictions, etc.)
and describing sets of objects based on their class and their properties.
Even when deciding on the basic logic of the language, it might still be wise to
abstract away from the details of the underlying verification logic (as noted in
[144, Sec. 5.2]). In our railway verification case, even if many regulations can be
concisely expressed as Datalog programs, the abstract syntax of these programs
might not resemble the structure of the original text they were expressed in.
As an example, Datalog does not nest predicates, so explicitly naming variables
is required to express that an object has both a class and a property, while in
natural language, a named variable would not be needed for such a statement.

Datalog: main_signal(X) :- signal(X), type(X,main).

By designing a language to have a level of abstraction closer to how the original
texts are written, the details of the underlying formal language, its logic, or the
verification system, might be changed without devaluing the knowledge base
built by encoding domain knowledge into the front-end language. For example,
the ontological statements in RailCNL could also be translated into an ontology
language such as OWL.

(b) Next follows a text-driven design phase, where we look for text samples that can
be captured in the CNL, and make adjustments and additions to the grammar
to cover them. This phase might eventually lead to finding new basic building
blocks, such as adding the graph module to RailCNL for describing railway lay-
out, or adding relations to the ontologymodule. However, it is easy to get carried
away and construct a highly nested language which has too much freedom and
therefore becomes difficult to parse. Until the need formore generality is proven,
each newly added construct is kept specific.

Alternating between the logic-driven and the text-driven phases can be use-
ful for handling complexity and discovering the middle ground between informal
specifications and verification logic. This approach follows the notion of language
oriented programming [169], where identifying a high-level language to be used as
a middle ground between bottom-up and top-down programming breaks the sys-
tem design into two parts which can be handled separately. Similarly, we use the
CNL as a middle-ground between the original texts and the verification system.
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A consequence of this compromise is that the language will seldom be able to
cover the exact wordings used in the original texts. We accept this consequence
and aim instead to provide a user-friendly comparison of original text and CNL text
for traceability (see Section 5.5.1). The logic-driven design phase is exemplified for
our RailCNL in Section 5.3.1.

5.2.4 Concrete syntax

The abstract syntax is mapped into a natural language using the GF resource gram-
mar library (RGL), which is well-covered in the GF documentation and literature
(e.g. [145, 144]). Each category of the abstract syntax is mapped into a linearization
type, often a record data structure. For example, the Subject category of RailCNL
is assigned the complex noun (CN) record type, and Statement is assigned to ut-
terance (Utt).

A major motivation for formal CNLs is that they can be unambiguously parsed
as long as the language is restricted enough. Languages written using GF are often
restricted to a pre-compiled vocabulary, to be able to identify structure and han-
dle morphological variation. For our verification application, however, we need
users to be able to define new terms dynamically, e.g. class names, and afterwards
write statements using both built-in and user-defined terms. But allowing arbitrary
string tokens can introduce ambiguity, i.e. the parser returning many parse trees
for a single statement. We keep ambiguity under control through several means:

Type-level restrictions. The railway term “main signal” is the common way to
refer to a signal which is of type main. A straight-forward way to add such
modifying adjectives as a prefix to class names would be to add a constructor,
for example:

Adjective : String -> Class -> Class

This constructor can be used to add adjectives to any class, and with the result
of this operation also being a class. However, this approach would mean that
any amount of arbitrary words ending with a class name (which could also be
an arbitrary string) would be a valid parse. An undesired example is that the
subject “a main signal which has height 10m” could be parsed as the class “10m”
with six modifying prefix adjectives.
Usually, only one or two adjectives are prefixed to a class name. We can en-
code this restriction in the type system by separating the adjective-prefixed class
name from the non-prefixed one. We also add two adjective constructors, one
for adding an adjective and one for transforming the type BaseClass into Class
without prefixing an adjective.

StringClassAdjective : String -> BaseClass -> Class
StringClassNoAdjective : BaseClass -> Class
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In this way, we greatly reduce the ambiguity introduced by adding arbitrary
prefixed strings to class names. We use this approach for RailCNL a number
times, for example to add optional names to areas as described above.

Reserved keywords. Using arbitrary names as building blocks of our language
resembles the use of identifiers as variables in programming languages. Pro-
gramming languages have restricted keywords which cannot be used as variable
names. Similarly, we use the GF parser callbacks system to remove parses which
contain function words (such as “which”, “has”, “is”, “must”, “be”, etc.) as arbi-
trary names. These are very unlikely to be needed as class or property names.

Weighted constructors. The GF parser has support for probabilistic grammars,
which work by assigning weights (probabilities) to the constructors of the ab-
stract syntax. By assigning a low weight to any constructor which uses the
String category, we ensure that built-in syntax is always prioritized over arbi-
trary tokens.

Syntactic guides. As in programming languages, special symbols and punctuation
can be used as guides for the parser if we are willing to compromise on natu-
ralness. For example, in the following sentence we could use the curly brackets
to indicate a class name (now allowing any number of tokens), and the square
brackets could indicate placement.

Text: A {home main signal} should not be placed [in a tunnel].

For a human reader, if the meaning of the statement is preserved when ignoring
the brackets, the CNL can still be said to be readable as natural text.
Alternatively, we can increase the verbosity of the syntax, to reduce the likeli-
hood of causing ambiguity when embedded in a longer statement. Compare the
following examples:

Text: A signal of height 5.0m.
Text: A signal which has height which is equal to 5.0m.

The second one is less likely to cause ambiguity when embedded in a longer
statement. Adjusting the verbosity of the syntax is a method for making a trade-
off between naturalness/conciseness and potential ambiguity.

5.2.5 Vocabulary: static versus dynamic

If the full vocabulary of the language is known in advance, we can define constant
constructors which represent each atomic concept. In this case, the resource gram-
mar library provides functions for setting up the required morphological variations
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of lexical categories, for example by giving the stem and gender of a noun. How-
ever, we would like our CNL to be able to also define new terms and subsequently
construct statements using these new terms. This would imply that the vocabulary
is not static, and cannot be compiled in advance.

The most important lexical category for dynamic vocabulary would be nouns,
possibly composite nouns. Most of the morphological variation for these (in Nor-
wegian) would be given by their gender. A work-around for dynamic vocabulary
could be to encode the gender in the abstract syntax. This would allow natural and
consistent use of gender for noun added dynamically to the vocabulary, but this
technique ties the AST to the concrete language and could thus make it harder to
handle several concrete syntaxes.

To avoid excessive ambiguity caused by allowing arbitrary words in the gram-
mar, we can declare a set of keywordswhich should never be parsed in the arbitrary
names category. This is implemented in the Grammatical Framework’s runtime li-
brary as a callback function which disqualifies certain parses by examining the
arbitrary word.

Another work-around used in [82] is to write new vocabulary items back into
the GF source code for the language and recompile the GF grammar. We rule this
approach out for this project to avoid having to distribute the GF compiler and
Haskell runtime with our CAD tool (see Section 5.5).

5.2.6 Translation into the target logic formalism

If the abstract syntax is made to faithfully model the logic of the verification sys-
tem, then the translation into the logic formalism can be made by implementing
another GF concrete syntax for the target language. However, target logics are
often too low-level to represent regulations directly. GF incorporates dependent
type features which could allow for a more concise representation of this transla-
tion, but this practice has not yet matured to a state in which it can be said to be
a recommended practice (see [144]). For RailCNL we have instead written a sepa-
rate program (in C#, as it is a part of the verification CAD plugin) which translates
from the abstract syntax of the CNL into Datalog. Section 5.3.2 describes the main
techniques that we used for RailCNL.

5.3 RailCNL: a front-end language for railway verification

With RailCNL we aim to cover the following content (see Section 5.4 on page 119
for a detailed account of the coverage that we achieve):

1. Definitions of railway-domain terms from a set of basic terms given by the object
types present in the CAD program and the railML exchange format.
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⟨Statement⟩ ::= ⟨OntologyAssertion⟩
| ⟨OntologyRestriction⟩
| ⟨DistanceRestriction⟩
| ⟨PathRestriction⟩
| ⟨PlacementRestriction⟩
| (…) // Partial grammar

⟨OntologyAssertion⟩ ::= ⟨Subject⟩
⟨Condition⟩

⟨OntologyRestriction⟩ ::= ⟨Subject⟩
⟨Modality⟩ ⟨Condition⟩

⟨DistanceRestriction⟩ ::=
‘the distance from’ ⟨Subject⟩
‘to’ ⟨GoalObject⟩ ⟨Modality⟩
⟨Restriction⟩

⟨PathRestriction⟩ ::= ⟨PathQuantifier⟩
‘from’ ⟨Subject⟩ ‘to’ ⟨GoalObject⟩
⟨Modality⟩ ⟨PathCondition⟩

⟨PlacementRestriction⟩ ::= ⟨Subject⟩
⟨Modality⟩ ‘be placed in’ ⟨Area⟩

⟨Modality⟩ ::= ‘must’ | ‘shall not’
| ‘should’ | ‘should not’
⟨PathQuantifier⟩ ::= ‘all paths’
| ‘no paths’ | (…)
⟨PathCondition⟩ ::= ‘pass’

⟨DirectionalObject⟩
⟨GoalObject⟩ ::= ⟨DirectionalObject⟩
| ‘the first’ ⟨DirectionalObject⟩
⟨DirectionalObject⟩ ::= ⟨SearchSubject⟩
| ‘a facing switch’
| ‘a trailing switch’
| ⟨SearchSubject⟩ ⟨RelativeDirection⟩

⟨RelativeDirection⟩ ::= ‘same dir.’
| ‘opposite dir.’
⟨SearchSubject⟩ ::= ‘a’ ⟨Subject⟩
| ‘another’
⟨Area⟩ ::= ⟨BaseArea⟩
| ⟨BaseArea⟩ ‘which has’
⟨PropertyRestriction⟩

| ⟨Area⟩ ‘or’ ⟨Area⟩
| ⟨Area⟩ ‘and’ ⟨Area⟩
⟨BaseArea⟩ ::= ‘tunnel’ | ‘bridge’
| ‘local release area’ | ⟨Identifier⟩
⟨Subject⟩ ::= ‘a’ ⟨Class⟩
| ‘a’ ⟨Class⟩ ‘which’ ⟨Condition⟩
⟨Condition⟩ ::= ‘is a’ ⟨ClassRestriction⟩
| ‘has’ ⟨PropertyRestriction⟩
| ‘is a’ ⟨ClassRestriction⟩

‘which has’ ⟨PropertyRestriction⟩
⟨PropertyRestriction⟩ ::= ⟨Property⟩

⟨ValueRestriction⟩
| (…) // and/or

⟨ClassRestriction⟩ ::= ⟨Class⟩
| (…) // and/or

⟨ValueRestriction⟩ ::= ⟨Value⟩
| ‘not equal to’ ⟨Value⟩
| ‘less than’ ⟨Value⟩
| (…) // ≤, >, ≥
| (…) // and/or

⟨Value⟩ ::= ⟨Identifier⟩ | ⟨Number⟩
⟨Unit⟩

⟨Property⟩ ::= ⟨Identifier⟩
⟨Class⟩ ::= ⟨Identifier⟩

Figure 5.2: English version of RailCNL’s core grammar in BNF (GF notation shown
in Appendix 5.7). Some linguistic complexity such as subject-verb agreement is
ignored here; the actual grammar is fully specified as GF code, which is ideally
suited for handling such cases.
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Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties
based on railML

Railway layout
constraints

Generic
Domain-specific

Module
Dependency

Figure 5.3: Modules of the RailCNL (boxes) and their dependencies (arrows). The
generic modules could be reused when building CNLs for verification in other do-
mains. The specific modules are, however, tailored to railway regulations.

2. Regulations (from infrastructuremanager technical regulations⁴) which give obli-
gations or recommendations on the design of the railway infrastructure.

3. Expert knowledge given in textual form apart from official regulations, used to
gather and formalize engineering practice.

An English version of RailCNL’s core grammar is presented in Figure 5.2. The
full grammar is defined in GF (see Appendix 5.7 at page 134 for an excerpt of the
RailCNL grammar in GF notation), which has some advantages over classical BNF
parsers: (i) separation of abstract syntax and concrete syntax; (ii) resource gram-
mar library for natural languages, allowing us to compose sentences in natural
language while abstracting away from morphological details; (iii) modularity and
extensibility, which we need for evolving a domain-specific language alongside its
application; and (iv) tool support for managing text (editors, predictive parsing,
visualization).

RailCNL has been developed to support Norwegian language regulations. All
the examples presented below have been translated into English for the purpose of
presenting them here.

5.3.1 RailCNL modules and examples

RailCNL has a modular design (see Figure 5.3) where domain-specific constructs
are separated from generic ones. However, CNL modules are not always trivially
composable, and caremust be taken to retain naturalness while avoiding ambiguity

⁴Norwegian infrastructure manager Bane NOR’s regulations: https://trv.jbv.no/

https://trv.jbv.no/
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OntologyAssertion
: Statement

SubjectPropertyRestriction
: Subject

StringClass
: Class

signal

MkPropertyRestriction
: PropertyRestriction

StringProperty
: Property

type

Eq
: Restriction

main

ConditionClass
: Condition

StringClassAdjective
: Class

StringClassNeutrum
: BaseClass

main signala which has is a

Figure 5.4: The parse tree of the ontology assertion statement from Example 1.

when increasing the complexity of the language (as presented in Section 5.2). We
describe below themainmodules and constructs of RailCNL, with examples of CNL
text and the corresponding abstract syntax tree (AST) obtained from the GF parser.

5.3.1.1 Top-level statement types

Most normative sentences in railway regulations are classified into one of the fol-
lowing types, or their negation:

• Constraint: logical constraints on the railway infrastructure model. These sen-
tences can be used by the Datalog reasoner to infer new statements.

Example 1 (Parse tree for a constraint statement).
CNL: A signal which has type main is a main signal.
AST:
OntologyAssertion
(SubjectPropertyRestriction
(StringClass ”signal”)
(MkPropertyRestriction (StringProperty ”type”)

(Eq (MkValue
(StringTerm ”main”)))))

(ConditionClass (StringClass ”main_signal”))

• Obligation: design requirements on the railway infrastructure. The CAD model
is checked for compliance, and violations are presented as errors to the user.
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Example 2 (Parse tree for an obligation statement).
CNL: A vertical segment must have length greater than 20.
AST:
OntologyRestriction Obligation
(SubjectClass (StringClassGen1 ”vertical segment”))
(ConditionPropertyRestriction

(MkPropertyRestriction (StringProperty ”length”)
(Gt (MkValue (StringTerm ”20”)))))

• Recommendation: design heuristics for railway infrastructure. The CAD model
is checked for compliance, but violations are presented as warnings or for infor-
mation only, which can be dismissed from the view.

Example 3 (Parse tree for a recommendation stmt.).
CNL: A switch should be placed on a straight segment.
AST:
PlacementRestriction Recommendation
(SubjectClass (StringClass ”switch”))
(SingleArea (NoRestrictionArea

(NonSpecificArea
(MkNamedArea ”straight segment”))))

5.3.1.2 Generic ontology module

Statements about classes of objects and their properties form a natural basis for
knowledge representation. We allow arbitrary string tokens to represent class
names, property names and values, and compose these in various ways.

• Class names: are arbitrary words, optionally prefixed with another arbitrary
word. The reason for allowing this is to give the CNL the power to define new
words. As an example, we define “railway object”:
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Example 4 (Parse tree for using class names).
CNL: A signal is a railway object.
AST:
OntologyAssertion
(SubjectClass (StringClassNoAdjective

(StringClassNeutrum ”signal”)))
(ConditionClassRestriction
(MkClassRestriction (StringClassAdjective ”railway”

(StringClassNeutrum ”object”))))

• Properties and values: can be arbitrary string tokens. These can be joined by
“and” or “or” both on the level of values and of properties.

Example 5 (Parse tree using properties and values).
CNL: A project which is a new construction should have quality normal or high.
AST:
OntologyRestriction Recommendation
(SubjectCondition (StringClassNoAdjective

(StringClassNeutrum ”project”))
(ConditionClassRestriction
(MkClassRestriction
(StringClassAdjective
”new” (StringClassNeutrum ”construction”)))))

(ConditionPropertyRestriction
(MkPropertyRestriction
(StringProperty ”quality”)
(OrRestr (Eq (MkValue (StringTerm ”normal”)))

(Eq (MkValue (StringTerm ”high”))))))

• Restrictions: Equality (shown as Eq in the AST example above) is a common case
of restriction for which we simply choose the wording “to be”. Other restriction
types such as greater than (Gt), less than (Lt), etc. are worded more verbosely.
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Example 6 (Parse tree using restrictions).
CNL: A main signal should have height which is greater than 1.5m and less
than 5.0m.
AST:
OntologyRestriction Recommendation
(SubjectClass (StringClassAdjective

”main” (StringClassNeutrum ”signal”)))
(ConditionPropertyRestriction (MkPropertyRestriction

(StringProperty ”height”)
(AndRestr (Gt (MkValue (StringTerm ”1.5m”)))

(Lt (MkValue (StringTerm ”5.0m”))))))

• Relations: the basic ontology module contains multiplicity restrictions on re-
lations. In the layout module presented below, we will see how relations are
used when writing statements which are concerned with more than one object
simultaneously.

Example 7 (Parse tree using relations).
CNL: A distant signal should have one or more associated signals.
AST:
OntologyRestriction Obligation
(SubjectClass (StringClassAdjective

”distant” (StringClassNeutrum ”signal”)))
(ConditionRelationRestriction ManyRelation
(StringClassAdjective ”associated”
(StringClassMasculine ”signals”)))

5.3.1.3 Layout module

For writing statements about the topology of the railway track, e.g. about paths as
illustrated in Figure 5.5c, we use the following language constructs:

• Goal object: modifies the Subject type defined in the ontology module to add
conditions which make sense in a railway graph search, such as the object’s ori-
entation (same direction or opposite direction) the search’s direction (forwards
or backwards) or the termination properties of the search.

• Path condition: argument to the search constructors which specifies what re-
strictions are placed on the paths from source to goal object.

• Path restrictions: the combination of the source object, goal object and path
conditions. (See Figure 5.5a)
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Example 8 (Parse tree using path restriction).
CNL: All paths from a station border to the first facing switch must pass an
entry signal.
AST:
AllPathsObligation (SubjectClass

(StringClassAdjective ”station”
(StringClassMasculine ”border”)))

(FirstFound FacingSwitch)
(PathContains (AnyDirectionObject (AnySearchSubject

(SubjectClass (StringClassAdjective ”entry”
(StringClassNeutrum ”signal”))))))

• Distance restrictions: See also Figure 5.5b.

Example 9 (Parse tree using distance restriction).
CNL: The distance from an entry signal to the first facing switch must be greater
than 200m.
AST:
DistanceObligation (SubjectClass (StringClassAdjective

”entry” (StringClassNeutrum ”signal”)))
(FirstFound FacingSwitch) (Gt (MkValue (StringTerm ”200m”)))

5.3.1.4 Area module

The area module modifies subjects to express whether they are inside a planar area,
such as station areas, tunnels or bridges, or belongs to a linear segment of a track,
such as being located in a curve or on an incline (see Figure 5.5d).

• Subject constructor: the Subject is extended to add a prepositional phrase con-
taining area information, such as being inside of a tunnel or on a bridge.

• Placement restriction: extends the constructors for the type OntologyRestriction
to allow restrictions on object being inside areas.
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(a) Path restrictions are constructed from a subject, a goal, a quantifier and a con-
dition.

200 m
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(b) Distance restrictions are constructed from a subject, a goal, and a value restric-
tion.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defining a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can refer to either a planar region or an interval on a track.

Figure 5.5: Conditions on railway geographical layout as supported by RailCNL.
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Example 10 (Parse tree using areas).
CNL: A main signal should not be placed in tunnel or bridge.
AST:
PlacementRestriction NegativeRecommendation
(StringClassAdjective ”main” (StringClassNeutrum ”signal”))
(MkArea (OrArea (SingleAreaConj (NoRestrictionArea

(NonSpecificArea TunnelArea)))
(SingleAreaConj (NoRestrictionArea

(NonSpecificArea BridgeArea)))))

5.3.1.5 Signalling layout regulations

• Running times: a variation on the distance restriction is to use running time
(travel time) from one place to another. These are used as heuristics for the
control system’s performance. This running time can be, e.g., nominal speed (al-
lowable speed) ormaximum dynamic time (maximum speeds taking acceleration
and braking into account).

Example 11 (Heuristic for axle counter placement. ).
CNL: Running time at nominal speed from an axle counter to an adjacent axle
counter must be less than 25s.
AST:
RunningTimeObligation NominalSpeed
(SubjectClass (StringClassAdjective ”axle”

(StringClassMasculine ”counter”)))
(AnyFound (AnyDirectionObject SubjectOtherImplied))
(Lt (MkValue (StringTerm ”25s”)))

5.3.2 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, ASTs obtained by parsing CNL
phrases with the GF runtime are transformed into Datalog rules. Each top-level
constructor in the CNL definition has a translation function into the Datalog AST.

Predicate conventions. We employ the following predicate conventions:
• Class membership as classname(object).

• Object properties as propertyname(object, value).

• Relation between objects as relationname(object,otherobject).
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Explicit variables. The Subject of the sentences of the Ontology module defines
an arbitrary individual whose definition does not depend on other information. To
translate it, we create a new variable denoting the arbitrary individual.

Example 12 (Datalog translation of a subject constructor).
CNL: A signal which has height 4.5m
Datalog: signal(X), height(X, 4.5).

The subject is the starting point for the translation, as other parts of the phrase
refer back to the subject. In the following example, we first process the SubjectCondition
part of the sentence (“A signal which has height 4.5m”), find a fresh variable name
for it, and then process the consequent (“is a tall signal”), which implicitly refers
to the subject (“X”).

Example 13 (Datalog translation using implicit variable reference).
CNL: A signal which has height 4.5m is a tall signal.
AST:
OntologyAssertion (SubjectCondition

(StringClassNoAdjective (StringClassNeutrum ”signal”))
(ConditionPropertyRestriction
(MkPropertyRestriction
(StringProperty ”height”)
(Eq (MkValue (StringTerm ”4.5m”))))))

(ConditionClassRestriction
(MkClassRestriction (StringClassAdjective ”tall”

(StringClassNeutrum ”signal”))))
Datalog: tall_signal(X) :- signal(X), height(X, 4.5).

Ontology assertions. As seen in the previous example, translations of ontology
assertions take the subject, construct a rule body from it, then take the consequent
condition, and create a rule head containing a rule head from it. As Datalog allows
only single predicates as rule heads, this means that we cannot write assertions
which imply disjunctions. For example, the following text can be parsed by our
CNL parser, but not translated to Datalog.
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Example 14 (Ontology assertion which would result in disjuntive head and is
thus not expressible in Datalog).
CNL: A signal has height 4.0m or 4.5m.
AST:
OntologyAssertion (SubjectClass (StringClassNoAdjective

(StringClassNeutrum ”signal”)))
(ConditionPropertyRestriction (MkPropertyRestriction

(StringProperty ”height”)
(OrRestr (Eq (MkValue (StringTerm ”4.0m”)))

(Eq (MkValue (StringTerm ”4.5m”))))))

This limitation corresponds to the theoretical restrictions on Datalog. Allowing
such sentences is the defining characteristic of a Datalog extension called Datalog
with disjunctive heads, which has higher computational complexity than plain Dat-
alog. For example, three-colouring of a graph would be expressible in Datalog
with disjunctive heads. Note that merely checking that all signals have height ei-
ther 4.0m or 4.5m is certainly expressible in Datalog, and is covered by ontology
restrictions.

Ontology restrictions. For ontology restrictions, such as obligations (“must”)
and recommendations (“should”), the Datalog rule head contains a predicate which
captures any violations of the text. This is achieved by first defining the restrictions
themselves (r1_found in Example 12 below) and then declaring a rule which uses
the negation of these restrictions (!r1_found) in order to yield a counter-example.

Example 15 (Datalog translation of an ontology restriction).
CNL: A signal must have height 4.0m or 4.5m.
AST:
OntologyRestriction Obligation
(SubjectClass (StringClassNoAdjective

(StringClass ”signal”)))
(ConditionPropertyRestriction
(MkPropertyRestriction (StringProperty ”height”)

(OrRestr (Eq (MkValue (StringTerm ”4.0m”)))
(Eq (MkValue (StringTerm ”4.5m”))))))

Datalog:
r1_found(Subj0) :- signal(Subj0), height(Subj0, 4.0).
r1_found(Subj0) :- signal(Subj0), height(Subj0, 4.5).
r1_obl(Subj0) :- signal(Subj0), !r1_found(Subj0).
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Disjunctive normal form. As Datalog does not necessarily have an or operator,
nor negation over complex terms, these must be factored out into separate rules
and auxiliary predicates. This transformation can be performed by considering the
result of the translation of a sentence to be a set of rules (such as the two definitions
of r1_found in Example 12), and the result of the partial translation (such as adding
a class or property constraint to a rule) to be a set of conjunctions which are prefixes
of the final rules.

Vocabularymatching. TheNorwegian regulations are written in Norwegian and
use other terms for class names, properties and relations than the railML represen-
tation does. After identifying the class names from the CNL, they will be looked up
in a Norwegian/railML dictionary. For example, Norwegian “akselteller” is mapped
into the railML class “trainDetector” with the “axlecounting” property.

Simplifications and optimizations. Creating Datalog rules for layout proper-
ties requires reasoning about paths and distances of a directed graph. We start
from a relation describing edges of the graph, from e1 to e2 with distance d is
next(e1, e2, d). It could be possible to define general connected and distance pred-
icates, as we have used in Chapter 2. However, this can become inefficient, espe-
cially if using a bottom-up materializing Datalog solver, which would then compute
the transitive closure of the whole graph and distances of all paths in the graph.
For a single design concerning a small to medium-sized train station, this might be
acceptable as verification procedure, but to achieve our goal of on-the-fly verifica-
tion and large-scale verification of railway lines spanning many stations, or even a
whole national network, we must ensure that rules can be localized. For example,
specifying minimum distances between objects (such as the minimum separation
of 21.0m for train detectors) should not lead to calculation of distances between all
pairs of train detectors.

qstart qend

home_main_signal(a)
next(a, _, l)

qstart(a, b, l1)
¬facing_switch(b)

next(b, c, l2)
Σl < 250.0

qstart(a, b, l)
facing_switch(b)

Figure 5.6: Datalog rules used to execute the distance search from “home main
signal” to “first facing switch”.
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To achieve a local search, we avoid the global distance and connected predi-
cates, and use instead the underlying next relation directly when translating the
CNL to Datalog. We think of the search as a state machine with one Datalog rule
corresponding to each state, see Figure 5.6. One or more searching states are recur-
sively defined to create a transitive closure of the next relation, guarded by distance
conditions, path conditions, etc. Finding the search goal, under the given condi-
tions, leads to an accepting state, which is a relation containing the violation of the
specification given in the text.

Example 16 (Datalog distance search).
CNL: The distance from a home main signal to the first facing switch must be
greater than 250.0m.
AST:
DistanceRestriction Obligation (SubjectClass

(StringClassNoAdjective (StringClassNeutrum
”home_main_signal”)))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm ”250.0m”)))

Datalog:
r1_goal(Goal0) :- switch(Goal0).
r1_start(S0,E,D) :- signal(S0), next(S0, E, D).
r1_start(S0,E,D) :- r1_start(S0, M, D0), next(M, E, D1),

D=D0+D1, D < 250.0, !rule1_goal(M).
r1_end(S,E,D) :- r1_start(S,E,D), rule1_goals(E).

Inlining. Simple instances of OntologyRestriction statements can often be
written as a single rule. However, the general translation procedure splits this up
into finding correct instances (predicate name ending in “found”), and a separate
rule identifying the same objects with a negation of the found rule (predicate name
ending in “obligation” or “recommendation”). Whenever the found predicate has
only a single atom which is different from the obligation/recommendation rule,
then it can be inlined into the same rule.
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Example 17 (Inlining).
CNL: A sign should have angle to the track tangent which is greater than 94◦.
Datalog:
sign_found(Subj0) :- sign(Subj0), tangent(Subj0, Val2),

Val2 > 94.
sign_recommendation(Subj0) :- sign(Subj0), !sign2_found(Subj0).

After performing inlining simplification we get instead:
Datalog:
sign_recommendation(Subj0) :- sign(Subj0), tangent(Subj0, Val2),

Val2 >= 94.

5.4 Evaluation ofRailCNL coverage ofNorwegian regulations

Table 5.1 is based on an analysis of phrases from a selection of technical regulations
from Norwegian infrastructure manager Bane Nor (https.//trv.banenor.no/).
Content from regulations concerning the engineering disciplines of railway tracks
and signalling were selected for the evaluation because they were the focus of the
RailCOMPLETE development, and as suchwas the domains for which the company
had available expertise. (See Appendix 5.8 at page 135 for representative examples
and Appendix 5.9 for a comprehensive overview of the Norwegian technical regu-
lations that we worked with.)

Each sentence or table cell of the original text was classified according to the
following:

1. Sentence type:classifying the sentence into formalities (headings, captions, etc),
meta (describing the text), applicability (declaring scope, referring to other sec-
tions, etc.), normative (considered relevant for translation to RailCNL), or other.

2. Discipline: identifying whether phrases were belonging to another discipline
than what the chapter heading had declared.

3. Stage: identifying whether the phrase was relevant for the planning stage of a
railway construction project, excluding e.g. generic construction or operation
statements.

4. Static checkability: for normative statements relevant for planning, there is
also the possibility that they do not fit into the layout and specification part of
the planning, thus not being suitable for static infrastructure verification. This
is most notably the case for railway interlocking (control system) regulations,
where statements about the dynamic behaviour of the control system (concern-
ing e.g. latency, timeouts, and state) are typically not part of the station-specific
specification, and are not relevant for static infrastructure verification.

https.//trv.banenor.no/
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Eng. disc. Chapter title Phrases Normative Relevant Covered Coverage
Track Planning: general techn. 140 74 74 70 95%
Track Planning: geometry 278 157 152 119 78%

Signalling Planning: detectors 144 106 35 21 60%
Signalling Planning: interlocking 376 265 130 81 62%
Total 938 602 391 291 74%

Table 5.1: Coverage evaluation for a subset of Norwegian regulations. Phrases of
the original text which could be classified as normative (i.e. applying some restric-
tion on design) were evaluated for relevance to static infrastructure verification.
The coverage is the percentage of relevant phrases expressible in RailCNL.

Table cells from the regulations were considered separate phrases, e.g. a num-
ber in a table cell was re-phrased as a self-contained CNL statement using infor-
mation from the row and column headers. Phrases that were reasonably naturally
expressible in RailCNL (either straight-forwardly in the basic logic, or after adding
appropriate domain-specific constructs), were counted as covered. The results are
detailed in Table 5.1.

5.5 Tool integration

There are three ways of making use of a CNL for participatory verification.

Reading is the most simple to implement, but offers least benefits. For participa-
tory verification purposes, only allowing an engineer to read in natural language
the verification properties that the verifier works with is already valuable as it
establishes trust in the opaque verification mechanisms. Moreover, using the
CNL would shield the engineer from various logical formalisms that are used by
complex processes like formal verification or certification. In Section 5.5.1 we
show how using RailCNL only in a reading mode allows us to provide real help
to the engineer in understanding the errors reported by our verification engine
in a way that the engineer can make sense out of.

Template Editing, as a limited tool-support for editing phrases, would offer simple
forms of editing, in addition to all the reading benefits. Changing a numerical
value or changing words by selecting from a list of choices is easy to do and
easy to understand for users, without requiring full understanding of the formal
grammar behind the structure of the phrase. In the railway domain, the national
regulations change seldom, and when they do, it is often enough to do only
simple changes, e.g., when a new speed limit is imposed we only need to change
a number. Besides being useful to regulators, template editing can also be used
by engineers in companies to adjust regulations or properties that their specific
designs need (maybe only temporarily, like for debugging purposes).
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CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringClassMasculine 
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValue (StringTerm "21.0m")))

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End, Dist), Dist < 21.0.

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its 
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.

Figure 5.7: Tracing of requirements backwards from CAD program through CNL
to marked-up original texts. From a regulation violation presented as a warning
or error, the user can browse to the corresponding regulatory text, shown side by
side with the CNL text.

Writing and editing phrases allows the CNL to be used at its full potential, but de-
veloping an editor which allows a user to edit phrases without having a thorough
understanding of the formal CNL grammar is a challenge. Section 5.5.2 presents
the many difficulties and features of CNL editors. Model-checking is not only
useful for verifying compliance with regulations, but more importantly engi-
neers would like to add ’rule-of-thumb’ properties which they normally abide
by when making new designs. These are usually considered valuable and pro-
prietary for a company. The RailCNL editor that we present in Section 5.5.3 is
meant to allow railway engineers to write properties in their natural domain
language which can be verified by our engine, so that their know-how is kept
in-house, without the need for an external expert (in verification).

5.5.1 Traceability support in RailCNL

Verification tools usually output a counter-example when the requirements are vi-
olated by the model. It is often difficult to understand from the counter-example
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Original text
marked up with

labels

==General==
a) <label id=”detector_1”> No detection section

shall be shorter than 21 meters. </label>
b) No dead zones shall be longer than 3 meters.

CNL properties
with references

to labels

<rule class=”static-infr-datalog”
textref=”detector_1”>

<RailCNL> The distance from an axle counter
to another must be greater than 21.0m.
</RailCNL>
</rule>

Figure 5.8: Excerpt of original text marked-up with sentence identifiers, and prop-
erties represented in CNL with references to original text.

which of the (possibly several) requirements have been violated, and why. We use
the notion of tracing to trace such errors from the verification output all the way to
the original text regulations. Figure 5.7(top) shows our prototype tool (running as a
plug-in for the AutoCAD program used by Norwegian railway engineers) present-
ing a problem in the CAD view. Figure 5.7(middle) shows how the error message
can be traced back through the Datalog code, the AST, and the CNL code, to the
original, highlighted, regulations text Figure 5.7(bottom).

We mark-up sentences of the original text with an identifier, and create a sepa-
rate document containing the formalized representation using RailCNL, using the
identifiers as references back into the original text (Figure 5.8). When the verifi-
cation program finds a violation among the regulations, it outputs the identifier of
the rule that has been violated, enabling the tracing.

When producing new regulatory texts or writing down expert knowledge for
which a CNL exists, the approach of embedded controlled language [142] can be
used to create natural texts where some sentences are directly parsable into verifi-
cation properties. The other parts of such a text is then considered to be comments
or explanations, similar to the programming approach known as literate program-
ming.

5.5.2 An overview of CNL editors and their features and properties

While a CNL is usually designed to be easy to read without any prior training, the
process of writing in a restricted language is less straightforward. In order to write
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in CNL, users need to be able to construct phrases which are correct with respect
to the particular syntactic restrictions of that language, and which moreover have
the intended meaning.

A CNL that presents itself as user-friendly may not expect that its users are
willing to study its rules thoroughly before attempting to compose something in
that language. This poses a challenge: the user wants to compose a phrase which is
structurally correct, yet without having to know the rules governing that structure,
or even seeing the underlying structure at all. This challenge is often aided by some
software interface or tool designed specifically to help the user construct phrases
which are valid in the particular CNL. We refer to such tools generally as CNL
editors.

In this section, we give an overview of the state of the art in this area and
compare the features of various CNL editors found in the literature. This section
is useful to understand the choices that we made when developing the RailCNL
editor presented in Section 5.5.3.

Whenwe talk about CNL editors, we are implicitly assuming that the goal of the
CNL in question is formalization, and thus that there exists some formal definition
of the CNL itself, along with a parser. Therefore, we will not consider CNLs that
have not been formalized or for which no parser exists.

There are two predominant paradigms to CNL editing:

• Structural editing: where the user is building a formal representation (generally
a tree) in a structural way, prevented from going outside the bounds of the CNL.

• Surface editing: where the user is inputting text, with varying degrees of guid-
ance from the editor, which eventually needs to be checked for conformity.

These can be seen as the opposite ends of a spectrum where most CNL editors out
there can be placed neatly at either end, while only a few fall in between.

This distinction goes back to [170], who outline the design issues that arise
in the construction of language-based editors. Even though [170] treats primarily
programming languages and not CNLs, many of the ideas discussed there are quite
relevant to CNL editing:

“The assumption that all users are willing and able to think exclusively
in tree terms is clearly false. In practice, many users have a pluralistic
view of the programs they manipulate, seeing them sometimes as tree
structures, sometimes as symbol sequences, and sometimes as character
texts.”

The authors put forward the idea of pluralistic editors, which should support editing
on these different levels of abstraction. These ideas are not surprising, and seem to
serve as the basis for most of the CNL editors we have seen.
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5.5.2.1 Structural editing

The idea of structural editing for programming languages goes back at least to
Mentor [48] and the Cornell Program Synthesizer [162]. These early editors were
based on the philosophy that since programs are not text, it does not make sense to
treat them as such. “They are hierarchical compositions of computational structures
and should should be edited, executed, and debugged in an environment that consis-
tently acknowledges and reinforces this viewpoint.”[162]. These programming tools
put the underlying structure of the language very much in focus, minimizing the
role of their text-based concrete syntax. This demands full understanding by the
user of the language’s grammar. While this idea did not really catch on for main-
stream programming languages (which are still very much written and debugged
using text-based formats) it still comes up in a number of CNL editors, in various
guises. Scott and Power [136] introduce the idea of WYSIWYM editing (What You
See Is What You Meant) for multilingual authoring, where users edit on the level
of semantic representation, in their case a knowledge base, which is linearized into
“feedback texts” in multiple languages for the user during the editing phase.

This idea is also mirrored in the syntax tree editing tools for CNLs defined using
the Grammatical Framework [141] of which there are a few different implementa-
tions [90, 117, 29]. In these editors the user is directly building a tree in a top-down
fashion by choosing the functions to be used at each node. The partial tree can
be immediately linearized in multiple languages while the user works, including
holes for yet unspecified nodes. Sub-trees can be inserted by parsing free text, but
no guidance is provided to the user at this stage; the parse either succeeds or fails,
and ambiguities must be fixed manually.

Ljunglöf [101] proposes the use of interactive tree building for dialogue man-
agement. The general idea is that a tree is built by asking questions to the user and
then the tree is refined based on the responses obtained, filling in the missing holes
until a complete tree is obtained. There is however no concrete tool associated with
this work.

5.5.2.2 Structured surface editing

This class of editors comes somewhere in between the two major extremes de-
scribed above. They are structural in the sense that you are directly building a tree
and cannot stray outside the CNL, but they are also surface-based because the user
is interacting with the editor on the surface string level, not necessarily seeing the
underlying structure at all.

5.5.2.2.1 Menu-based input. Within this class, a number of editors tend to use
similar user interface components, in particular the ideas of templates with holes
which are filled by selecting completions from some kind of menu. An early ex-
ample of this idea can be found in [163], which continued into various other works
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including NLMenu [164], ROSY [17], and MenuGen [69], which all follow more or
less the same ideas. The authors of [167] discuss a general architecture of a menu-
based input system for a multilingual translation systems, underlining the benefits
of menu-based input for avoiding user input error.

The authors of [68] coined the termConceptual Authoring for their input system
for building database queries. Continuing this menu-based idea, their interface
replaces the traditional query-writing as plain text with a set of templates with
holes which are filled using menus. All editing operations are defined directly
on an underlying logical representation, governed by a predefined ontology. The
method avoids the problems associated with parsing, and is particularly well suited
for query interfaces to closed-domain systems.

Similarly, the Phrasomatic editor⁵ is a web-based interface for multilingual CNL
phrases, powered by GF grammars. It has a distinctlymenu-driven approachwhere
the kinds of phrases one can write are pre-determined, and the user’s task is to fill
slots from the existing lexicon. The interface is hard-coded to be grammar-specific,
in the sense that it is not generated by the grammar alone. This approach makes
sense for small languages where the number of possible choices at each point is
small, and there is no benefit to be had by allowing free-text input.

A slightly different approach within this class of editors is the MUSTE editor⁶
[102], which is an experiment in keyboard-free structural editing on the surface
level, where the tree is not revealed to the user. There is no text input at all, instead,
the user edits an existing phrase by clicking words to show possible replacements.
Clicking multiple times changes the scope currently under focus, extending from
words to sub-phrases, and allowing potentially any sub-tree to be edited in accor-
dance with the underlying grammar. It is an experiment in editing techniques and
does not scale to larger CNLs.

5.5.2.2.2 Blocks and frames. Some editors are based on the concept of blocks
which fit together and reveal the underlying structure of the text. The Blockly
project⁷ provides a UI library for building such kinds of interfaces. It is mainly
promoted as an educational tool for teaching people to understand the structure
behind programming languages. Colour-coding and visual connectors are used to
give some type information, for example distinguishing between statements and
expressions. Alice⁸ is a programming environment for creating animations and
program simple games in 3D, which uses an editor based on this block-based in-
terface.

In a similar fashion, the ATTAC-L editor [166, 44] uses ”bricks” as the basic
building blocks of its language, which can be pieced together and which reveal

⁵http://www.phrasomatic.net/ by Michal Boleslav Měchura in 2011.
⁶“MUSTE: Multimodal semantic text editing” by Ljunglöf, Peter. https://heatherleaf.github.

io/muste/
⁷https://developers.google.com/blockly/
⁸“Alice — Tell stories. Build games. Learn to program.” http://www.alice.org/

http://www.phrasomatic.net/
https://heatherleaf.github.io/muste/
https://heatherleaf.github.io/muste/
https://developers.google.com/blockly/
http://www.alice.org/
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a lot of the structure behind the CNL. The representation which the user works
with ends up as some kind of tree-like structure combined with snippets of text
embedded in it.

The idea of frame-based editing introduced in [96] also falls within this class,
and aims to combine the advantages of block-based and text-based editing systems
for programming languages. In essence, they propose a text-editing interface with
additional visual markups to aid understanding, and template-and-menu editing
of code to reduce syntax and type errors. The focus of this work is programming
languages, and to our knowledge their approach has not been applied to CNLs.

5.5.2.3 Surface editing

By surface editing, we mean that the user is composing input phrases rather than
constructing them from menus. This allows more freedom of input and the user
may construct incorrect phrases which will later get rejected by the CNL parser.

The most basic kind of surface editor can be seen as a typical parser which
allows arbitrary input but returns an error when it is not syntactically correct. This
is familiar to us from the world of programming languages, and any CNLwhich has
a parser written for it can provide this functionality. The quality and helpfulness
of the supplied error messages can of course vary greatly, which directly impacts
the user experience.

To improve on this, most CNL editors provide some kinds of cues to guide
the user in the direction of writing something correct. The standard paradigm
here is that of sequential left-to-right textual input with suggested completions
for every word or phrase. The completions themselves may often be categorized
and/or sorted in some way.

One such example is the WebALT project’s WExEd tool for designing multi-
lingual mathematics exercises, which uses TextMathEditor for input of individ-
ual phrases [37]. The input language here is a multilingual CNL for mathematics,
which converts phrases into objects in the OpenMath formalism.

Attempto Controlled English (ACE), one of the best known modern CNLs, also
has a few different editors for it which all follow this paradigm [95, 91, 85]. They
provide predictive text editing where completions are split into ’function word’,
’proper name’, ’verb’, ’variables’, ’nouns’, etc. along with some pop-up warnings
when the user enters something incorrect. The editor has undergone a usability
study [92], and the project itself has even produced a grammar notation for CNLs
focusing on predictive editors and anaphora [93].

The GF runtime also provides incremental parsing, which has been used to cre-
ate various predictive editors. The standard example of this interface is the Mini-
bar⁹, which has been used in various other applications (for example [30, 28, 31]).

⁹Minibar by Thomas Hallgren: http://cloud.grammaticalframework.org/minibar/minibar.
html

http://cloud.grammaticalframework.org/minibar/minibar.html
http://cloud.grammaticalframework.org/minibar/minibar.html
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Other CNL editors which also follow this paradigm include the ECOLE edi-
tor [151] for the PENG language, and its web-based successor for PENGASP [67].
These editors include the ability to add out-of-vocabulary (OOV) words, support
for anaphora across different phrases, and completions sorted by category in drop-
down menus. The Ask Data Anything editor [152] uses a similar approach for al-
lowing users to write complex database queries in a customCNL.The editor also in-
cludes some automatic correction of erroneous input using fuzzy matching, rather
than strictly preventing incorrect user input.

The KANTOO controlled language checker [113] is an editor for the KANT
Controlled English (KCE) which takes a prescriptive approach: rather than forcing
user input to be correct with respect to the CNL, the user is allowed free text input
and is then given diagnostic information suggesting what can be improved, such
as missing constituents, punctuation, or incorrect coordination between phrases.

This approach is also taken in the MuTUAL editor [115], designed for assisting
non-professional writers in creating Japanese texts that conform to a set of writing
rules for enabling translation to English. The tool allows free text input, detecting
problems in the source text in real-time and providing diagnostic messages for
interactive rewriting. The editor uses highlighting to indicate rule violations and
prescribed terms, provides suggestions for alternate expressions and shows the
CNL rules to aid users in making their text conformant. The tool also comes with
an extensive user evaluation [114].

5.5.2.4 Search-based editing

In search-based editors the user inputs free text, but rather than being fed to a
parser, this input is used to search for closely matching phrases within the CNL.

Thework of [4] generates phrases from aCNL grammar, and combines this with
a full text search engine. The advantage is that text-based search is well studied
and one can use off-the-shelf search engines like Apache solar. However having
to exhaustively generate phrases from a CNL can still be a bottleneck when the
language is non-trivial in size, or even infinite as in our case.

In [143] it is presented a more advanced approach where instead of relying on
exhaustive generation and a text search engine, phrases from both the input and the
CNL are represented as vectors with infinite dimensionality. By considering only
the non-zero elements, which are finite in number, closeness between input and
valid CNL phrases can then be computed using cosine similarity. While this has
been shown to work well on small CNL grammars, scalability is a problem because
of the large number of comparisons which need to be made when searching for
matches.
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🚂🚃 RailCNL editor 🚃🚃

>

PlacementRestriction

CloseSubject

StringClassNoAdjective StringProperty
Gt

NegativeRecommendation MkArea

et skilt som har høyde som er større enn 4.5m bør ikke være plassert i tunnel.

⇄ Modality
NegativeObligation (0)
Obligation (0)
Recommendation (0)

Figure 5.9: Example from the RailCNL phrase editor demonstrating the menu for
substituting constructors.

🚂🚃 RailCNL editor 🚃🚃

>

OntologyRestriction

CloseSubject

StringClassNoAdjective

Recommendation

MkConsequent

MkConsequent

StringProperty
Gt

MkArea

et signal bør ha høyde som er større enn 3.9m i tunnel

⇤ Merge chunks
AreaChunk into StatementChunk

Figure 5.10: Example from the RailCNL phrase editor demonstrating the menu for
merging chunks.

5.5.3 An editor for RailCNL

Taking clues from several of the approaches for building CNL editors described in
Section 5.5.2, we developed an editor for Grammatical Framework languages with
the specific use case of having railway regulations written by railway engineers
using RailCNL. ¹⁰. The figures in this section are actual screen-shots from the editor,
and the input texts are therefore not translated into English.

The RailCNL editor consists of a text input field containing the phrase which
is being edited. There are no restrictions on the input to the text field, so the
phrase can be empty, unparsable, partially parsable, or fully parsable. Whenever
any change is made to the text, the parser will re-evaluate the text and update a
drop-down menu and a partial parse tree visualization. The editor is thus mainly
a surface editor (as described in Section 5.5.2.3), specifically an unrestricted text
editor like mainstream programming language editors, but with two menu-based
features: (1) a drop-down list giving menu choices relevant for the current text
phrase and cursor position, and (2) a partial visualization of the parse tree where
selected abstract syntax node types are drawnwith a given a colour above or below
the text input field. The drop-down menu may be compared to the auto-complete

¹⁰RailCNL editor prototype demo: https://luteberget.github.io/ControlText/

https://luteberget.github.io/ControlText/
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feature of mainstream programming editors, while the partial parse tree visualiza-
tion can be seen as a hybrid between a full parse tree visualization and the kind of
syntax highlighting used in mainstream programming editors.

The interaction between the text input, drop-downmenu, and tree visualization
works as follows:

• Menu choices exist for any concrete words which are grammatically correct to
insert at the current position. This works similarly to the auto-complete fea-
ture of mainstream programming editors, and the choices are supplied by the
predictive parsing capability of GF.

🚂🚃 RailCNL editor 🚃🚃

> et 
signal
for

✦ Statement
DistanceRelationRestriction
DistanceRestriction
OntologyAssertion
OntologyRestriction
PathObligation
PlacementRestriction
RelatedObjectsToRelatedObjects
RelationDefiningPath
RelationPathRestriction

✦ Subject
CloseSubject
SubjectArea

✦ GoalObject
AnyFound
FirstFound

✦ ConsequentCondition
MkConsequent

✦ Area
MkArea

✦ RelationMultiplicity
ExistsRelation
ManyRelation
OneRelation

✦ Property
C l P

• If the parsing has failed, and there is no top-level constructor of the parse tree,
themenuwill contain suggestions to insert constructor. When the text is empty,
this part of the menu will suggest all top-level constructors, giving an overview
of possible sentence structures. If the user chooses to insert constructors for
which not all arguments are available in the current set of chunks, the smallest
tree that has the required type is then constructed.

>
signal
ingen
et
en
ei
avstanden
alle
all

✦ Statement
DistanceRelationRestriction
DistanceRestriction

alle
all

✦ Statement
DistanceRelationRestriction
DistanceRestriction
OntologyAssertion
OntologyRestriction
PathObligation
PlacementRestriction
RelatedObjectsToRelatedObjects
RelationDefiningPath
RelationPathRestriction

✦ Subject
CloseSubject

• When the parser has provided a full or partial parse tree, then a partial parse
tree visualization is performed by consulting a list of selected types in the parse
tree which are drawn as curly braces over the relevant part of the text using the
bracketed linearization capability of GF. This allows the users to see while they
are typing, what the parser is able to recognize.
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🚂🚃 RailCNL editor 🚃🚃

>

OntologyAssertion

CloseSubject

StringClassAdjective

MkConsequent
MkConsequent

StringClassNoAdjective

en styrt balise er et jernbaneobjekt

• When the cursor is positioned inside a part of the text that has a valid parse
tree, the menu shows suggestions for substituting constructors. All construc-
tors whichmatch the type of the tree nodes that cover the current cursor position
have a corresponding list of alternative constructors, ranked by the number of
terms that do not match in number and type. In the example below, the cursor is
positioned on the word “bør” (“should” in English translation), which is tagged
with the type Modality. Other modalities are suggested, giving an overview of
possible expression types and thereby letting the user learn about the language
as they are editing. See Figure 5.9.

• If more than one chunk is recognized, clicking the top-level constructor in one
chunk will search for nodes in the trees of the other chunks where a construc-
tor substitution would allow the current chunk to be inserted, thereby merging
chunks. In the example below, the user has a valid phrase of type OntologyRe-
striction, and has tried to add a condition to the end saying that the restriction
applies only in tunnels. However, the grammar specifies that the area modifier
applies to the subject part of the sentence, and must therefore be moved fur-
ther ahead in the sentence to be valid. When the cursor is placed on the area
chunk, the editor will add a menu choice that will merge the area chunk into the
statement chunk, producing a fully parsable phrase. See Figure 5.10.

• Dynamic vocabulary is used in the RailCNL system, for example, the user might
define and name a new class, property or relation which is not part of the stan-
dard vocabulary. The grammar accepts this by allowing arbitrary strings in cer-
tain positions. Such unparsedwords are highlighted in the editor by underlining.
In the example below, “styrt balise” and “jernbaneobjekt” are part of the dynamic
vocabulary.

🚂🚃 RailCNL editor 🚃🚃

>

OntologyAssertion

CloseSubject

StringClassAdjective

MkConsequent
MkConsequent

StringClassNoAdjective

en styrt balise er et jernbaneobjekt
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The RailCNL editor works similarly to a programming source code editor. The
design is based on the assumption that the user is a professional willing to learn
about how the formal language and the verification system works. Even so, the
editor’s parse tree visualization and contextual menu-based operation encourages
experimentation, exploration, and learning from examples.

The prototype RailCNL editorwas implemented in JavaScript andHTML,which
is suitable for demonstrations and entry into on-line databases, but a reimplemen-
tation using desktop application technologies should be considered to allow work-
ing with files on each engineer’s local file system. The editor implementation uses
the the grammar file produced by the Grammatical Framework for parsing and re-
lated functions through the Grammatical Framework runtime API. It also uses an
editor-specific configuration file containing types and colours for the partial tree
visualization, and for on-line documentation of constructors, which customizes the
editor to the specific grammar.

5.6 Conclusions

RailCNL is our approach to participatory verification, where the end users (railway
engineers, in our case) get full access to the verification properties. This allows
them to actively participate in the verification by maintaining the rule base and
managing their own properties (often based on experience and best practice). Rail-
CNL formalizes, in a human-readable manner, relevant parts of the technical regu-
lations and expert knowledge used in an on-the-fly verification engine integrated
within railway construction design software.

We have collaborated with railway engineers associated with RailCOMPLETE
during the design of the language and the writing of the verification properties.
Their feedback on limitations in the coverage of the language and suggestions for
simplification will continue to drive the design forwards.

We surveyed the Norwegian railway regulations and counted how much of
the relevant regulations our basic RailCNL covers (see Section 5.4). The survey is
limited to parts of the regulations covering railway track and signalling, as these are
the disciplines that the RailCOMPLETE software development is currently focusing
on.

RailCNL is implemented using the Grammatical Framework and its resource
grammar library. While we have used Norwegian for representing regulations,
RailCNL could be easily extended with other languages supported by the RGL.This
would allow the system to be used for other authorities’ regulationswritten in other
languages. As long as most of the abstract syntax is re-used, the translation into
Datalog should also be readily adaptable. The CNL literature, and Grammatical
Framework specifically, contains a lot of explicit and implicit knowledge about
constructing languages with natural syntax, and we have made explicit some of
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this knowledge gathered from the CNL and GF community by describing details of
the language design methodology in a general way.

A formal CNL with well-chosen linearizations can be very natural, and often
perfectly readable for a non-programmer with the required domain knowledge;
and we used this in Section 5.5.1 in our application to traceability of verification
error messages. However, writing in a formal CNL can potentially be as difficult
as writing in a programming language. A solution to this problem is the use of
special-purpose editors which guide the user towards structuring their text ac-
cording to the underlying formal grammar. Different approaches to CNL editors
have been explored, which we reviewed in Section 5.5.2. We have been guided by
these existing experiences when creating one such editor for RailCNL, presented in
Section 5.5.3, which we plan to integrate in the RailCOMPLETE CAD environment,
and carry out a usability study on its efficacy.

Focusing on empathy towards the intended user in the participatory verifica-
tion process has shown us that integrated systems with familiar graphical user
interfaces is an important requirement to engage non-programmer engineer users
to adopt new tools into their daily routines. We hope that prioritizing according
to the principles of participatory verification will in the long run help verification
tools and techniques based on formal methods take hold in industrial practice, also
outside the fields of software and electrical engineering.

5.6.1 Related work

Johannisson [82] describes a CNL targeting the Object Constraint Language (OCL)
for use in reasoning about Java program correctness in the KeY system [11]. The
language features dynamic vocabulary based on input UML diagrams where vo-
cabulary updates are achieved by re-compiling the grammar using the GF compiler
when needed. Angelov et al. [5] present a conflict detection framework where GF
is used to map the contract language CL [137] into a CNL. Statement modalities,
such as obligation, permission and prohibition, are applied to complex actions. The
structure of the CNL is modelled after the CL language. Camilleri et al. [31] take
a CNL approach to manipulating contract-oriented diagrams using a visual dia-
gram editor, a CNL with text editor support, and a spreadsheet representation as
interfaces to a common model, which can be translated into timed automata for
reasoning about system properties.

Other efforts to define domain specific languages for railway verification have
typically focused on the implementation of control systems, such as Vu et al. [168],
while also considering the verification to be an activity which is separate from de-
sign and implementation. James et al. [81] show how to integrate UML modelling
of the railway domain with graphical modelling and specification and verification
languages, also keeping the focus on verifying the control system implementation
of a fixed design.
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5.6.2 Future work

In working with railway engineers, we discovered language features which could
be added to increase the coverage of RailCNL:

1. A notion of scopes and exceptions, so that more complex conditional restrictions
can be expressed more naturally.

2. Mathematical formulas as a sub-language.

3. Vague or soft requirements represented not for direct use in verification, but for
requiring manual checks at some points.

We are continuing our collaborationwith Norwegian railway engineers to eval-
uate the usability of our prototype tools, increase the text coverage and extend the
language to handle other railway engineering disciplines such as catenary lines
and ground works.

Some of the constructs in the CNL are highly specific to the text we are mod-
elling, which is expected since the text freely uses a wide range of background
railway knowledge, general engineering and mathematical knowledge. The main
challenge in designing such a CNL is to find the underlying concepts, and to strike
a balance between matching the level of abstraction on which the original text is
based and introducing many special-purpose language constructs. More gener-
ally, any domain-specific language (DSL) must to some extent evolve alongside the
needs of the applications it supports. See [58] for a general treatment of DSLs.

We envisage that RailCNL will evolve over time to include both new termi-
nology appearing in new regulations as well as new knowledge and engineering
practices. Therefore, the language would be maintained by engineers, maybe a
proprietary version of RailCNL would be used internally by a company, including
specific proprietary knowledge of the domain and practice.
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5.7 Excerpts from RailCNL Grammar as written in GF

Complete source code at https://github.com/luteberget/RailCNL.git.

-- Overall grammar, combining modules.
abstract RailCNL = Statement,
Ontology, Graph, Area ** {}

-- Grammar for expressions about
-- railway infrastructure layout.
abstract Layout = Ontology ** {
cat DirectionalObject; GoalObject;

PathCondition; SearchSubject;
fun
-- Convert subjects from Ontology
-- module into search goals.
AnySearchSubject : Subject
-> SearchSubject;

SameDirObject, OppositeDirObject,
AnyDirObject : SearchSubject
-> DirectionalObject;

-- Specify restrictions on distance
-- between sets of objects.
DistanceRestriction : Modality
-> Subject -> GoalObject
-> Restriction -> Statement; }

abstract Area = Graph ** {
cat BaseArea; NamedArea; SingleArea;

AreaConj; Area;
fun
-- Arbitrary area type from string.
MkNamedArea : String -> Area;

(...)
-- Use area as a Subject modifier.
SubjectArea : OpenSubject -> Area
-> Subject;

-- Statement about area containment.
PlacementRestriction : Modality
-> Subject -> AreaConj
-> Statement; }

-- Partial concrete grammar in Norwegian
-- for the Ontology module.
concrete OntologyNor of Ontology = open
SyntaxNor, ParadigmsNor,
(RailLex = RailCNLLexiconNor) in {
lincat (...)

Class = CN; Property = CN;
Subject = CN; Statement = Utt;
Modality = {vv:VV; typ:ModalityType};

(...)
lin
(...)
-- Modalities
Obligation
= {vv = RailLex.must_VV; typ = MPos};

NegativeObligation
= {vv = RailLex.shall_VV; typ = MNeg};

-- Apply restriction to ontology.
OntologyRestriction mod subj cond =
mkUtt (mkS
(case mod.typ of {
MNeg => negativePol;
MPos => positivePol })

(mkCl (forall_CN subj)
(mkVP mod.vv cond))); }

abstract Ontology = Statement ** {
-- Partial grammar in the Railway
-- CNL for expressing classes and
-- properties of classes.
cat BaseClass; Class; Property;
Value; ConsequentCondition;
OpenSubject; Subject; Condition;
Restriction; ClassRestriction;
Modality; PropertyRestriction;
fun
-- Class name from string.
StringClass
: String -> BaseClass;
-- Class prefix string.
StringClassAdjective
: String -> BaseClass -> Class;
-- Class name without prefix.
StringClassNoAdjective
: BaseClass -> Class;
-- Property name from string.
StringProperty
: String -> Property;
Gt, Gte, Lt, Lte, Eq, Neq
: Value -> Restriction;
-- Combine restrictions by ‘and’/‘or’
AndRestr, OrRestr
: Restriction -> Restriction

-> Restriction;
-- Combine property restrictions
AndPropRestr, OrPropRestr
: PropertyRestriction

-> PropertyRestriction
-> PropertyRestriction;

-- Subject from Class and Condition
SubjectCondition
: Class -> Condition -> OpenSubject;
-- Use class/property as condition
ConditionClassAndPropertyRestriction
: Class -> PropertyRestriction

-> Condition;
ConditionRelationRestriction
: RelationMultiplicity -> Class

-> Condition;

-- Modalities: must/should and neg’d
Obligation, NegativeObligation,
Recommendation, NegativeRecommendation
: Modality;

-- Assertion statement about ontology
OntologyAssertion
: Subject -> ConsequentCondition

-> Statement;

-- Restriction statement
OntologyRestriction
: Modality -> Subject

-> ConsequentCondition -> Statement;
}

Fig. 7: Grammar excerpts from RailCNL implementation in Grammatical Framework.

19

Figure 5.11: Excerpts from RailCNL implementation in Grammatical Framework.

https://github.com/luteberget/RailCNL.git
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5.8 Example content from regulations

The following table lists some example excerpts from the regulations along with a
translation into English, and a comment about use cases and relevance.

Original text English translation Comments

Source: Overbygning: 530 Prosjektering, Kap. 8 Helsveist spor, 2.1.
De store krefter som
kan forekomme i et
helsveist spor stiller
strenge krav til sporets
konstruksjon.

The large forces that
may occur in a welded
track makes stringent
demands on the track
construction.

This sentence is not normative,
and is unlikely to have any use
in automated verification.

Source: Overbygning: 530 Prosjektering, Kap. 8 Helsveist spor, 2.1.3 a)

Ballasten skal på linjen
og i hovedspor på
stasjoner være
fullverdig grovpukk
(av størrelse 31.5 – 63
mm)

The ballast on the line
and in the main track
at stations must be
purely coarse crushed
stone (size from 31.5 to
63 mm)

This is a specification which is
absolute, and rules out the
need for specifying this as a
part of the design, because it is
not part of a specific station. It
can still be valuable to support
this sentence in a CNL, and in
a formal representation.

Source: Overbygning: 530 Prosjektering, Kap. 8 Helsveist spor, 2.1.2 a)

Minste kurveradius for
helsveist med
betongsviller skal være
250 m.

The lowest allowable
radius of curvature for
whole welded track on
concrete sleepers is
250 m.

This is a typical example of
static infrastructure
verification, expressible in
Datalog as:
error(Segment) :-
trackSegment(Segment),
trackSegmentRadius(Segment,
Radius), Radius < 250.

Source: Signal: 550 Prosjektering, Kap. 6 Lyssignal, 2.1.2 j)

Et innkjørhovedsignal
skal plasseres ≥ 200
meter foran
innkjørtogveiens
første sentralstilte,
motrettede sporveksel,
se Figur 5.

A home main signal
shall be placed at least
200 m in front of the
first controlled, facing
switch in the entry
train path (see Figure
5).

This is the example that we
have been using most
frequently for the RailCons
verification tool. Datalog:
error(Sig,Sw) :- firstFacing(Bdry,
Sw, Dir), homeSignalBetween(Sig,
Bdry, Sw), distance(Sig, Sw, Dir, L),
L < 200.
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Original text English translation Comments

Source: Signal: 550 Signal, Kap. 5 Forriglingsutrustning, 2.8.1 Dekningsgivende objekt

Følgende objekt kan
være dekningsgivende:
Hovedsignal,
Dvergsignal,
Sporveksel,
Sporsperre,
Avsporingstunge,
Signal E35 Stoppskilt.
Et hovedsignal skal
vise signal ”Stopp” for
å være
dekningsgivende.

The following objects
can provide flank
protection: main
signal, shunting signal,
switch, derailer,
derailing tongue,
signal E35 stop sign. A
main signal must
display ”stop” to
provide flank
protection.

This regulation is relevant
both for specifying the control
system, and for verifying the
implementation. The
specification chooses which
objects to use for flank
protection (static) and what
state they can be used in,
while the implementation
must correctly enforce the
conditions saying which
message the signal displays
(dynamic).

Source: Signal: 550 Prosjektering, Kap. 6 Lyssignal, 2.1.2 i)

Et hovedsignal bør
ikke plasseres i
tunneler, på bruer, eller
andre steder hvor en
eventuell togstans og
dermed muligheten for
avstigning, vil medføre
fare.

A main signal should
not be placed in
tunnels, on bridges, or
other places where
halting trains and thus
the possibility of
disembarking, can
impose dangers.

Here we have an example of a
“should” modality, where the
static infrastructure
verification could issue a
warning, but not an error.
Also, it could be required to
document the alternatives that
were considered when
deciding on the design.

Source: Signal: 550 Prosjektering, Kap. 5 Forriglingsutrustning, 4.1.1.1 i)

For at en togvei skal
kunne fastlegges, skal
et objekt som gir
dekning til togveien
være dekningsgivende.

For a train route to be
deactivated, any object
giving flank protection
must be in a protecting
state.

This regulation concerns only
the state of the control system,
and as such relates to the
implementation of the control
system and not the static
infrastructure specification.

Source: Overbygning: 530 Prosjektering, Kap. 5 Sporets trasé, 3.1 Dimensjonerende
parametre
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Original text English translation Comments

See table below.

(a) minimum radius,
(b) maximal
superelevation, (c)
limit on superelevation
cause by derailment
risk at low speeds, (d)
limit for
superelevation rate of
change, (e) limit for
superelevation deficit.

Limiting values are organized
in a table for use in formulas
in other sections.

Source: Overbygning: 530 Prosjektering, Kap. 5 Sporets trasé, 3.7 Sporveksler og
sporforbindelser
Avstanden mellom
sporveksel og
overgangskurve,
sirkelkurve, bru eller
annen motstående
sporveksel skal ikke
være mindre enn
avstanden M gitt i
Kurver uten
overgangskurver, krav
b). M skal imidlertid
ikke være kortere enn
6 m.

The distance between
the switch point and
the transition curve,
circle curve, bridge or
other opposite switch
point should not be
less than the distance
M given in section
“curves without
transition curves”,
requirements b). M
shall not be shorter
than 6 m.

The parameter M is explained
by the figure below. Reference
is given to another section of
the regulations.
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Original text English translation Comments

Source: Overbygning: 530 Prosjektering, Kap. 5 Sporets trasé, 5 Største hastighet – sporets
geometri

Hastigheten i en kurve
skal ikke være større
enn:
V = 0, 291·

√
R (h+ Imaks) (5)

Hvis ligning 5 i
tilfeller med falsk
overhøyde gir lavere
verdi enn 20 km/h
gjelder V = 20 km/h.

The speed in a curve
shall not exceed:
V = 0, 291·

√
R (h+ Imaks) (5)

If Eq. 5 gives a lower
value than 20 km/h in
situations with false
superelevation, then
V = 20 km/h shall be
used.

Use of equations with
designed and given
parameters.

Source: Signal: 552 Vedlikehold, Kap. 6 Lyssignal, 3 Lyssignaler

Dersom lyssignal er
vridd eller på annen
måte kommet ut av
stilling skal dette
utbedres snarest.

If a signal is twisted or
in other ways are out
of position, this shall
be fixed as soon as
possible.

Typical maintenance
regulation. Here, it might be
sufficient to identify this as a
checklist item, for maintenance
scheduling and reporting
purposes.

5.9 Overview of Norwegian regulation contents

The technical regulations (”Teknisk regelverk” ) can be found at https://trv.banenor.
no/ and consists of the following books:

• Common regulations: 501 Common regulations

• Common electrical: 510 Design and construction

• Signs: 515 Placement of signs along the track

• Superstructure (tracks): 530 Design, 531 Construction, 532 Maintenance

https://trv.banenor.no/
https://trv.banenor.no/
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• Substructure: 520 Design and construction, 522 Maintenance

• Tunnels: 521 Design and construction, 523 Maintenance

• Bridges: 525 Design and construction, 527 Maintenance

• Overhead line: 540 Design, 541 Construction, 542 Maintenance

• Low voltage and 22 kV : 543 Design, 544 Construction, 545 Maintenance

• Power supply: 546 Design, 547 Construction, 548 Maintenance

• Signalling: 550 Design, 551 Construction, 552 Maintenance, 553 Assessment

• Telecommunications: 560 Design and construction, 562 Maintenance

Structure of each book:

• Each book repeats the common regulations as the first three chapters.

• Following this will typically be a general section containing:

– declaration of the scope of the book,
– references to relevant standards,
– definitions of relevant technical terms,
– qualitative classifications, such as quality classes, risk classes, etc.

• The main part of a book consists typically of 5 to 10 chapters, each detailing a
specific technical topic within the discipline. The text consists of:

– Scope declarations
– Definitions
– Non-normative statements
– Comments
– Regulations (including tables and figures), with exceptions
– Examples

The technical regulations contain a lot of generalities which are not necessarily
normative, nor directly useful in a design setting. Based on the prioritized use case
list, the following parts of the regulations should be considered first in designing
and testing the formalization procedure:

1. Superstructure design (track design / Overbygning: 530 Prosjektering), especially
regulations and formulas regarding
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• track geometry: curvature, gradients, etc.
• switches: types, maximum speeds, naming (numbering), etc.

2. Signalling design (*Signal: 550 Prosjektering*), especially

• signal placement, functions, sighting distance
• train detector placement, classification
• switch motors requirements and control system components
• automatic train protection system (ATC) placement and functions
• interlocking (control system) routes, conflicts, detection sections, safety classes,
flank protection, overlaps, etc.



6Drawing schematic plans

Engineering schematics of railway track layouts are used for several purposes:
serving as construction blueprints, visualizations on train dispatch workstations,
infrastructure models in timetabling software, specifications for interlocking con-
trol systems, and more. Because of the large distances involved, geographically
accurate drawings are not always suitable for communicating an overview that
can help with analyzing and reasoning about the railway models. Instead, many
disciplines use schematic representations of the infrastructure, which provides a
compressed overview, e.g., shortening sections of the railway that have low infor-
mation density. Fig. 6.1 compares a geographically correct drawing against two
alternative schematic renderings (for two purposes) of the same model. Producing
schematic drawings like these involves practical and aesthetic trade-offs between
intended structure, simplicity, and geographical accuracy.

Perhaps the most well-known railway schematics are the metro maps for pas-
sengers, popularized by the iconic Tube Map of the London Underground. When
designing metro maps, removing and compressing geographical information bet-
ter conveys topological structure (e.g., useful for finding transfers) and sequential
information along lines (e.g., for finding your stop).

Figure 6.1: Example cut-out from a geographical railway drawing (top) and two
corresponding schematic layouts, optimized for bends (bottom left) and optimized
for height/width (bottom right). See on page 158 our tool’s optimization options.

141



142

Methods for automatically producing metro maps have been surveyed in [174].
Themain approaches are iterative and force-directed algorithms for gradually trans-
forming a geographical network map into a simpler presentation [8, 27], and mixed
integer programming methods for finding exactly grid-structured and rigidly op-
timized solutions [126, 128]. For railway drawings the convention is to use only
horizontal, vertical, and diagonal lines (at 45°). The problem of drawing graphs
optimized for size and/or bends using only horizontal and vertical lines (so-called
orthogonal drawings) can be solved by efficient algorithms [161], but adding diag-
onal lines in general makes the problem NP-complete [126, 127].

Schematic railway drawings used for engineering are usually more strictly con-
strained thanmetromaps, but still have large variety in different versions produced
for different engineering use cases, project stages, and operational scenarios. Espe-
cially in construction projects for new railway lines or upgrades, frequent changes
are made in coordinated 2D, 3D, geographical, and schematic models of the rail-
way infrastructure, which can cause much repeated manual work in updating and
cross-checking these models after every change in the construction design work
in several engineering and construction categories, such as tracks, signaling and
interlocking, catenary, cables, telephony.

Automatically producing consistent and high-quality schematics from other
models has great potential to increase the efficiency and quality of the documen-
tation, speed up cross-discipline communication during design and construction
phases, and also opens up for easier data transfer to other tools.

In this chapter we develop methods for producing a type of schematic track
plan which is suitable for infrastructure within a single corridor, meaning that
each point on each track can be located on a common linear axis. We call this
a linear schematic drawing (see Definition 1). This is a common drawing used for
many purposes in construction projects, where drawings typically show placement
of tracks and track-side equipment on a single station or along a single corridor.
More generally, this problem concerns network structures that are oriented along
a linear axis, such as highways, railways, or public transit systems, but may also
be extended to encompass routing in electronic design (see e.g. the problem de-
scription for VLSI routing in [130]). On larger scales with multiple corridors, the
visualization may be split into individual corridors, as in our setting, but for some
applications, such as an overview of a national railway network or a city metro
network, the single corridor assumption will not work well, and other approaches
(see e.g. [126, 128]) may be more relevant.

Linear schematic drawings specifically have little coverage in the literature. A
specialized algorithm presented in [23] computes corridor-style drawings, but does
not guarantee that switch shapes are preserved, and does not offer choice in opti-
mization criteria. For comparison, we apply our method to examples taken from
[23] (see Fig. 6.11). Another algorithmic approach described in [153] has similar
goals, but does not automatically produce high-quality results and relies on inter-



143

active guidance from the user and manual post-processing.
Graph drawing techniques (see [45, 46] for a general overview) have been de-

veloped for a great number of different use cases. Most closely related to engineer-
ing drawings are the orthogonal layout methods (see e.g. [133, 132, 161]). However,
most approaches from the graph drawing literature, including orthogonal layout
methods, produce outputs that have a distinct style and are not suited to be cus-
tomized to adhere to engineering drawing conventions.

Instead, we have solved the problem by modeling engineering drawings as
mathematical optimization problems using constraints formulated as Boolean sat-
isfiability and difference constraints. We present how different available constraint
programming systems can be used to express our constraints, solve optimization
problems, and produce high-quality engineering drawings.

The main contributions of this paper are: (1) We describe and formalize the
problem of linear schematic railway drawings in Section 6.1. (2) We define three
mathematical models for schematic plans, and compare their strengths and weak-
nesses in Section 6.2. (3) We develop a downloadable tool that can be used by rail-
way engineers to visualize infrastructure, and demonstrate its performance and
output on real-world infrastructure models in Section 6.3. Our tool is meant to be
used as a module integrated in the RailCOMPLETE engineering framework; but
it can also be used as a standalone tool by researchers and developers working
on new techniques for analysis and verification, e.g. on interlockings or capacity
and timetabling, who can greatly benefit from low-effort, high-quality visualiza-
tions in order to improve communication, usability, and for lowering the barrier
for adoption of their tools and techniques. Our tool takes input railML files, which
are widely available among railway engineers as it is a standard description format
for railway infrastructure. The tool also has options for placing symbols besides a
track in the schematics.

6.1 Problem definition and formalization

6.1.1 Linear positioning system

It is a common practice in railway engineering to use a linear reference positioning
system, which assigns a scalar value to each point on, or beside, a railway track. The
value corresponds approximately to the traveling distance along a railway corridor
from a reference point (which is often a known point on the central station of the
network). For a single track, the linear reference system may simply be the arc
length from the start of the track’s center-line curve. Double tracks and side tracks
are typically mapped to the linear reference position by geometrically projecting
each point onto a reference curve. The projection’s target curve may either be a
selected reference track (see Fig. 6.2), or another curve that does not necessarily
coincide with a track, such as the geometrical center-line of the corridor. For the



144

Reference track

Local track

Projection
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Figure 6.2: Linear reference position calculated by projection onto a reference
track.

x = x0 x = x1 x = x2 x = x3

trunkend rightleft

leftright

trunk end

Node (end) Node (switch) Edge Ports

Figure 6.3: Graph representation of linearized track plan. Nodes are ordered by an
x coordinate, and have a given type which determines which ports it has, e.g., a
switch node has trunk, left, and right ports. Edges connect ports on distinct nodes.

rest of this paper, we assume that all locations are already given in such a linear
reference system.

6.1.2 Track network representation

Different track segments are connected together at switches in a graph-like net-
work. The mathematical definition of a graph is too abstract for many engineering
use cases. Some applications use a double node graph [78], or describe tracks as
nodes with two distinct sides [1]. For a schematic plan, we model switches and
crossings as graph nodes which have a given set of ports (Fig. 6.3 presents all our
modeling elements). Each end of each edge connects to a specific port on a specific
node. Model boundaries and track ends are also represented as nodes with a single
port.

Each location where tracks start/end or intersect with other tracks is repre-
sented as a node of a given class. The classes used in this paper are ends, switches,
crossings, and flyovers (shown in Fig. 6.4 with all their representative variants).
Each class comes with a different set of drawing requirements. For example, a
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Out./right
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In./right
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(+1 other)
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Figure 6.4: Node classes and their drawing variants. Begin/end nodes have one
variant each. Switches are divided into four classes (each with two variants) based
on their orientation (incoming or outgoing) and their course (deviating left or
right). Crossings have three variants, and flyovers have six variants (symmetric
variants omitted).

switch is oriented such that its branching edges (left/right) point either up (called
an outgoing switch) or down (called an incoming switch), seen in the positive di-
rection of the linear positioning system, and each switch class can be drawn in
two different variants, chosen freely, one with the trunk and straight leg directed
horizontally and another with the deviating leg directed horizontally.

6.1.3 Linear schematic drawing

A linear schematic drawing algorithm is a core concept in our formalization.

Definition 1. A linear schematic track drawing algorithm d : (N,E) → L assigns
a set of line segments L to each edge in the set E of edges connecting the set of nodes
N , where:

• N = {ni = (ci, si)}, where ci ∈ C is a node class, and si ∈ R is a linear position
distinct from other nodes’ positions.

• E = {ej = (na, pa, nb, pb)}, where na, nb ∈ N are two nodes where sa < sb and
pa, pb are distinct, available ports on the referenced nodes.

• L = {(ej , lj)}, where lj is a polyline, representing the drawing of edge ej ∈ E,
and defined by a sequence of points in R2, ⟨(xj

1, y
j
1), (x

j
2, y

j
2), . . . , (x

j
n, y

j
n)⟩. The

polyline consists of the line segments connecting consecutive points in this sequence.
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Of course, the definition of a track drawing algorithm in itself does not ensure
that the output drawing is suitable for reading. To ensure a usable output we es-
tablish a set of criteria for drawing quality based on engineering conventions and
aesthetic judgments. We divide the criteria into hard constraints, that all drawings
must satisfy and that we can base mathematical models on, and soft constraints,
which are optimization criteria that can be prioritized differently in different use
cases. We base our models on the following hard constraints provided by railway
signaling engineers (from Railcomplete AS):

(A) Octilinearity: the lines representing tracks should be either horizontal, or diag-
onal at 45°. This property contributes to the neat look of a schematic drawing,
and also gives a visual clue that the drawing is not fully geometrically accurate.
If loops are present in the infrastructure, vertical lines may also be allowed, such
as in the balloon loop used on many tram lines.

From n To n

Balloon
loop

(B) Linear order: the reference mileages of locations on the infrastructure should be
ordered left-to-right on the schematic drawing to give a clear sense of sequence,
which is useful when navigating the infrastructure and reasoning about train
movements.

sa < sb ⇒
na

nb

· · · xna ≤ xnb

(C) Node shapes: switches split the track on the trunk side into a left and a right
leg on the branch side. Left and right should be preserved so that the layout can
be traced back to the geography. Also, one of the legs of the switch is typically
straight and the other is curved, so typically it is also desirable to preserve the
straight leg’s direction relative to the trunk.

Deviating leg

Straight leg
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(D) Uniform horizontal spacing: parallel tracks are typically required to be drawn
at a specific distance from each other, which we normalize and say that y co-
ordinates take integer values. Note that x coordinates have no such restriction,
but consecutive nodes will often be placed at integer-valued distances to fulfill
the octilinearity constraint.

∆y ∈ N

Evenwith the above constraints fulfilled, there is no guarantee that the drawing
output of an algorithm can be deemed of high-quality. For this we use the following
soft constraints as optimization criteria:

(i) Width and height of the drawing.

(ii) Diagonal line length, the sum of length of non-horizontal line segments.

(iii) Number of bends, i.e. the number of direction changes on lines.

These criteria have different priorities in different use cases. For example, a sig-
naling schematic might be optimized to have a minimum amount of diagonal lines
to neatly show several concurrent train movements and their relative progress,
while a dispatch control station schematic might be optimized for width to fit more
infrastructure into a computer screen.

Several or all of the criteria can be combined into an optimization objective,
either by a scoring function, or more commonly, by simply ordering the objectives
and performing lexicographical optimization on each objective in turn. Our tool
(detailed in Section 6.3) provides options for ranking the objectives.

6.2 Model definitions and drawing algorithms

This section describes three different models of linear schematic drawings. First,
we present a linear programming formulation where edges can have up to two
bends. The resulting optimization problem is efficiently solvable, but has some
drawbacks in visual quality. Second, we introduce Boolean choice variables to
mitigate the shortcomings of the linear programming formulation, and use instead
a SAT solver and lazy solving of difference constraints to optimize the Boolean/nu-
merical model (keeping the maximum of two bends per edge). Finally, we present a
different Boolean model with unbounded number of bends per edge, which makes
this formulation able to optimize drawing size further than the two previous mod-
els. However, this comes at the cost of increased running time. Comparison Fig-
ures 6.7, 6.8, and 6.11 demonstrate the strengths and weaknesses of each approach,
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while Table 6.1 shows their relative performance. All models use a pre-processing
step which orders edges vertically, as in Sec. 6.2.1.

6.2.1 Vertical ordering relation on edges

From the nodes and edges defined as inputs to the linear schematic drawing algo-
rithm, it is possible to derive a vertical ordering relation <E on the set of edges.
This relation is a strict partial order relating edges whose linear position intervals
overlap, i.e., it relates each pair of edges ea from nal

to nar
, and eb from nbl to nbr ,

for which the real-valued segments are intersecting

]sal
, sar

[ ∩ ]sbl , sbr [ ̸= ∅.

Such a relation can be established by considering paths starting in each of the
branch-side ports of each switch, crossing, and flyover (cf. Fig. 6.4). For exam-
ple, an outgoing switch with branch-side edges ea and eb connecting to its right
and left ports, respectively, will obviously have ea <E eb. Each edge connected to
the outgoing edges from the other side of ea and eb will also be ordered vertically,
and so on until either of the following termination conditions are fulfilled:

(C1) The two sets of edges meet in another node.

(C2) One of the sides has no more edges to follow.

More precisely, we define <E by the following. Let G = (N,E) be the graph
fromDefinition 1. We first look in the positive direction on the linear reference axis.
We define a vertical order relation <i

E for each node ni ∈ N . If ni has less than
two ports on the side of increasing linear position, <i

E is empty. However, if the
node has two ports on the side of increasing linear position, let the edges connected
to these ports be el, the lower edge, and eh, the higher edge. For example, in an
outgoing switch node (cf. Fig. 6.4), these correspond to the right and left ports,
respectively.

For any node nj with si < sj , define the directed graph H]i,j[ containing:

• The subset of nodes from G with positions in the open interval ]si, sj [, along
with any number of fresh nodes (i.e. the nodes ni and nj are not included).

• The subset of edges from G which have at least one end connected to a node
from the open interval ]si, sj [, directed in the direction of increasing linear po-
sition. If an edge connects to a node fromG which is not included inH]i,j[, that
connection is replaced with a connection to a distinct fresh node.

We are looking for those nodes nj such that, in H]i,j[, the set of reachable edges
when starting from el are disjoint from the set of reachable edges when starting
from eh (termination condition (C1)), see Fig. 6.5(a). Also, the linear position inter-
val of each edge reachable from el should have a non-empty intersection with at
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(c) Clothes iron

<E?

(a)
Start node Termination

position

Search direction

(b)
Start nodeTermination

position

Search direction

Figure 6.5: A search procedure starting in each node produces a set of tuples for
the edge vertical order relation <E . Figures (a) and (b) show two different start
nodes and search directions, where the lighter, orange edges are all below darker,
magenta edges. Figure (c) shows an input on which the procedure cannot decide
an ordering.

least one edge reachable from eh, and vice versa (termination condition (C2)). The
node nj which has the highest position sj while still fulfilling the above criteria, is
called the termination position.

Each edge ex reachable from el in H]i,j[ is below all edges ey reachable from
eh in H]i,j[ whenever this pair of edges has overlapping linear position intervals,
in which case we have ex <i

E ey .
For the direction of decreasing linear positionwe apply the same argumentwith

horizontal directions reversed (see Fig. 6.5(b)). Finally, the relation <E is defined
as the union of the relations from each node,

<E =
∪

ni∈N

<i
E .

Unconnected graph components must still be explicitly ordered, and the same
for some connected topologies such as the clothes iron example in Fig. 6.5(c). These
are usually easy to decide from, e.g., a geographical model, and this situation occurs
rarely, in our experience.

6.2.2 Level-based linear programming encoding

We start out by giving a constraint system on linear equations over continuous
numerical variables which fulfills the hard requirements from Section 6.1.3 and
can be solved efficiently by linear programming. We used the CBC solver v2.9 [38].
Later, the shortcomings of this model will motivate the introduction of Boolean and
integer-valued variables and a SAT problem formulation.

For each nodeni weuse two real variables, xi and yi, representing the schematic
coordinates of nodes. For each edge ei we use one real variable li representing the
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Begin node

End node

(a)

(b)
(c)

Level

Figure 6.6: The edge level model divides the edge into three sections on the horizon-
tal axis: (a) the initial diagonal section from the left-most node to the edge level,
(b) the middle horizontal section connecting the two diagonal sections, (c) the final
diagonal section reaching the right-most node from the edge level. Any of these
may have zero length.

edge’s level. This builds in an assumption that each edge is drawn in three parts as
explained in Fig. 6.6. We introduce the following constraints:

1. Node location ordering for successive nodes ni, nj gives xi ≤ xj , corresponding
to the linear order requirement (from Sec. 6.1.3(B)).

2. Node location distance for nodes ni, nj connected by an edge ek , where si < sj ,
gives xi + |lk − yi| + |yj − lk| + qk ≤ xj , where qk is 0 if the edge connects
an outgoing switch to an incoming switch with the same branching direction,
and 1 otherwise. This creates room for a horizontal line segment if needed. The
sign of the absolute value terms is determined statically (not part of the linear
programming) by the node class and variant. This constraint corresponds to the
octilinearity requirement (from Sec. 6.1.3(A)).

3. Edge level ordering for edges: ei <E ej gives li + 1 ≤ lj , corresponding to the
node shape requirement (from Sec. 6.1.3(C)).

4. Edge levels are related by switches, i.e.: each switch node ni constrains the
trunk-side edge ej and the straight branch-side edge ek to be at the same level
as the node (yi = lj = lk) corresponding to the node shape requirement.

Note that the uniform horizontal spacing constraint (from Sec. 6.1.3(D)) is implicit
in these equations. Now we have the following criteria available for optimization:

• Width of the drawing. Take the node ni with the lowest si, and the node nj

with the highest sj . Then the width of the drawings is xj − xi.

• Height of the drawing. The height of the drawing is not directly expressible in
this model, but can be approximated by summing the vertical level difference
of edges. For pairs of edges ei, ej where ei <E ej , the vertical level difference
distance is lj − li.
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(a) Junction (b) Crossover (c) Nested siding loops

(d) Ladder sidings

Figure 6.7: Output examples for the linear programming method. The junction (a)
and nested sidings (c) are correctly drawn. The crossover (b) has a 2 unit diagonal
edge height, where 1 unit would be sufficient – this is caused by each edge having
a vertical level distinct from its neighbors. The ladder sidings (d) are unnecessar-
ily wide because the model does not handle node shape variants (compare with
Fig. 6.8(b)).

Some output examples from the linear programming solution are shown in
Fig. 6.7. Although efficiently solvable, this linear programming solution has a main
drawback in that it is not able to choose between different alternatives for draw-
ing a node. For example, in the so-called ladder configuration shown in Fig. 6.7(d),
much space is wasted on diagonal lines going to the top-most level, when the two
topmost switches could have been rotated to produce a simpler drawing. Also, each
edge needs to have a y-value distinct from its neighbors, even if it is drawn only
with diagonals, such as in Fig. 6.7(b), which contributes to inefficient use of space.
Both these shortcomings will be improved by the level-based Boolean formulation
in the next section.

6.2.3 Level-based SAT encoding

We reformulate the problem using variables from the Boolean and bounded integer
domains. Since we are dealing with small integers, we can transform the problem
into a Boolean satisfiability problem (SAT) by encoding numerical variables into
Boolean variables and use incremental SAT solvers which can be efficient for lexi-
cographical optimization on small discrete domains, as ours.

Integers can be encoded into SAT in various ways. Eager encodings represent
numbers and constraints directly using a set of Boolean variables and constraints
and creates an equisatisfiable SAT instance. Most commonly used is the binary
encoding (one Boolean for each bit) and the unary encoding (one Boolean for each
distinct number). See [15] for details. Lazy encodings, as used in SMT solvers (see
[10, 123] for an introduction), can avoid some of the work of transforming and
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solving a large SAT problem by abstracting the numerical constraints into marker
Boolean variables. Only when the SAT solver sets markers to true, another pro-
cedure (the theory solver) will go to work on the numerical constraints and report
unsatisfiable combinations back to the SAT solver.

Although the SAT problem itself does not directly concern numbers, much less
numerical optimization, an incremental interface to a SAT solver allows solving
many similar problems consecutively. For a set of constraints ϕ, we can perform
numerical optimization on some number x by solving the sequence of formulas
ϕ ∧ (x < m1), ϕ ∧ (x < m2), . . . , where the sequence mi is a linear or binary
search over the range of x, locating the smallest value that satisfies the constraints.
Querying the solver successively with such similar formulas incrementally is much
faster than solving the instances separately.

We used the MiniSAT [52] solver v2.2.0 with unary encoding of bounded in-
tegers and also lazy representation of unbounded integers with difference con-
straints, i.e. constraints of the form xi − xj ≤ k, where k is a constant. Difference
constraints are suitable as a first-line refinement in SMT solvers (see e.g. [22])
because they can be efficiently solved.

We keep the assumption from the previous subsection that each edge is as-
signed to a single level, and extend the problem representation as follows:

1. Distances between nodes are represented as a saturating unary number of size
2, i.e. ∆x ∈ {0, 1,≥ 2}. This allows us to distinguish between short (∆x ≤ 1)
and long (∆x ≥ 2) edges.

2. For each edge ej , we use Booleans qupj and qdown
j to indicate a short edge pointing

up/down, respectively, seen in the direction of increasing x.

3. Node vertical coordinates yi and edge levels lj are represented by unbounded
integers on which we can conditionally impose difference constraints.

4. Variant selection ri∈R(cj) for each node i indicates the node’s variant from the
available shapes R(cj) of the node class cj ∈C listed in Fig. 6.4.

5. Edge direction values, dbegin
i , dend

i ∈ {Up, Straight,Down}, for the beginning and
end of each edge ei, are based on node variant values.

We need the following constraints:

• Each edge must be at least 1 unit long on the x axis.

• Edge ordering constraints for ea <E eb:

la ≤ lb,
(
¬qupa ∧ ¬qdown

b

)
⇒ la + 1 ≤ lb

If an edge is a short edge (such as a crossover between two adjacent tracks) it
does not require its own level, and we use instead the same level as the one of its



153

(a) Crossover

(b) Ladder sidings (c) Real-world example: Eidsvoll railML

Figure 6.8: Output examples for the level-based SAT method. The crossover (a)
requires only a 1 unit diagonal edge (improving Fig. 6.7(b)). The ladder sidings
(b) now use diagonal switch variants to improve width, height, and bends (im-
proving Fig. 6.7(d)). The Eidsvoll station (c) demonstrates real-world infrastructure
imported from railML.

end nodes which has the highest value. This allows to produce a better crossover
drawing, as in Fig. 6.8(a) instead of Fig. 6.7(b).

• An edge i is short (qup or qdown) if both ends have the same direction and the
vertical distance between nodes is one:

q
up
i ⇒ (d

begin
i = Up) ∧ (dend

i = Up) ∧ (ya + 1 = yb)

qdown
i ⇒ (d

begin
i = Down) ∧ (dend

i = Down) ∧ (ya − 1 = yb)

• Direction on edge i decides vertical level constraints:

(d
begin
i = Straight)⇒ (ya = li), (d

begin
i = Up)⇒ ya + 1 ≤ li,

(d
begin
i = Down)⇒

((
q
up
i ⇒ (ya ≥ li)

)
∧
(
¬qupi ⇒ (ya ≥ li + 1)

))
And correspondingly for dend.

• The sum of ∆x values over the edge must match the shape of the edge:(
qup ∨ qdown)⇒ Σj∈(a,b)∆xj ≤ 1(

¬qup ∧ ¬qdown ∧
(
dbegin ̸= Straight ∨ dend ̸= Straight

))
⇒ Σj∈(a,b)∆xj ≥ 2

Since the shape of an edge is now explicit through dbegin and dend, we can opti-
mize for the number of bends to produce Fig. 6.8(b) instead of Fig. 6.7(d).

The level-based representations do not represent the shapes of edges explicitly
at each coordinate, and thus cannot insert bends at arbitrary locations, something
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which is needed to pack drawings together more tightly. A straight-forward grid-
based SAT encoding could associate each point on a grid with a choice of any node,
and each cell with a choice of edge shape. With this encoding, however, drawings
with only about 30 nodes take hours to optimize. We do not describe this method in
more detail here, but we have implemented it and tested its performance compared
to the other methods, as shown in Table 6.1.

6.2.4 Cross-section SAT encoding

Instead of directly representing a grid, we define a vertical cross-section ck of the
drawing, represented by a unary-encoded integer ykei capturing the height of each
edge ei at some horizontal location in the drawing. This naturally allows us to use
the edge vertical order<E as constraints on unary numbers ykei <E ykej . Each pair
of successive nodes is transformed into a sequence of such cross-sections, and we
associate a direction dkei ∈ {Up, Straight,Down} with each edge ei at each cross-
section ck , giving the shape of the edge to the left (lower x value) of the cross-
section. Cross-sections can be enabled or disabled (represented by bk) to optimize
thewidth of the drawing. Finally, the ahead Boolean akei for each edge at each cross-
section marks whether the shape of the edge has already been constrained for the
next cross-section to the right (higher x value), which allows nodes to impose edge
shape constraints in both x-axis directions.

With this representation, we can impose constraints as follows:

1. Edge vertical order:
(ei <E ej)⇒

∧
ck

ykei ≤ ykej

2. A begin node at cross-section ck constrains the edge shape to the right, and
makes the y value unequal to the y value of other edges ej ∈ ck .

akei ∧ dkei = Straight,
∧

ej∈ck

ykei ̸= ykej ,

and similar for end nodes, in the opposite direction:

¬akei ∧ dkei = Straight,
∧

ej∈ck

ykei ̸= ykej .

3. A switch node at cross-section ck constrains the edge shape in both directions
by constraining the incoming edges ei according to the node class variant. For
example, for an outgoing left switch we have one incoming edge ei1:

¬akei1 ∧ dkei1 ̸= Up
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The incoming edges ei are replaced by the outgoing edges ej in the cross-section
representation. For example, for an outgoing left switch (see Fig. 6.9) we have
two outgoing edges ej1, ej2 as the left and right ports, respectively:

akej1 ∧ akej2 ,

and we have two choices of shape:(
dkei = Straight

)
⇒
(
ykei = ykej2 ∧ dkej2 = Straight ∧ dkej1 = Left

)
(
dkei = Down

)
⇒
(
ykei = ykej1 ∧ dkej2 = Down ∧ dkej1 = Straight

)
Constraints are similar for other node classes.

4. Disabled cross-sections propagate all their values:

¬bk ⇒
∧

ei∈ck

{
ykei = yk+1

ei ∧ akei = ak+1
ei ∧ dkei = dk+1

ei

}

y03 = 1

y01 = 3

y00 = 5

y02 = 2 Trunk
Left

Right

c0 c1 c2 c3
(deactiv.)

c4 c5 c6
(deactiv.)

c7 . . .Cross-sec.:

Node i (switch) Node j (end)
Cross-sec. c4, c5, c6

Figure 6.9: Cross-section SAT representation. Dashed vertical lines show cross-
sections ci. Edges have a y value and a direction to the left of each cross-sec. Thick
red arrows are constraints imposed by node type. Gray columns correspond to
deactivated cross-sections, where shape constraints are propagated to the next or
previous column.
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Levels -1,-2 below upper edge.
Levels 1,2 above lower edge.
· · ·

Figure 6.10: Label placement can be done by restricting symbols to fit into a set of
levels above and below each line, which reduces the constraints to linear ordering.

5. Enabled cross-sections require consistency between edge shapes and y values:

bk ⇒
∧

ei∈ck

{(
¬akei ∧ dk+1

ei = Up
)
⇒ ykei + 1 = yk+1

ei

}
And correspondingly for Straight and Down directions.

6. Enabled cross-sections realize rightward-constrained ahead values a:

bk ⇒
∧

ei∈ck

{(
akei ⇒ ykei = yk+1

ei

)
∧
(
akei ⇒ dkei = dk+1

ei

)
∧ ¬ak+1

ei

}

With this formulation we can choose freely between prioritizing width, height,
or bends, and the resulting plans have lower total width than for the level-based
methods, since the grid-based method has the added freedom of inserting bends at
any location along an edge. See Fig. 6.11 for a comparison.

6.2.5 Symbols and labels

A railway engineering schematic often features a large amount of different symbols
and labels (see the example in Fig. 6.1). In some cases, the symbols and labels can
be placed onto a well laid-out track plan without needing to change the track plan,
but there are common cases where the track layout must be drawn in a way that
accounts for the amounts and sizes of symbols and labels. Our tool has options for
placing symbols into two rows above and below each track, which is suitable for
signaling drawings.

Label placement in general is known as a hard problem in graph visualiza-
tion. We use a simplified approach suitable for thin rectangular symbols (e.g. as in
Fig. 6.1), and assign each symbol to a level above or below the track (see Fig. 6.10).
Difference constraints on x values ensure that symbols are ordered and not over-
lapping. When constraints are satisfied, we use linear programming to minimize
the deviation from proportional distance between nodes, so that symbols are close
to each other on the drawing if they are physically close.



157

Model: Eidsvoll, imported from BaneNOR railML [138]

Levels/Lin.Prog. Levels/SAT
Cross-sec./SAT,

opt. width/height
Model: Asker, imported from BaneNOR railML [138]

Levels/Lin.Prog. Levels/SAT
Cross-sec./SAT,

opt. height/bends
Model: Arna, imported from RailCOMPLETE CAD project

Levels/SAT Cross-sec./SAT, opt. bends/width

Cross-sec./SAT, opt. height/bends Cross-sec./SAT, opt. height/width
Model: Weert, remodeled from figures in [23]

Cross-sec./SAT, opt. height/bends Cross-sec./SAT, opt. height/width

Figure 6.11: Comparison of three optimization models on various infrastructure
models: Levels/Lin.Prog. (see Sec. 6.2.2), Levels/SAT (see Sec. 6.2.3), Cross-sec./SAT
(see Sec. 6.2.4). Symbols and labels placed on the drawing may also affect layout
(see Sec. 6.2.5).
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Model Src. Size Direct/SAT Levels/SAT Cross-sec./SAT
hwb size (v/c) bhw size (v/c) hwb hbw bhw size (v/c)

Eidsvoll [138] 35 60.7 57k/153k 0.02 2.3k/0.7k 0.05 0.06 0.33 4.0k/28k
Arna RC 57 294 167k/493k 0.03 4.9k/1.3k 0.26 0.65 1.06 11k/100k
Asker [138] 64 T/O 104k/295k 0.04 5.6k/2.0k 0.61 1.02 0.87 14k/124k
Weert [23] 102 T/O 304k/969k 0.18 11k/4.0k 0.72 19.3 21.4 29k/327k
5x10 T 228 T/O 2.8M/13M 0.58 35k/2.7k 5.83 7.48 8.08 46k/364k
5x20 T 478 T/O 2.8M/12M 3.37 97k/7.7k 279 299 T/O 265k/4.2M
10x5 T 203 T/O 3.0M/14M 0.40 28k/2.0k 0.52 0.59 1.08 20k/83k
20x5 T 403 T/O 3.0M/14M 1.73 70k/4.0k 1.95 2.50 3.36 44k/165k
10x10 T 453 T/O 2.6M/12M 2.74 86k/5.5k 21.9 22.4 40.7 96k/727k
15x15 T 1053 T/O 2.3M/10M 22.7 255k/15k T/O T/O T/O N/A

Table 6.1: Running times in seconds on a mid-range workstation. Time-outs (T/O)
indicate exceeding 300 s. Model sizes are given as the sum of the number of nodes
and edges. Models were obtained from BaneNOR [138], a RailCOMPLETE CAD
project (RC), and adapted from [23]. Scaling test models (T) named n×m consist of
n serially connected stations, each spreading out tom parallel tracks. Optimization
criteria are height (h), width (w) and bends (b). The size columns show the number
of SAT variables and clauses (v/c).

6.3 Tool usage

A command-line tool that can generate the drawings as described in this paper
is available online¹. The tool can import railML files as track network input and
track-side object symbols, or use a custom format for directly specifying topology.
The tool offers two choices of built-in symbol appearances: “simple” for generic
lamp-like signals and detector, and “ERTMS” for ERTMS-style marker boards and
detectors (see the bottom part of Fig. 6.11). Extracting other object types from
railML and producing other symbol styles can be done by post-processing JSON
output, or by extending the tool using the Lua scripting language. The tool can
produce output in JSON format (for custom visualization or post-processing), SVG
(for use in web pages and web applications), or TikZ (for use in LaTeX documents).

We have implemented and compared the performance of the SAT-based meth-
ods described above, presented in Table 6.1 (the linear programming formulation
is omitted for space, since it has lower quality output). We see that the Direct/SAT
encoding has too poor performance to be of practical value. The Levels/SAT en-
coding is the fastest, and produces good output when optimizing for bends first.
Cross-sec./SAT is slower, but is more capable for optimizing for height and width.

¹https://github.com/luteberget/railplot

https://github.com/luteberget/railplot
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6.4 Conclusions and Future Work

We have demonstrated the feasibility of using an incremental SAT solver to au-
tomatically produce and optimize schematic railway drawings using several dif-
ferent optimization criteria. However, the choice of encoding makes a significant
difference in the size of models that can be handled in a reasonable amount of
time, cf. Table 6.1. The direct representation using an explicit grid fails to handle
instances of relevant scale. Only after reformulating the problem in a more struc-
tured solution space, where the order of symbols is hard-coded into the problem,
rather than added as a constraint after the fact, we were able to solve industrial-size
instances in reasonable time for interactive use (i.e., under 1s).

Our goal is that professionals should be able to rely on high-quality automatic
schematics, which requires further tailoring of symbol and text placement to spe-
cific use cases, and integration with GUI tools.





7Integration with industrial
end-user software

Civil engineering construction projects, such as railway projects, make heavy use
of computer-aided design (CAD) tools to model the geometric aspects of the con-
struction project and its product. The origins of CAD tools are in the computerizing
of traditional drafting, which produces human-readable technical drawings that are
used as plans and documentation for construction work. Mainstream CAD tools
are mainly concerned with manipulating databases of geometrical objects consti-
tuting 2D or 3D representations of spatial properties, and the production of human-
readable drawings which depict these geometrical structures.

The DWG file format created for the Autodesk AutoCAD software is a de facto
standard in many engineering disciplines, and this format has also been adopted
by several other CAD software packages.

Also, a new trend in construction projects is to use 3Dmodels and visualization
as a complement or an alternative to 2D drawings. In addition, such 3D modelling
software packages often have features for semantic data, i.e. classifying different
objects in the models and describing their properties according to some domain-
specific catalogue of object classes, properties, and relations. 3D and semantic data
are the main features of the building information management (BIM) programs,
which are currently in the process of taking over as the next generation of CAD.
There are currently no de facto standard BIM file formats, but the Industry Foun-
dation Classes (IFC)¹ specification is a promising candidate.

This chapter first describes one approach to building a semantic CAD system
by extending an existing 2D or 3D CAD system with railML-based railway classes,
properties, and relations. We then show how the analysis techniques described
in the chapters above have been (or are planned to be) integrated into a graphical
user interface that railway engineers are already familiar with. This approach is
the main architecture of the RailCOMPLETE software, based on the Autodesk Au-
toCAD software, where we intend to integrate the tools developed in this thesis.

¹See the IFC Wiki: http://www.ifcwiki.org/
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7.1 Semantic CAD

7.1.1 Grouping geometry into blocks

Grouping together several geometrical features into a single unit is in CAD termi-
nology called “making a block”. This allows the CAD user to create models more
efficiently, by reusing commonly used components. The blocks, which may repre-
sent things such as chairs, doors, or railway signals, also create the opportunity to
store higher-level information in a CAD model, other than the purely geometrical
description. For example, if one uses a railway signal block to model a signal in a
railway station, a program can count the number of signals in a model.

This idea can be extended by adding any number of attributes to a block. For
a railway signal, we can add attributes that describe e.g. to which track it signals,
along with its type, function, and direction. The CAD object database does then
not only contain the geometrical objects, such as lines, curves, triangles, cubes,
etc., but groups these primitives into higher-level concepts which are closer to the
representation that one uses to reason about the actual working of the railway
infrastructure.

With a good library of blocks (which we call a symbol library), the engineer can
more efficiently build the geometric CAD models which lead to human-readable
drawings, but they are also building a machine-readable model of high-level rail-
way concepts. We call this semantic CAD. While this concept is also a part of build-
ing information modelling (BIM), BIM also includes many other concepts such as
3D visualization, time (“4D”), and cost (“5D”).

The verification of signalling and interlocking rules requires information about
properties and relations between objects such as which signals and signs are re-
lated to which track, and their identification, capabilities, and use. This informa-
tion is better modelled by the railway-specific hierarchical object model railML
[121]. In the CAD industry-standard DWG file format, each geometrical object in
the database has an associated extension dictionary, where add-on programs may
store any data related to the object. Our tool uses this method to store the railML
fragments associated with each geometrical object or symbol, see Figure 7.1 . Thus,
we can compile the complete railML representation of the station from the CAD
model.

7.1.2 Object type descriptions

It is necessary to decide which objects in the CADmodel should be associated with
which data types, i.e. what attributes should be stored in the symbols. This is com-
parable to specifying an object’s class in an object-oriented programming language.
To do this, we create an object type description which augments the symbol library
with class information. Whenever the user adds a symbol, its data editor is deter-
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Figure 7.1: railML integrated into a CAD database

mined by the assigned class, and vice versa: when e.g. a railML object is imported
into CAD, its corresponding symbol is inserted in the graphical model.

7.1.3 Interlocking and train protection systems

Besides the CAD model layout, the design of a railway station’s signalling con-
sists also of specifications for the interlocking and train protection (speed control)
systems. These specifications are used to build the interlocking controllers and
speed controllers, and they model the behaviour of the signalling equipment and
its interaction with trains. These systems are tightly linked to the station layout.

A formal representation of the interlocking and train protection specifications
is embedded in the CAD document in a similar way as for the railML infrastruc-
ture data, using the document’s global extension dictionary. Thus, the single CAD
document showing the human-readable, geographical layout of the train station
also contains a machine-readable model which fully describes both the component
layout and the functional specification of the interlocking and train protection sys-
tems. This allows analysis of the operational aspects of the train station directly in
a familiar editable CAD model. See Figure 7.2 for an overview of this architecture.
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Figure 7.2: Semantic CAD document organization including interlocking specifi-
cation.
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Figure 7.3: Railway design tool chain. The CAD program box shows features which
are directly accessible at design time inside the CAD program, while the export
creates machine-readable (or human-readable) documents which may be further
analysed and verified by external software (shown in dashed boxes).

7.2 Railway analysis tasks as CAD plug-in programs

Figure 7.3 shows the overall architecture of a CAD program extended with on-the-
fly verification of railway properties. The analysis tasks from the chapters above
are integrated with the system in the following ways:

• Static verification, as described in Chapter 2, is well-suited for integration into a
CAD program, especially when we want to edit the models (the railway infras-
tructure) and not the properties (Datalog code). Whenever the CAD model is
opened or modified by the user, the railML model is compiled from the individ-
ual objects and sent to the verification program. Counter-examples are presented
in a window containing a list of errors and warnings. See Figure 7.4.
This type of verification can be compared to syntactic and static analysis of com-
puter programswhich is routinely used in integrated development environments
for programming. In particular, our static verification is focused on integrating
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Figure 7.4: Counterexample presentation within an interactive CAD environment.

Figure 7.5: Paraphrasing view which shows original regulations and their trans-
lation into controlled natural language side by side. From the counter-example
presentation (see Figure 7.4), the user can request to see the source of the rule
which reported the warning or error and in this way check that the specifications
are correct and also learn more about the specifications.
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and automating those simple, yet tedious, rules and conditions usually used to
maintain some form of consistency of the railway, and have these checks done
automatically.

• Regulations tracing can be a useful tool for investigating the cause of a warning
or error that has been reported from a verification program. Using the approach
described in Section 5.5 in the context of controlled natural language specifi-
cations, engineers can trace the translation steps from the original regulations
texts through the Datalog representation and into their geographical model of
the railway infrastructure. See Figure 7.5 for an example in Norwegian language.

• Schematic plans, as described in Section 6.1, are often preferred by railway engi-
neers whenworkingwith interlocking specifications and dynamic evaluations of
operational scenarios. Maintaining corresponding geographical and schematic
plans automatically as complementary CAD models is a conceivable approach
for the schematic visualization algorithm described in Chapter 6. However, in
order to better support presentation and interaction with executions of opera-
tional scenarios in the context of local capacity verification, we have prototyped
a separate visualization tool with schematic presentationwhich presents the out-
put of capacity verification. See Figure 7.6 and Figure 7.7 for screen shots from
this separate tool, which presents a time choice slider, a schematic view with
trains current position, and a time/distance diagram which presents the whole
timeline, similar to a blocking time diagram (see Figure 4.1).

• Capacity verification, as described in Chapter 3, requires two extensions to an
infrastructure editor: (1) presentation of operational scenario execution time-
lines where trains’ positions are overlaid on a drawing of the infrastructure and
(2) an editor for capacity specifications (defined in Section 3.3). The tool in Fig-
ure 7.6 currently supports the former but not the latter, and also does not have
interactive editing of the infrastructure itself. Both of these features could be
added to a 2D geographical CAD program, and we plan to experiment with this
in the RailCOMPLETE editor.

• Synthesis, as described in Chapter 4, requires some fundamental changes to the
usual editor paradigm for infrastructure: trackside objects can now be either
fixed, meaning that it is specified by the user and should not be moved or re-
moved by the synthesis algorithm, or derived, meaning that it has been suggested
by the synthesis algorithm and can be made fixed. The user should be able to
turn the synthesis to fully automatic, where objects are added automatically to
fulfil specifications, or to suggestion mode, where individual optimization edits
are suggested to the user. We have prototyped a schematic-only editor with
these features, see Figure 4.11 on page 88. Because CAD plug-in programs are
modular parts in an already comprehensive software package, they should not
interfere with the basic editor user interface, and it is not immediately evident
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Figure 7.6: Simple example of schematic and time/distance diagram used to visu-
alize a sequence of events in an operational scenario.

Figure 7.7: A realistic example of an operational scenario involving multiple trains
at Eidsvoll station.
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how this editing paradigm should be combined with the CAD program. We plan
to investigate how these tools can be suitably combined.

There are several other analysis tasks that are relevant for signalling engineer-
ing that we have not integrated here, such as interlocking implementation devel-
opment, or network-scale capacity analysis. For other railway engineering sub-
disciplines there are also domain-specific analysis tasks, such as structural analysis,
electrical analysis, and many more.

The input data and editor paradigm for each one of these analysis tasks needs
to be carefully considered to decide whether they are suitable for integration with
infrastructure editors (schematic or geographic), or more suited to keep as a fully
separate program.

7.3 Other external analysis tools

Generally, analysis and verification tools for railway signalling designs can have
other complex inputs in addition to the tracks and trackside objects which have
been the main subjects of this thesis. Also, other analysis tools must account for a
large variety of situations, and they usually require long running times. Therefore,
we by default limit the verification inside the design environment to static rules
and expert knowledge, as these rules require less dynamic information (timeta-
bles, rolling stock, etc.) and less computational effort, while still offering valuable
insights. This situation may be compared to the tool chain for writing computer
programs. Static analysis can be used at the detailed design stage (writing the code),
but can only verify a limited set of properties. It cannot fully replace testing, sim-
ulation and other types of analysis, and must as such be seen as a part of a larger
tool chain.

Other tools, that are external to the CAD environment, may be used for other
types of analysis, which are less automated or require heavier computation, such
as:

• Code generation and verification for interlockings is possible e.g. through the
formal verification framework of Prover Technology².

Railway infrastructure topology, signalling objects, and interlocking specifica-
tions should be automatically transferred to a code generation and verification
tool to help automate interlocking implementation. The transfer of data from
the CAD design model to interlocking code generation tools is possible by us-
ing standardized formats such as railML, which recently also incorporated an
interlocking specification schema.

²Prover Technology AB: http://www.prover.com/

http://www.prover.com/
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• Capacity analysis and timetabling can be performed using e.g. OpenTrack³,
LUKS⁴, or Treno⁵.
OpenTrack is a simulation tool which allows stochastic capacity analysis, run-
ning time analysis, and other types of analyses. By transferring data directly
from a CAD model, such analyses can be performed at an early stage in the de-
sign process, greatly increasing the possibility for design decisions to be affected
by capacity analysis. This allows a more agile and dynamic design process, so
that the end goals of the railway administration can be met, and costs of re-
designing and re-building can be minimized.

• Building information modelling (BIM), including such activities as life-cycle
informationmanagement and 3D viewing, are alreadywell integratedwith CAD,
and can be seen as an extension of CAD.
The object type definitions described in Section 7.1 above may be used to asso-
ciate 3Dmodels to symbols in the 2D geographical layout. Semantic information
can then be preserved when transferring information between 2D and 3D repre-
sentations. 3D tools for design and presentation are now becoming widely used
on new railway projects.⁶
In the future, it is likely that 3D BIMmodels will largely replace 2D CADmodels,
but as of today it is a reasonable approach to compile 3Dmodels from a 2Dmodel
with semantic information.

³OpenTrack: simulation of railway networks, http://www.opentrack.ch/
⁴LUKS: analysis of lines and junctions, http://www.via-con.de/en/development/luks
⁵treno: timetable reliability & network operations analyser, University of Trieste.
⁶http://www.jernbaneverket.no/Prosjekter/Inter-City-/3d/

http://www.opentrack.ch/
http://www.via-con.de/en/development/luks
http://www.jernbaneverket.no/Prosjekter/Inter-City-/3d/


8Conclusions

In the chapters above, we have combined automatic reasoning and formal specifi-
cations in a way that solves both general and specific problems that are relevant for
railway planning and engineering. One of the goals that we set in Section 1.1 was
to use formal specifications so that maintenance and handling of complexity could
be assisted by automated tools. This style of software development has the poten-
tial to overcome some of the problems with developing software tools for railway
engineering, mainly that the regulations are complex, and that they vary in both
major and subtle ways between countries and administrations. We conclude this
thesis in the sections below with some perspectives on these goals.

8.1 Generality, maintenance, and user-friendliness

The technique of using Datalog logic programming (Ch. 2) for static analysis is
the most general analysis form of the ones we have investigated. Because static
analysis of railML documents is concerned with writing properties that refer more
or less directly to the structure of the input document itself, the procedures for
deciding whether the properties have been satisfied are tractable and have often
little impact on the performance of an interactive editor. Instead, the flexibility
and ease of specifying properties is more important for practical use. Datalog has
such flexibility, and in order to create our CAD-based static verification tool, we
did not have to do much programming of business logic, outside of a trivial transla-
tion from railML to Datalog facts, and a base library of Datalog railway properties.
This also means that, from a railway engineering point of view, there is not much
maintenance to be performed on the inside of the verification system itself, and en-
gineers and software developers have mostly the same perspective on the system:
a simple logic system taking complex, composable specifications as input. Data-
log has similarly been demonstrated as a concise and elegant way of solving static
analysis of computer programs. With recent developments in solver techniques,
Datalog program analysis can be as fast as special-purpose algorithms.

The user-friendliness of logic programming can certainly be debated, and the
idea of expecting railway engineers to master a somewhat esoteric programming
language paradigm is not clearly feasible. The controlled natural language system
that we have developed (Ch. 5) mainly brings the specification of static properties
into a more user-friendly language and framework. However, some of the sim-
plicity and generality of Datalog logic programming is also lost along the way.
Railway-specific language constructs were necessary to write relevant properties
naturally and concisely. We only integrated the RailCNL front-end language with
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the Datalog-based static verification system, but one advantage of using a domain-
specific front-end language is that it could also have had the capability to recognize
which logic domains were relevant for a given linguistic construct. For example,
statements about capacity properties could be translated into the dynamic verifi-
cation system (Ch. 3) and solved by the corresponding solver method.

Although static properties are certainly a major source of every-day drudgery
for railway engineers, the adjustments required to fulfil statically checkable rules
and regulations often have only a shallow impact on the actual operation of a fin-
ished railway system. The important major decisions in such a system are the ones
which impact the dynamic behaviour of trains travelling on the infrastructure, and
these decisions can only be taken by considering a large set of different dynamic
situations. The dynamic verification system described in Ch. 3 performs a more
specific task than the static verification system, but the task itself is a central and
important question in railway signalling engineering. Our approach does, how-
ever, suffer, like all similar capacity analysis packages that we are aware of, from
having to model operational behaviour as code (”hard-coded” behaviour), which is
more coupled and brittle than logic-based specifications. This makes it complicated
and risky to let the user have full control over it and to change it while performing
analysis tasks. Compared to the Datalog system, this system has much more com-
plexity on the inside, and there is a divide between the software developer’s view
of the system and the end-user railway engineer’s view. One attempt to tackle this
problem by Phillip James et al. (see [80]) was written the Maude rewriting logic
system. They use a hybrid approach of model checking and simulation, much like
our dynamic verification system, but in theMaude approach, both parts are written
in the same language. However, it is not, in our opinion, more user-friendly than
editing simulation logic in a general-purpose imperative language.

Finally, drawing schematic plans of railway infrastructure (Ch. 6) are the most
specific problem we have tackled in this thesis. It is not so much an example of
formal methods as it is a demonstration of problem-solving and separation of con-
cerns by performing mathematical modelling and calling a solver, i.e. a program
that solves a mathematical problem. SAT solvers form the underpinnings of many
formal methods-related tools such as model checkers [14], but are also good basic
algorithms in their own right. It can be surprising and humbling to try to come
up with a clever special-purpose algorithm and then get beaten, in terms of both
performance and elegance, by a much simpler implementation by translation to
SAT.

8.2 Design automation, quality, and standards compliance
for tools

We have used techniques from computer science, logic, and formal methods to de-
velop railway engineering software tools, but note that the goal has not been to per-



173

Civil works /
construction

Time table
planning

Interlocking
software

development

Drafting and
specification

Safety
analysis

Regulations
compliance
analysis

Capacity
analysis

D
es
ig
n

Co
ns

tru
ct
io
n/
im

pl
em

en
ta
tio

n

Figure 8.1: Process of railway engineering with manual control barrier between
the design phase and the construction/implementation phase. The red box with
interlocking software development is safety-critical and cannot trust inputs, such
as interlocking specifications, coming from non-verified software.

form formally verified software development, but creating analysis tools that help
efficiently create a railway infrastructure design that is of high quality and gives
the intended traffic capacity and is realizable from the civil construction works’
point of view. Only later in the process comes formally verified control system
software development which results in the safety critical interlocking, and is not
in the scope of this thesis. See Figure 8.1.

However, whenever automated tools are introduced to a task that has been
dominated by manual work, there is usually a tendency for the manual control
processes to become weaker, especially if the automated tool seems to perform the
task correctly in most cases – manual control standards will be slipping. To avoid
quality issues carrying over to safety-critical systems, there are strict standards for
using automated tools in development of such control software. Specifically, the
EN 50128 standard for developing safety-critical software for railway applications
classifies development tools into the following categories:

• T1 generates no output that is able to contribute, directly or indirectly, to the
executable code (including the data) for the safety-related system

• T2 takes care of the testing or verification of the design or the executable code,
when errors in the tool itself may prevent it from detecting faults, but cannot
directly create any errors in the executable software;

• T3 generates outputs which are able to contribute, directly or indirectly, to the
executable code for the safety-related system.

As the traditional barriers of manual control are in place between the design
and the construction/implementation phase, where quality control at the hand-
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over is performed by a human, the tools presented in this thesis can be used in
the design phase by each railway engineer individually or in collaborations in a
railway engineering organization. However, if the data and results in these tools
are directly transferred and used in the implementation of software, then the qual-
ification requirements of EN 50128 should apply, classifying them as development
tool of type T2.

8.3 Railway engineering in the future

The big new trend in construction projects, also in railway construction, is the use
of building information modelling (BIM) software for data exchange, collabora-
tion and 3D visualization. BIM tools have the potential to improve the engineering
profession in terms of cross-discipline communication and large-scale project man-
agement. However, the deeply specialized and knowledge-intensive analysis tasks
that are performed within each engineering sub-discipline are typically only sup-
ported by software for the tasks that have the highest impact on cost, since the
cost of tailor-made, process-integrated software development is high. These tasks
are especially demanding and important in railway systems, where central control
makes the various parts of the design highly coupled.

Standard exchange formats for railway information, such as railML, and also
IFC Rail, which is part of the larger IFC BIM data system, have the potential to spur
development of analysis software in a different style. Engineers who are interested
in programming, or small development companies who are interested in railway
engineering, can develop more minimalist, modular programs which do the anal-
ysis tasks. In contrast with the centralized hierarchical organization and process-
oriented world of BIM software from the big players, we believe that the state of
railway engineering software tools can benefit from more specialized software de-
veloped in the style of the Unix philosophy (see [146]). With the current state of
the art in solver programs (which are themselves often minimalist and modular),
it is feasible to solve hard numerical and combinatorial problems, and to maintain
them and change them in face of changing official requirements, without large re-
search and development teams. The resulting tools are of course more limited in
their capabilities and in their user interfaces than a comprehensive, expensive de-
velopment project, but with good standards for data exchange, complemented by
industry-standard heavy-duty tools for visualization and project management, we
believe that the small-scale, composable and modular approach has the potential
to create better special-purpose analysis tools.

The introduction of the ERTMS/ETCS standard in signalling has the potential to
become an international de facto standard, which means that regulations and prac-
tices will become more uniform across different countries. This is a great oppor-
tunity for the international railway engineering community to unite around better
teaching materials, technical documentation, best practices, and analysis software.
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Such materials are often not viable as commercial products, and should instead
be shared for everyone’s benefit, giving increased safety and performance for all
railways around the world.





AJunction manual

The following pages consitute the user manual for the Junction tool as of Septem-
ber 2019. Junction was developed in 2019 as a proof of concept for a more user
friendly end-user tool demonstrating the results presented in Chapters 3, 4, and 6
of this thesis. The program was developed using the Rust programming language¹,
using OpenGL and ImGUI² for graphics and user interface, and using railway anal-
ysis features from the library and command line programs produced during the
work on this thesis. The program is available for download from:

https://luteberget.github.io/junction.

¹See https://www.rust-lang.org/
²See https://github.com/ocornut/imgui
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A.1 Overview

Download (Win/Linux/MacOS)
 

Repository

Junction is a railway operations analysis tool for small-scale infrastructure, such as
construction projects. It focuses on quickly building or importing infrastruture models,
and then letting you dispatch trains to examine capacity properties of the track layout
and signaling equipment. You can manage several dispatch scenarios and see how
their timelines change when you make changes to the infrastructure. Junction also
features an auto-dispatch mode, where you supply a high-level description of
operations, and the program works out the required dispatch commands needed to
execute the operations, resulting in a set of test cases for your signaling design that
help you when making changes as your project progresses.
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Quickly build the infrastructure of tracks and signaling equipment by drawing
lines on a grid. Switches and crossings are automatically identified and displayed
based on the lines.

See Infrastructure.

 

Dispatch individual trains using train routes by pointing to the starting location of a
train route and selecting a route from the menu.

See Dispatching.

Quick tour

•

•
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Build plans representing train operations such as crossing, overtaking, train
frequency, etc., and get a list of possible dispatch patterns that satisfy the plans.
When you continue adjusting the infrastructure, the plans will be updated and you
can check at a glance that operations are still working.

See Planning.

•
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A.2 Getting started

You can install Junction by downloading a binary executable from here:

github.com/luteberget/junction/releases/latest

There is no installation program, only a single executable that you can put wherever
you want.

If you would like to build Junction from source or modify the program, the source code
can be downloaded from the Github repository at github.com/luteberget/junction.
Building the project depends on the Rust compiler toolchain and a C++ compiler
toolchain being installed on your system.

The main window consists of the following components:

The main menu bar (see Main menu).

The infrastructure editor (see Infrastructure).

The dispatch selection menu (see Dispatch).

The dispatch output diagram (see Dispatch).

Installing

•

Building from source

Usage

•

•

•

•
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The main menu let you load, save, import, and export documents, and lets you open
the following tool windows:

File

Import/export railML files.

Edit

Edit vehicles (see Vehicles).

Signal designer (see Signal designer).

View

Log view (see Log).

Model inspector (see Model inspector).

Configure settings (see Settings).

Main menu

•

•

•

•

•

•

•

•

•
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A.3 Infrastructure

The top part of the Junction main window shows the infrastructure, consisting of
tracks, track nodes, and signalling objects. When Junction is first started, or a new
document is created, the infrastructure is empty and the window shows only a blank
canvas and buttons for each editing tool.

The top tool bar has the following tools:

 Select items (hotkey ‘A’).

Left-click on tracks, nodes, or objects to select them. Currently selected items are
highlighted by color. Hold the Shift button to add to selection instead of replacing.
Left-click and drag while the pointer is not over any item to draw a selection
window. When releasing the mouse button, all items side the selection window will
be selected. Left-click and drag while the pointer is over an item to move the item.
If the item is part of the current selection, all currently selected items will be
moved.

Top tool bar

•



184

 Insert object (hotkey ‘S’).

Insert railway signalling objects. The available objects are:

Main signal (with or without distant signal)

Detector (train vacancy detection section boundary)

When inserting a main signal, click on a location beside a track to insert the signal
at that side of the track. The side of the track determines the travel direction the
signal faces. Trains see signals on the right-hand side of the track.

Detectors are placed in the middle of the track, and constitute a section boundary
for a train vacancy detection section.

 Draw tracks (hotkey ‘D’).

Left-click and drag to draw lines representing tracks onto the infrastructure grid.
Whenever more than two lines meet at a grid point, a node type is detected and a
node symbol is displayed. Three lines meeting will produce a switch, and four
lines meeting will produce a crossing. Examples:

 

The bottom tool bar contains the closed version of the dispatch select menu. Click the
tool bar to open the dispatch select menu. See Dispatch.

•

•

•

•

Bottom tool bar
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When a dispatch is opened, the current state of the infrastructure at the time selected
in the diagram view (see Dispatch) is shown by graphics overlaid on the infrastructure
view. These graphics show e.g. train positions and detection section status, but do
not affect the use of the infrastructure editor. You may still edit the infrastructure while
the dispatch state is shown, and the state will be updated accordingly.

The context menu is opened by right-clicking on the infrastructure view. If the pointer
is currently over an item, the selection will be set to that item before opening the
context menu. The context menu contains actions that are relevant to the currently
selected items:

Delete, works for all items. When deleting a node, only the changes from the
default detected node are deleted, as the number of lines meeting at a grid point
will still determine the node type.

On nodes and objects, the available properties of that node or object type are
displayed in the context menu. For example, crossings may have type (a)
crossovers (no switching), (b) single slip (switching in one direction) or (c) double
slip (switching in both directions). Main signals may have distant signals enabled
or disabled.

On boundary nodes and main signals, available train routes are shown. If you click
a train route, it is added to the current active dispatch at the current time. If no
dispatch is active, a new dispatch will be created and opened, and the selected
train route will be added to it. See Dispatch.

On all items, adding the item as a visit location in the currently active plan is
shown. If no plan is currently active, a new plan is opened, a new train is added to
it, and the visit location is added to the train. See Planning.

Context menu

•

•

•

•
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A.4 Dispatch

From the infrastructure view, you can start dispatching trains by either:

The dispatch selection menu is used to open or close the dispatch view, to switch to
another dispatch or to add, delete or rename dispatches.

The dispatch selection menu is always located at the bottom of the infrastructure
view.

The dispatch selection menu presents the dispatching modes:

None: closes the dispatch view, leaving only the infrastructure.

Manual dispatches: dispatches where you can add and remove commands.

Commands are either:

Trains: a train of a given vehicle type appears in the model through a specified
boundary traintrain route.

Route: a train route is activated.

Right-clicking a boundary node and starting a train from there. If no dispatch is
currectly selected in the dispatch selection menu, a new dispatch will be created.

1

Opening the dispatch selection menu and adding a new dispatch.2

Dispatch selection

•

•

•

•



187

Auto dispatch: plan dispatched by giving constraints for train movements, and
see a list of possible dispatches for the plan on the current infrastructure. See
Planning.

The dispatch selection menu has buttons for adding new dispatches of each mode,
renaming, deleting, and opening them. Opening a dispatch opens the dispatch
diagram and planning view (if an auto dispatch is selected). Each auto dispatch also
has an icon showing whether it is currently satisfied or not on the current
infrastructure.

When a dispatch has been opened in the dispatch selection menu, a diagram is
shown at the bottom part of the window. The diagram is a time/distance diagram with
time on the vertical axis and distance (mileage) on the horizontal axis. The diagram
contains:

Squares representing the commands in the dispatch. Right-clicking a command
brings up a context menu where the command can be deleted. Left-clicking and
dragging the command adjusts the time that the command is given.

Boxes representing the train vacancy detection status of each section.

Curves representing the front and the back of each train.

•

Dispatch diagram view

•

•

•
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Left-clicking the diagram view will set the time slider to the time corresponding to the
vertical position of the cursor.

If the currently opened dispatch is a manual dispatch, the dispatch can be edited.

New commands are added to the dispatch from the infrastructure context menu (see
Infrastructure).

Interaction in the dispatch view
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A.5 Planning

Whenever an auto dispatch is selected in the dispatch selection menu (see
Dispatch), the planning menu is opened.

The planning view lets you edit the plan and view all the alternative dispatches that
satisfy the constraints.

Add trains button adds a new row to the bottom of the planning area,
representing a new train with no locations it must visit. Visits can be added to the
train by right-clicking in the infrastructure view and using the context menu to add
a visit to that location to a train.

Result dispatch menu shows whether any dispatches were found, showing a
green checkmark for success or a red cross for fail. Selecting a dispatch from the
menu brings up the diagram view which is used in the same way as the diagram
for the manual dispatch, except that the commands can not be edited.

Trains are shown one in each row of the planning view. Trains can be removed
and their vehicle type can be set. Visits can be added to the train by right-clicking
in the infrastructure view and using the context menu to add a visit to that location
to a train.

Visits are used as follows:

Each visit is shown as a box on the train’s planning row. A train must go to any
of the locations inside each of its visits.

Left-clicking and dragging a visit between other visits (on the same or on
another train) moves the visit. Dragging a visit onto another visit, merges the

•

•

•

•

•
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locations in the dragged visit into the target visit. The train must then visit at
least one of the locations in the visit.

Hovering the mouse over a visit or a location inside a visit, highlights the
location in the infrastructure view.

Right-clicking a location brings up a context menu where visits, locations, or
constraints may be deleted.

The context menu also allows adding new constraints. After clicking the add
constraint menu item, a line will be shown between the clicked visit and the
mouse pointer. If you click on another visit this adds a planning constraint that
the first visit must come before the second visit. All constraints are shown as
lines between the visits.

•

•

•
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A.6 Tool windows

In addition to the main interface (see Getting started), the following tools are available
as separate windows which can be opened from the main menu.

Edit vehicles (see Vehicles).

Signal designer (see Signal designer).

Log view (see Log).

Model inspector (see Model inspector).

Configure settings (see Settings).

Vehicles

Signal designer

Log

Model inspector

Settings

•

•

•

•

•

TABLE OF CONTENTS

•

•

•

•

•
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A.6.1 Vehicles

Vehicles used in dispatches and planning are defined by the following characteristics:

Name

Length

Maximum velocity

Maximum acceleration

Maximum braking de-acceleration

•

•

•

•

•
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A.6.2 Signal designer

The signal designer can be used to synthesise a signalling design given an
infrastructure containing tracks but no signals, and given a set of auto-dispatch
specifications (see Dispatch).

The set of auto dispatches to be used as the basis for the synthesis are shown in the
left part of the window, and can be deactivated if you do not wish for the design to
satisfy this auto dispatch plan.

The right part of the window contains the designs that are output from the synthesis
procedure, along with their score. Select a design from the list to add it to the current
infrastructure.
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A.6.3 Log

The log window shows diagnostic output from all modules of the Junction program.
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A.6.4 Model inspector

The model inspector shows you a tree representation of the analysis model that is
being edited, and also all of the derived information about the model that is used for
dispatching.

The model itself consists of:

Line segments representing tracks.

Node properties, overriding the defaults.

Objects locations and functions (main signal, detector, etc.)

Vehicle type specifications.

Dispatch specifications.

Plan specifications.

The analysis output consists of:

Topology: the inferred track and node types gathered from the line segments.

DGraph: the railway network double-node graph used for simulation.

Interlocking: elementary routes gathered from consecutive main signals and the
detection sections that the train must pass over to get from the begin signal to the
end signal.

Dispatches: one simulation output for each manual dispatch, providing the timeline
used for the dispatch diagram view. For each plan specification (auto dispatch),
there is a (possibly empty) set of simulation outputs.

•

•

•

•

•

•

•

•

•

•
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A.6.5 Settings

The settings window lets you change colors and drawing style. Preset themes are
available from the menu bar.
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