
A MaxSAT approach for solving a new Dynamic

Discretization Discovery model for train rescheduling

problems

Anna Livia Croellaa,∗, Bjørnar Lutebergetb, Carlo Manninob,c, Paolo
Venturad

aSapienza University of Rome, Rome, Italy
bSINTEF, Oslo, Norway

cUniversity of Oslo, Oslo, Norway
dIstituto di Analisi dei Sistemi ed Informatica (IASI) del CNR, Rome, Italy

Abstract

Train scheduling is a critical activity in rail traffic management, both off-
line (timetabling) and on-line (dispatching). Time-Indexed formulations for
scheduling problems are stronger than other classical formulations, like Big-
M . Unfortunately, their size grows usually very large with the size of the
scheduling instance, making even the linear relaxation hard to solve. More-
over, the approximation introduced by time discretization can lead to solu-
tions which cannot be realized in practice. Dynamic Discretization Discovery
(DDD), recently introduced by Boland et al. (2017) for the continuous-time
service network design problem, is a technique to keep at bay the growth of
Time-Indexed formulations and their response times and, at the same time,
ensures the necessary modelling precision. By exploiting the DDD paradigm,
we develop a novel approach to train dispatching and, more in general, to
job-shop scheduling. The algorithm implemented represents the first appli-
cation of a Maximum SATisfiability problem approach to the field. In our
comparisons on real-life instances of train dispatching, our restricted Time-
Indexed formulation solves faster on piece-wise constant objective functions,
while the Big-M approach maintains the lead on linear continuous objectives.

∗Corresponding author
Email addresses: annalivia.croella@uniroma1.it (Anna Livia Croella),

bjornar.luteberget@sintef.no (Bjørnar Luteberget), carlo.mannino@sintef.no
(Carlo Mannino), paolo.ventura@iasi.cnr.it (Paolo Ventura)

Preprint, April 25, 2024

Keywords: Train Rescheduling, Dynamic Discretization Discovery,
Maximum SATisfiability problem

1. Introduction

When trains move through a railway network, they occupy a sequence
of rail resources, such as track segments, platforms, stations, etc. Roughly
speaking, train scheduling amounts to establishing the time in which each
train enters and exits the resources encountered on its path [1]. Train schedul-
ing is central in various phases of traffic planning. and in strategic and
tactical planning - performed from 5 years to months or even to few hours
before the actual movements. In the operational phase, when trains finally
move through the railway, the original schedule must be adjusted in real-
time to factor in erratic train delays, small or large network disruptions,
missing crews, etc. This real-time activity is called train rescheduling or
train dispatching [2] - the latter typically also includes the possibility of rail
path changes. There may be different objectives, depending on the planning
phase. For instance, in the strategic and tactical phase, one is interested in
producing timetables maximizing some service requirement (e.g. the number
of running trains [2]), or some robustness measures [1, 3, 4]. At the oper-
ational level, in contrast, one typically wants to minimize some measure of
the deviation of the actual schedule from the official timetable [2]. Also, we
mention here some competitions that have recently been set ([5], [6], [7])
for solving real-world rail scheduling problems and that gave the impulse
for developing interesting solution approaches ([8]). However, the considered
problems are quite different from the one we tackle here.

From the optimization theory standpoint, train scheduling is a general-
ization of job-shop (with blocking and no-wait constraints, [9]) and thus of
machine scheduling, and as such it can benefit from a vast body of literature.
Even if we limit ourselves to the scientific literature specifically devoted to
train scheduling, the number of studies has grown exponentially in the past
decades. In our literature discussion, we will focus on a few of the most
relevant papers, and refer the interested reader to recent surveys [1, 10, 2].

There are of course different approaches to train scheduling, but here
we are interested in those based on Mixed Integer Linear Program (MILP),
which are the most adopted in the literature [2]. The main issue that such ap-
proaches must face is how to represent the fact that two trains cannot occupy

2

the same track segment (or other pairs of incompatible railway resources) si-
multaneously. Then, in any feasible schedule, one of the conflicting trains
must use the contended resource before the other train, and this gives rise to
a disjunctive constraint on the scheduling variables. Mainly, two classes of
MILP models are adopted in the literature on train scheduling [11]: Big-M
formulations and Time-Indexed (TI) formulations (see [12] for theoretical in-
sights). In Big-M formulations, the time a train i enters a given resource r on
its path is described by a continuous variable tir. In order to represent a dis-
junctive constraint, one must introduce a binary variable and two constraints
which contain the notorious Big-M term, which is a very large coefficient.
In TI formulations the planning horizon is subdivided in time intervals and
a binary variable xir

p will be 1 if train i enters resource r at time p. The fact
that two trains i, j cannot occupy the same resource r implies that, if train
i enters a resource r at time p then, depending on the running times of the
two trains, train j cannot enter r at some times q. In turn, this translates
into packing constraints of the type

xir
p + xjr

q ≤ 1. (1)

When used in a branch-and-bound approach, Big-M formulations typ-
ically return poor bounds, which in turn causes large branching trees. In
contrast, TI formulations return better bounds and smaller trees. However,
depending on the width of the interval in the discretized horizon, TI formu-
lations have two main drawbacks:

1. Oversize. When intervals are small and many, TI formulations typically
contain a very large number of variables and constraints. This fact
tends to slow down the solution time in each branching node by a
factor which is usually (much) larger than the reduction in the tree
size. In the few comparative experiments available in the literature,
the comparison is by far in favour of the Big-M alternative [13].

2. Bad approximation. Larger and fewer intervals result in fewer variables
and constraints, but poorer approximation. As a consequence, feasible
solutions in the model may prove infeasible in practice on the field, or
feasible field schedules may be cut off by the TI model [14, 15].

For the above reasons, there are indeed not too many examples in the
literature of TI formulations devoted to train scheduling. Most of them are

3

devoted to the off-line version (i.e. timetabling, see [1] for a survey) and
only very few to dispatching (such as [16, 17, 18, 19]). In any case, because
the complete formulation would be too large to handle, all these papers re-
sort to delayed column generation procedures [20]. The idea is to start with
only a subset of the variables (and constraints), solve this restricted problem
and then iteratively identify and add missing variables and/or constraints,
and solve again. The process is iterated until some conditions are satisfied,
and typically the final instance is much smaller than the full TI instance.
An alternative search path is solving the Integer Linear Program (ILP) re-
laxation of the full TI formulations, both through the exploitation of La-
grangian relaxation models (for example, with alternating direction method
of multipliers algorithms - [21, 22]) and/or its dual problem combined with
branch-and-price techniques (see [23, 24]). In any case, despite the complex-
ity and ingenuity of the most recent solution algorithms, TI formulations do
not seem to perform better than a standard Big-M formulation, solved by a
standard commercial solver. For instance, compare the behaviour of a recent
TI approach presented in [19] for a medium-size station (Doncaster) with the
experiments over a large junction performed in [25] with a Big-M model at
a microscopic network level and an almost 10-year-old technology.

On the other hand, it would be very handy to be able to solve large in-
stances of train scheduling with TI rather than Big-M formulations. Indeed,
TI formulations are more flexible than the Big-M counterparts in expressing
and manipulating complicated constraints and non-linear objectives as the
ones occurring in the train dispatching framework.

Dynamic Discretization Discovery (DDD) is a technique to solve TI for-
mulations recently introduced by [26] and then further extended in [27, 28,
29, 30]. DDD was developed to cope with the size and approximation issues
above discussed. The main idea applied in this paper is similar to the bucket
discretization described in [31] and the method presented in [32]. We con-
sider for each train i and given resource r a partition of the time horizon into
intervals λ1, . . . , λn of different widths. We hence construct an integer linear
program, called Interval Assignment Problem (IAP), with binary variables x
(see the forthcoming Section 3.2). Then xir

p is 1 if and only if train i enters
resource r at some time tir ∈ λp during the p-th interval (that is, not nec-
essarily at the beginning of the interval, as it is in the full TI formulation).
As a consequence, the packing constraint (1) is introduced only if, for every
choice of tir ∈ λp and tjr ∈ λq, trains are in conflict on resource r. Finally,

4

the cost of each variable is chosen in such a way that the value of the optimal
solution to the DDD formulation is a lower bound on the cost of the optimal
solution to the original problem.

In the DDD approach, intervals and associated variables are generated
iteratively, by further subdividing intervals generated in previous iterations.
At the end of each iteration k, the optimal solution x∗

k to the current 0,1
formulation is calculated. If we can associate x∗

k with a feasible schedule
tk, and the cost of tk is not larger than the cost of x∗

k, then we are done.
Otherwise, we iterate.

Different DDD approaches differ in the way intervals are iteratively gener-
ated, how costs are defined and how feasible solutions to the original problem
are constructed from the current TI solution. Although the idea of a dynamic
discovery is fairly natural, there are many possible ways to implement it and
engineering the algorithm is one of the most delicate phases of its design. In
the present work, we present a viable implementation of the DDD for the train
scheduling problem. As we will show in more detail in the following sections,
such implementation fulfils all three components of the DDD paradigm, as
introduced in [15]. A crucial component of our solution methodology is the
way the IAP is solved at each iteration of the DDD approach. In this work,
we transform it into the problem of satisfying a family of logic clauses (SAT
problem). It turned out that solving IAPs incrementally by means of an
open-source SAT solver is dramatically more efficient than using a state-of-
the-art MILP solver. Note that similar behaviour was observed in the work of
Leutwiler and Corman [33] and Matos et al. [34]. In the former, the authors
authors compared a MILP and a SAT version of specific binary programs,
reporting significant improvements with the SAT formulation. The latter
study combines SAT and machine learning approaches to address periodic
timetabling problems, outperforming state-of-the-art algorithms, including
MILP and heuristics. Formulations with disjunctive precedence constraints
(such as Big-M formulations) make use of continuous variables, and cannot
be directly translated into a SAT problem (in [33] this problem is solved
by using a Satisfiability Modulo Theories (SMT) approach). However, with
a TI formulation the MILP contains only binary variables and all the con-
straints can be directly translated into SAT. The objective function can also
be handled in a MaxSAT problem – the optimization version of the SAT
problem.

MaxSAT solvers implemented on top of standard SAT solvers have been
very successful lately [35]. In this paper, we successfully used the RC2 algo-

5

rithm [36] to solve DDD formulations of the train scheduling problem.
A preliminary version of the ideas developed in this work was presented

in [37] and in [38].
In the end, by our version of the DDD approach plus the transformation

into a SAT problem of the associated binary programs, we were able to obtain
speed-ups over our efficient implementation of the Big-M formulation. In
particular, this is true for linear rounded or stepwise objective functions.
On the other hand, for the case of linear objective functions, the Big-M
formulation still has, on average, better computational performances.

2. Time-Indexed formulation for the Train Re-scheduling Problem

The main purpose of this paper is to show how the DDD mechanism can
be exploited in order to make TI formulations competitive with the classic
Big-M formulation for train scheduling. To this end, in our developments and
comparisons, we focus on a basic version of the problem, which corresponds
to finding a plan for a macroscopic approximation of the rail network [39] in
which stations are collapsed into simple nodes and routing is omitted. Note
that this is also a usual practice in manual train scheduling, and also the
master problem in advanced decomposition approaches (see, e.g., [40, 41,
42, 43]). Accordingly, in our experiments, we will make use of macroscopic
real-life instances.

We look at the operational version of the train scheduling problem, also
called train dispatching or train rescheduling, and, for simplicity, we do not
include the possibility of rerouting. Note that the model can be extended
to cope with multiple routes, for instance as in [33, 44]. In this version of
the problem, we are given a reference timetable (i.e. the timetable which is
published either for passengers or for the railway personnel), and the posi-
tion of the trains at the current time. Note that trains may be delayed with
respect to the reference timetable. Additionally, two trains cannot occupy
the same section of track simultaneously (i.e. have a conflict). Depending
on the subsequent scheduling decisions, particularly those involving meet or
pass locations between trains, some trains may experience a reduction in de-
lay at their destination, while others may encounter an increase. Due to the
real-time nature of the problem, a solution must be computed within a very
short timeframe, typically not exceeding 10 seconds. The goal is to find a
conflict-free schedule for the next hours for all trains, minimizing the sum

6

Figure 1: Schematic representation of a railway infrastructure. Stations are depicted as
filled rectangles.

measure of the delays. In real-life railway systems, such a solution is typi-
cally formulated by human dispatchers, and imposed on trains by scheduling
signals and switch changes, and communicated to drivers. Regardless, once a
solution is implemented, trains will continue their movements, potentially de-
viating from the intended schedule. Consequently, a new (snapshot) instance
is generated and resolved every 10 seconds.

We next introduce our main modeling choices and formalism.

2.1. Problem Definition

Networks, trains and rail paths. In Figure 1 we show a schematic section of
a railway infrastructure which comprises a number of sub-networks, called
lines. Each line is schematized as an alternating sequence of stations and
interconnecting tracks. Stations are special groups of tracks where trains
can stop and perform some activities (such as embarking/disembarking pas-
sengers, refuelling, etc.). Tracks are further subdivided into (one or more)
tracks segments or block sections, that can accommodate at most a train at a
time. Tracks are either bidirectional, i.e. they can be traversed from in both
directions or unidirectional. We let R be the set of all track segments.

In the example, train i travels from west to east reaching station β, while
train j is departing from station γ running west. Note that j can either
proceed on its current line and reach station β and station α, or change to
the lower line and proceed to φ.

If train j continues on the current track, at some point, it will encounter
train i. Since train i and j are running in opposite directions, they are
called crossing trains. Trains running in the same directions and on the
same sequence of tracks are called trailing trains.

7

In the Train Re-scheduling Problem (TRP) addressed in this paper, we
are given a set of trains I and we assume their path across the network is
given.

Definition 1. A rail path is the sequence of contiguous track segments of
the line traversed by a train from its origin to its destination. The direction
of the train depends on the ordering of its track segments, either west-bound
or east-bound.

For each train i ∈ I, we let Ri be the ordered set of track segments of its
rail path. We therefore have that R = ∪i∈IRi. Moreover, we assume that
each track segment is traversed only once. Hence, for r, q ∈ Ri, we use the
notation r ≺i q if r precedes q in the rail path of i. For r ∈ Ri, we also let
lri ∈ Q+ be the minimum amount of time i needs to traverse track segment r
(running time of i on r). For the sake of clarity of the exposition and without
loss of generality, in the following, we assume lr to be integer. Moreover, if
no confusion arises, in the following we use lr for lri . Trains may also stop
in any station r, and we include the value of this given wait or dwell time in
the amount lr.

Next, for each train i ∈ I and each track segment r ∈ Ri of its rail path,
we let tir denote the earliest time i can enter a track segment. This parameter
is either the one specified in the reference timetable, suitably augmented in
its first track segment when i is delayed, or it is derived by using the minimum
running times on the track segments.

Schedule and conflicts. A train schedule is a vector ti ∈ Q|Ri|, where com-
ponent tir denotes the time when i enters track segment r ∈ Ri. The (full)
schedule will be thus the vector τ = {tir | i ∈ I, r ∈ Ri}. For physical
or safety reasons, certain track segments cannot be occupied by two trains
simultaneously. In particular, for each pair of trains i, j let us denote by
Dij ⊆ Ri × Rj the set of rail paths pairs (r ∈ Ri, q ∈ Rj) such that either
i enters r before j enters q or j enters q before i enters r. Let lrqij be the
minimum amount of time that, for safety and business rules, train i needs
to wait for occupying the track segment r after train j used track segment
q (again, if no confusion arises, we use lrq for lrqij). Hence, we either have
tjq ≥ tir + lrq or tir ≥ tjq + lqr, respectively.

Definition 2. A schedule τ = {tir | i ∈ I, r ∈ Ri} is feasible if it satisfies
the following constraints:

8

i) (lower bound constraints) tir ≥ tir, for each i ∈ I, and r ∈ Ri;

ii) (train-rail path precedences) tiq ≥ tir + lr, for each i ∈ I, and each
distinct pair r, q ∈ Ri with r ≺i q;

iii) (disjunctive precedences) either tjq ≥ tir + lrq or tir ≥ tjq + lqr, for each
distinct i, j ∈ I and each (r, q) ∈ Dij.

If a schedule violates iii) for a (r, q) ∈ Dij, then we say that it contains a
conflict (associated with (r, q)); otherwise the schedule is said to be conflict-
free. We assume that any movement (i.e. a train entering a track segment)
must happen before time M , where M is a suitably large integer number,
i.e., tir ≪ M for each i ∈ I, and r ∈ Ri.

Objective function. We say that a schedule is optimal if it minimizes the
delays of trains along their path. We consider separable cost functions. For
each i ∈ I, r ∈ Ri, the delay of train i entering track segment r at time t is
defined as:

dir(t) = max(0, t− tir).

Then, the cost function is defined as Σi∈IΣr∈Ri
cir(tir), and we consider

three cases:

1. Linear continuous: cir(t) = dir(t). In the Big-M formulation, this
objective is implemented by introducing one continuous variable and
one linear inequality for each tir.

2. Linear rounded: cir(t) = ⌊dir(t)/Q⌋, where Q is a constant. We
use Q = 180, i.e., 3 minutes. This objective is similar to the stepwise
function described below, except that it does not have a maximum cost.

In the Big-M formulation, this objective is implemented by introducing
one integer variable and one linear constraint for each tir.

3. Stepwise: Each train has its finite sequence of steps valid for specific
delay ranges. For example (see also Figure 2):

cir(t) =

3 360 < dir(t)

2 180 < dir(t) ≤ 360

1 0 < dir(t) ≤ 180

0 dir(t) = 0

9

sec

c(d)

0

1

2

3

180 360

Figure 2: Example of a stepwise linear convex function considered to cost the delay (in
seconds) of a generic train.

In the Big-M formulation, this objective is implemented through the
introduction of one binary variable.

The use of stepwise objective functions is inspired by the official per-
formance indicators that railway administrations use to report their
punctuality, including the Norwegian railways. This can be considered
to be the high-level goal of railway dispatching. Typically, small de-
viations are not counted in this performance indicator, and instead,
punctuality is defined as the percentage of trains that were less than
e.g. 5 minutes delayed.

It is also interesting to note that, since this cost function has a maxi-
mum cost per train if a train has exceeded the highest delay threshold,
then any additional delay has no additional cost, and the train can hold
at the station as long as necessary to reduce other trains delays. This
models the real-world dispatcher behaviour of making a train cancelled
in case of large traffic disruptions. In practical use, finding an optimal
solution where a train has exceeded the highest delay threshold can be
interpreted as a suggestion to cancel that train.

2.2. A full TI formulation

For ease of reference, we now present a full TI formulation for the TRP.
For each i ∈ I and r ∈ Ri, we call feasibility interval the time interval [tir,M)
in which train i can enter track segment r, i.e. its planning horizon. Let w be
the time-intervals width, we divide each feasibility interval into sub-intervals
of the type:

[
p, p+ w

)
with p ∈ Πir = {tir, tir + w, tir + 2w, . . . , tir +

⌊
M − tir

w

⌋
· w} .

10

We then let Π = {Πir : i ∈ I, r ∈ Ri} and define the following set of binary
variables:

xir
p =

{
1 if train i enters r at time p
0 otherwise

i ∈ I, r ∈ Ri, p ∈ Πir .

The full TI formulation is hence given as follows:

min
∑

i∈I
∑

r∈Ri

∑
p∈Πir cir(p) · xir

p

s.t.
(1)

∑
p∈Πir xir

p = 1, i ∈ I, r ∈ Ri

(2) xir
p + xjq

p′ ≤ 1, p ∈ Πir incompatible with p′ ∈ Πjq

Πir,Πjq ∈ Π and (i, r, p) ̸= (j, q, p′)
xir
p ∈ {0, 1} i ∈ I, r ∈ Ri, p ∈ Πir .

(TI)
The first group of constraints states that x defines a (full) train schedule,
whereas the second imposes schedule feasibility. In particular, looking at
Definition 2, there is a packing constraint of type (2)

• between two variables xir
p and xiq

p′ , with r ≺i q, if and only if p′ < p+ lr

(they violate condition 2.ii);

• between two variables xir
p and xjq

p′ , with (r, q) ∈ Dij, if and only if
p′ < p+ lrq and p < p′ + lqr (they violate condition 2.iii).

Note that condition i of Definition 2 is trivially satisfied by taking a plan-
ning horizon equal to the feasibility interval [tir,M). We highlight that TI
models allow to express complicated (non-linear) objectives: any c function
introduced in the previous section can be translated into the sum of the costs
realized by each chosen interval.

3. The Dynamic Discretization Discovery method

In this section we describe the DDD paradigm (according to [15]) and
how we re-interpret it in the context of the TRP. The paradigm includes:

• the construction of a sequence of (small) approximated models of the
original scheduling problem, that are easier to solve than the full prob-
lem. As anticipated in the introduction, the models D1, D2, . . . are

11

TI formulations (for job-shop scheduling), where the discretization in-
tervals have different widths. The value of an optimal solution x∗

k to
the k-th model in the sequence provides a lower bound on the optimal
solution value to the original problem.

• a function Φ which associates with solution xk a (possibly infeasible)
schedule for the original problem. If the schedule Φ(x∗

k) is feasible for
the original problem, then it is optimal.

• a heuristic mechanism which “repairs” an infeasible schedule for the
original problem and returns a feasible schedule which provides an up-
per bound on the optimal solution value to the original problem (see,
e.g. [45]).

• a dynamic discovery mechanism that allows, when the schedule is not
feasible, to refine the previous model by further discretizing time inter-
vals.

A schematic representation of the DDD paradigm is given in Figure 3.
Observe that the optimal solution x∗

k of the current partial modelDk provides
a lower bound for the original problem. If the associated schedule Φ(x∗

k) is
not feasible for the original TRP, at step 3 we apply a heuristic mechanism for
“repairing” the solution, i.e. for generating a feasible solution τ̄k by exploiting
Φ(x∗

k). In this way, an upper bound on the optimal value of the solution is
also provided. We then refine the time discretization at step 4, making x∗

k

infeasible for the new partial model Dk+1. The process is halted when the
optimal solution is found or, possibly, if the optimality gap is smaller than
a given threshold. We remark that several factors, ranging from the way
the new refinements are generated to the efficiency of the algorithm used to
solve the partial models, affect the performance of the DDD paradigm.

We are now ready to introduce our approximated model, namely the
Interval Assignment Problem (IAP), whose optimal solution defines a lower
bound for the optimal solution of the TRP.

3.1. The Λ-Interval Assignment Problem

Given, for each i ∈ I and r ∈ Ri, the feasibility interval [tir,M), let
Λir = {λir

1 , λ
ir
2 , . . . , λ

ir
nir} be a partition of the feasibility interval such that

λir
p = [hir

p , h
ir
p+1), for 1 ≤ p < nir, hir

1 = tir, and λir
nir = [hir

nir ,M). Also,
let c̄ir(λir

p) = cir(hir
p) be the cost associated with the interval λir

p . That is,

12

Step 1.
Define initial discretization.

Set k = 1.

Step 2.
Solve the current model Dk

and let x∗
k its optimal solution

Is Φ(x∗
k) a feasible

train schedule?

Step 3.
Produce a feasible train schedule τ̄k

by repairing x∗
k

Is τ̄k an optimal
train schedule?

Step 4.
Define Dk+1 by refining Dk

and set k = k + 1

Stop.

no

no yes

yes

Figure 3: Generalized flowchart of the DDD paradigm.

the cost of the interval is the cost of train i entering track segment r at the
beginning of the interval. We finally let Λ = {Λir : i ∈ I, r ∈ R} be the set
of all partitions.

Note first that, for λ ∈ Λir, tir ∈ λ implies that tir satisfies the lower
bound condition (2.i). Now, let i ∈ I and r, q ∈ Ri be distinct track segments,
with r ≺i q.

Definition 3 (Rail Path incompatible intervals). Two distinct intervals
λir
p ∈ Λir and λiq

p′ ∈ Λiq are rail path incompatible if condition (2.ii) is violated

for every tir ∈ λir
p and every tiq ∈ λiq

p′ . That is, assuming r ≺i q, for every

tir ∈ λir
p and every tiq ∈ λiq

p′ , we have tiq < tir + lr.

Corollary 1. The two intervals λir
p = [hir

p , h
ir
p+1) and λiq

p′ = [hiq
p′ , h

iq
p′+1), with

r, q ∈ Ri and r ≺i q, are rail path incompatible if and only if hir
p + lr > hiq

p′+1.

13

In other words, if there is no way for train i to enter r during interval λir
p

and to enter q during time interval λiq
p′ .

Definition 4 (Conflict incompatible intervals). Let i, j ∈ I be two dis-
tinct trains, and let r ∈ Ri, and q ∈ Rj. We say that the intervals λir

p and

λjq
p′ are conflict incompatible if condition (2.iii) is violated for every tir ∈ λir

p

and every tjq ∈ λjq
p′ . That is, for every tir ∈ λir

p and every tjq ∈ λjq
p′ , we have

both tir < tjq + lqr and tjq < tir + lrq.

Namely, train i cannot enter track r in interval λir
p if train j is entering track

q in time interval λjq
p′ .

Corollary 2. Two intervals λir
p = [hir

p , h
ir
p+1) and λjq

p′ = [hjq
p′ , h

jq
p′+1), with i ̸=

j, r ∈ Ri and q ∈ Rj, are conflict incompatible if and only if hjq
p′ + lqr > hir

p+1

and hir
p + lrq > hjq

p′+1.

Figure 4 shows an example for the rail path incompatibility and one for the
conflict incompatibility. For both (rail path and conflict) incompatibilities
the following holds.

Remark 1. Let λ, λ′ be two incompatible intervals and let λ̄, λ̄′ be two inter-
vals such that λ̄ ⊆ λ and λ̄′ ⊆ λ′. Then λ̄ and λ̄′ are incompatible intervals.

Note the difference in the definitions of interval incompatibility: in the
full time-indexed formulation (TI), two intervals are incompatible exactly
if the start times of the intervals are incompatible (i.e. in violation of the
constraints of Definition 2). In contrast, in the IAP’s definition, two intervals
are incompatible if all pairs of time points in the Cartesian product of the
intervals are incompatible (wrt. Definition 2).

In an attempt to construct a feasible schedule τ , we will first find a set
of partitions Λ, then assign an interval λir ∈ Λir for each i ∈ I and r ∈ Ri,
and finally choose tir ∈ λir. This motivates the following definition:

Definition 5 (Λ-interval assignment). Let Ω be the set of all pairs (i, r)
with i ∈ I and r ∈ Ri. A Λ-interval assignment S is a function S : Ω → Λ
that assigns each couple (i, r) ∈ Ω an interval S(i, r) ∈ Λir. Moreover, we
say that S is feasible if S(i, r) and S(j, q) are not incompatible according to
Definition 3 and 4, for each (i, r) and (j, q) ∈ Ω.

14

Λir
hir1 hirp + lr

Λiq

hiq1

λir
p

λiq
p′

(a) Example of rail path incompatibility. We consider a train i and two of its track
segments, r, q, with r ≺i q. Intervals λir

p ∈ Λir and λiq
p′ ∈ Λiq are (rail path)

incompatible, since hir
p + lr > hiq

p′+1.

Λir
hir1 hirp + lrq

λir
p

λjq
p′

Λjq

hjq1
hjqp′+ lqr

(b) Example of conflict incompatibility. We consider two distinct trains i and j
traversing respectively track segments r and q. Intervals λir

p ∈ Λir and λjq
p′ ∈ Λjq

are (conflict) incompatible, since hjq
p′ + lqr > hir

p+1 and hir
p + lrq > hjq

p′+1.

Figure 4: Example of intervals that are rail path incompatible (4a) and conflict incompatible
(4b).

Given a set of partitions Λ, we define the IAP as the problem of finding a
Λ-feasible assignment S of minimum cost c̄(S) =

∑
i∈I

∑
r∈Ri

∑
λir
p ∈Λir∩S c̄

ir(λir
p).

We can indeed formally prove the following theorem:

Theorem 1. If the TRP admits an optimal solution τ̄ = {t̄ir | i ∈ I, r ∈
Ri}, then the IAP admits an optimal solution S∗, and c̄(S∗) ≤ c(τ̄), where
c(τ̄) =

∑
i∈I

∑
r∈Ri

cir(t̄ir).

Proof. Let τ̃ = {t̃ir | i ∈ I, r ∈ Ri} be a feasible schedule, and let ΨΛ be
the function which associates the unique interval ΨΛ(t̃

ir) = λir
p ∈ Λir such

that t̃ir ∈ λir
p . Note that the function is well-defined, since t̃ir ∈ [tir,M] and

Λir is a partition of [tir,M]. We extend the notation by denoting with ΨΛ(τ̃)
the complete set of intervals {ΨΛ(t̃

ir) | i ∈ I, r ∈ Ri}. We prove that ΨΛ(τ̃) is

15

Λ-feasible. Suppose not, then there exist two distinct intervals λir
p , λ

jq
p′ which

are incompatible.
If i = j then the intervals are rail path-incompatible. Assume r ≺i q.

Then we must have that tiq < tir + lr for every tir ∈ λir
p and every tiq ∈ λiq

p′ ,

a contradiction since τ̃ is feasible and thus t̃iq ≥ t̃ir + lr.
If i ̸= j then the intervals are conflict-incompatible. We arrive at a

contradiction again by using a similar argument as above.
So, ΨΛ(τ̄) is Λ-feasible. Now, since c is non-decreasing, we have that:

c̄(ΨΛ(τ̄)) :=
∑
i∈I

∑
r∈Ri

c̄ir(ΨΛ(t̄
ir)) ≤

∑
i∈I

∑
r∈Ri

c(t̄ir) = cir(τ̄).

Let Φ be the function that assigns to each time interval [h, h+) the time
instant t = h. Moreover, we extend such a definition to a set of intervals
S ⊆ Λ, so to let τ = Φ(S) be the schedule {tir = hir

p | λir
p = [hir

p , h
ir
p+1) ∈ S}.

Therefore, because of Theorem 1, if S∗ is a Λ-feasible set of intervals of
minimum cost, with respect to every given partition Λ, and τ ∗ = Φ(S∗) is
feasible, then τ ∗ is also optimal for the TRP.

3.2. A 0,1-LP for the Interval Assignment Problem

We now present a 0,1 Linear Program (0,1-LP) for the IAP. We are given
the set of partitions Λ = {Λir : i ∈ I, r ∈ Ri}, and we want to find a complete
interval assignment S of non-incompatible intervals of minimum cost c̄(S).
To this end, we introduce the following set of binary variables:

xir
p =

{
1 if interval λir

p ∈ S
0 otherwise

i ∈ I, r ∈ Ri, λ
ir
p ∈ Λir .

Hence, the IAP can be formulated as follows:

min
∑

i∈I
∑

r∈Ri

∑
λir
p ∈Λir c̄ir(λir

p) · xir
p

s.t.
(1)

∑
λir
p ∈Λir xir

p = 1, i ∈ I, r ∈ Ri

(2) xir
p + xjq

p′ ≤ 1, λir
p ∈ Λir incompatible with λjq

p′ ∈ Λjq

Λir,Λjq ∈ Λ and (i, r, p) ̸= (j, q, p′)
xir
p ∈ {0, 1} i ∈ I, r ∈ Ri, λ

ir
p ∈ Λir .

(IAP)

16

Constraints (1) ensure that x is the incidence vector of a complete interval
assignment S, whereas constraints (2) guarantee that the intervals in S are
mutually non-incompatible. Also observe that if all the intervals λir

p have
unit length, then the formulation (IAP) reduced to a full TI formulation for
the TRP with interval width w = 1 (see formulation (TI) given in Section
2). In turn, if, as assumed, all involved constants are integers (e.g. number
of seconds), then the full TI formulation is exact.

Therefore, the following holds:

Observation 1. If the set of partitions Λ is such that hir
p+1 = hir

p +1, for all
i ∈ I, r ∈ Ri, p ∈ {1, . . . , nir − 1}, then exactly one of the following claims
holds: i) IAP and TRP are both infeasible; ii) the value of an optimal solution
of the IAP equals the value of an optimal solution of the corresponding TRP.

3.3. A basic MaxSAT formulation for the Interval Assignment Problem

Although ILP (and MILP) formulations are commonly used for solving
train scheduling problems, the IAP formulation uses only binary variables,
which opens up the possibility of translating the problem into a Boolean
satisfiability (SAT) problem.

A SAT problem is usually formulated in logical terms, where a Boolean
variable y can take values true or false. A literal ℓ is a variable y or its
negation y. A clause c = ℓ1∨ℓ2∨. . .∨ℓn contains one or more distinct variables
and is satisfied if it has at least one literal assigned to true. A conjunctive
normal form (CNF) formula ϕ = c1∧ c2∧ . . .∧ cm is a conjunction of clauses.
Given a CNF formula, the SAT asks whether there exists an assignment
to the variables that satisfies all the clauses. The optimization version of
the SAT problem is the so-called (partial) weighted MaxSAT problem: given
a CNF, we have that only a (possibly empty) subset of its clauses (hard
clauses) must be satisfied, whereas each of the remaining (soft) clauses is
given a weight. The goal is to find an assignment of values to the Boolean
variables such that all hard clauses are satisfied and the sum of the weights
of the satisfied soft clauses is maximized. Exact MaxSAT solvers have made
large advances in the last decade, and are applied to industrial problems in
scheduling, timetabling, decision trees, and computer hardware and software
verification [35, 46].

It is straightforward to see that MILP problems are a generalization of
SAT problems, but for readers who are unfamiliar with logic notation, we
show here a simple transformation of a SAT problem into a MILP feasibility

17

problem. Namely, we introduce a binary variable xi for each Boolean variable
yi. Assigning value 1 (0) to xi corresponds to assigning value True (False) to
yi. Next, for each clause c = y1 ∨ y2 ∨ . . . ∨ yk ∨ yk+1 ∨ . . . ∨ yn, where the
first k literals are positive variables whereas the remaining are negated, we
introduce the constraint

x1 + . . .+ xk + (1− xk+1) + . . .+ (1− xn) ≥ 1 (2)

Then the CNF formula is satisfiable if and only if there exists a binary
vector x which satisfies all constraints (2).

The opposite direction, converting MILPs to SAT problems, does not
have a corresponding simple transformation (though several special cases
have been studied extensively, see [47]). In the following, we show that the
IAP can be converted into SAT. Indeed, we will show how to formulate the
IAP as a MaxSAT problem. Consider the 0,1-LP (IAP) restated in a more
compact form:

min
∑

i∈V wixi

s.t.
i)

∑
i∈Q xi = 1, Q ∈ Q

ii) xi + xj ≤ 1, {i, j} ∈ E
xi ∈ {0, 1} i ∈ V .

(IAP-compact)

There are two types of constraints: partitioning constraints i), and (edge)
packing constraints ii). Note that Q is a set of subsets of V , and E is a set
of unordered pairs of V .

The 0,1-LP (IAP-compact) can be reduced to (partial) MaxSAT by con-
structing an equivalent CNF formula. In particular, each binary variable
corresponds to a Boolean variable, each term in the objective function cor-
responds to a soft clause, and each constraint corresponds to a hard clause
or a conjunction of hard clauses (see [46]).

First, for i ∈ V , we associate a Boolean variable yi with each binary
variable xi, and its negation yi with 1− xi.

• Each term wixi in the objective function of (IAP-compact) is repre-
sented by a soft clause c = yi (a unit disjunction) with weight wi.

• Each edge packing constraint ii) is first represented as the equivalent
edge covering constraint: (1− xi) + (1− xj) ≥ 1, to which corresponds

18

the clause
yi ∨ yj. (3)

• Each partitioning constraint i) is first transformed into the conjunc-
tion of a covering constraint

∑
i∈Q xi ≥ 1 and a packing constraint∑

i∈Q xi ≤ 1. The covering constraint is immediately reduced into the
clause

∨
i∈Q yi. As for the packing constraint, we first replace it with an

equivalent conjunction of a set of edge packing constraints: xi+xj ≤ 1,
for i, j ∈ Q, i ̸= j. Then, as for the constraint ii), each edge packing
constraint is transformed into the clause (3).

There are, in general, multiple ways of converting various types of con-
straints into clause form, with different trade-offs (see [48]). Especially for
the at-most-one constraint and its generalization, at-most-k, many different
algorithms and techniques have been studied. The pairwise encoding (3) is
presented here for simplicity, but any of the alternative at-most-one encod-
ings can be used (see [49]).

3.4. A MaxSAT reformulation using lower bound variables

It is well known that reformulations of SAT and MaxSAT problems can
have a huge impact on solver performance (see [48]). Even different for-
mulations that are deemed equally strong in the linear programming sense
(such as those corresponding to an affine transformation) may exhibit widely
different performance characteristics. Motivated by this observation, we re-
formulated the MaxSAT encoding of IAP. In this reformulation, variables
yirp , corresponding to intervals λir

p ∈ Λir, are true not only for the selected
interval but also for all preceding intervals in Λir. This implies that interval
λir
p is selected if yirp = 1 and yirp+1 = 0. The constraints for the problem are

then as follows:

• To ensure that there is exactly one interval λir
p ∈ Λir s.t. yirp = 1 and

yirp+1 = 0, we need for each p and each Λir,

yirp+1 ∨ yirp (4)

• To exclude incompatible intervals λir
p and λjq

p′ , we need

yirp ∨ yirp+1 ∨ yjqp′ ∨ yjqp′+1 (5)

19

Λir
hir1 hirp

yir1 = 1 yirp−... = 1 yirp−1 = 1 yirp = 1 yirp+1 = 0 yirp+... = 0

Figure 5: Lower bound variables representation for selecting interval λir
p . All preceding

intervals in Λir are set to 1 and all subsequent intervals are set to 0.

Note that for rail path incompatibilities, this can be simplified to

yirp ∨ yiqp′ .

This reformulation offers the advantage that iteratively subdividing inter-
vals, as described in the algorithmic framework below, can be done without
invalidating any constraints. Specifically, we start from the partition

Λir =
{
λir
1 , . . . , λ

ir
p , . . . , λ

ir
n

}
and we then subdivide interval p into two new intervals in positions p and
p+ 1 to get

Λ̃ir =
{
λ̃ir
1 , . . . , λ̃

ir
p , λ̃

ir
p+1, . . . , λ̃

ir
n+1

}
Now, equation (4) for λir

p+1 becomes, in the new partition Λ̃ir,

ỹirp+2 ∨ ỹirp ,

and equation (5) for λir
p and λjq

p′ becomes

ỹirp ∨ ỹirp+2 ∨ ỹjqp′ ∨ ỹjqp′+1.

These equations remain valid within the new partition Λ̃ir but are redundant.
However, keeping these redundant constraints can be beneficial when solving
a sequence of IAP problems, as detailed in Section 4 below. This approach
ensures that only the task of adding constraints is required (i.e., we do not
need to remove or modify any constraints) when moving from one iteration to
the next. This enables the solver to start the solving process using the valid
derived constraints and lower bounds from the previous iteration, providing
potential performance benefits.

20

4. The algorithmic framework

In the following, we describe our implementation of the Step 1, Step 2,
and Step 3 of the DDD paradigm, exploiting the definition of the IAP that
we gave in the previous section.

We propose an algorithm, named DDD-TRP, that iteratively solves a
IAP instance Dk defined on a partition set Λk = {Λir

k : i ∈ I, r ∈ Ri}. Then,
we prove that the DDD-TRP terminates after a finite number of steps,
returning the optimal solution of the original TRP.

Note that, for each iteration k, the set Λk is always more refined with
respect to the partition set Λk−1 defined at the previous iteration.

We can also associate with each set of partitions Λk a IAP graphGk(Vk, Ek).
In particular, we have that Vk :=

⋃
i∈I,r∈Ri

Λir
k , with Λir

k = {λir
1 , λ

ir
2 , . . . , λ

ir
nir},

while the set Ek contains an edge of the type {λir
p , λ

jq
p′ } for each incompatible

couple of intervals in Λk (with i, j and r, q not necessarily distinct).

4.1. Initialize the DDD-TRP (Step 1)

We define the initial problem D0 of the IAP by just considering, for each
track segment used by each train, its feasibility interval λir

1 = [tir,M). Thus,
we set Λ0 = {Λir

k = {λir
1 } : i ∈ I, r ∈ Ri}.

4.2. Solve the IAP (Step 2)

Observe that, for all i ∈ I and r ∈ Ri, the set of nodes of Λ
ir
k ∈ Λk defines

a clique in the graph Gk. We denote such cliques as resource assignment
cliques. Moreover, we can identify a second type of clique: given two con-
secutive track segments r and q traversed by a train i, such that r ≺i q, for
each λir

p in the considered partition Λk, we can write a single fixed precedence
clique constraint defined by the rail path incompatibilities (see Definition 3)
as follows:

xir
p +

∑
λiq

p′ | h
iq

p′<hir
p +lr x

iq
p′ ≤ 1 i ∈ I, r, q ∈ Ri with r ≺i q, λ

ir
p ∈ Λip

k .

(6)
One can visualize an example of a fixed precedence clique in Figure 4a. Here
all intervals of Λiq highlighted in cyan belong to the clique defined by λir

p .
Resuming, the IAP Dk associated with Λk, and solved at Step 2 of the

DDD-TRP, reduces to find a minimum weighted set S∗
k of the IAP graph

Gk that intersects:

• each resource assignment clique exactly once,

21

• each fixed precedence clique at least once,

• and each incompatible couple of intervals at least once.

4.3. Repair an infeasible schedule (Step 3)

Let τ̃ = {t̃ir : i ∈ I, r ∈ Ri} be the (infeasible) schedule we want to repair
to (possibly) get a feasible schedule for TRP. We build the LP program LP0

with variables tir, lower bound constraints tir ≥ t̃ir : i ∈ I, r ∈ Ri and all
the time precedence constraints associated with the train-rail path (i.e. with
Constraints 2.ii). We let the objective be the sum of the delays. Then, let
τ̄0 = t̄ir0 : i ∈ I, r ∈ Ri be the optimal solution of LP0 and j := 1.

At the j-th iteration, if τ̄j−1 = {t̄irj−1 : i ∈ I, r ∈ Ri} is feasible for the
TRP, we are done. Otherwise, we build the linear program LPj from LPj−1

by (a) replacing the lower bound constraints with the constraints tir ≥ t̄irj−1 :
i ∈ I, r ∈ Ri and (b) including one additional time precedence constraint.
Indeed, since τ̄j−1 is infeasible and all train-rail path precedence constraints
are satisfied, there exists at least one disjunctive constraint of type 2.iii which
is violated by τ̄j−1. We add the one with the smallest left-hand side, i.e. the
“first violated” in chronological order. Then we generate the new linear
program by adding one of the two terms of the disjunction, namely the one
that produces the smallest increase in the objective function of TRP. We
solve again and obtain a new schedule τ̄j+1 and iterate until the schedule
is feasible or the current linear program is infeasible. Note that since the
number of disjunctive constraints is finite, the repairing mechanism always
terminates.

4.4. Refine the IAP (Step 4)

Let Λk be the set of partitions defined at iteration k of the DDD-TRP,
Gk be the corresponding IAP graph, and let S∗

k be the optimal set of Gk (i.e.
the optimal solution of the IAP Dk associated with Λk). Now, as already
noticed, if τ ∗k = Φ(S∗

k) is a feasible schedule then it defines an optimal solution
to the TRP and we are done. So, assume τ ∗k is not feasible. This means that
S∗
k contains two intervals, say λir

p = [hir
p , h

ir
p+1) and λjq

s = [hjq
s , h

jq
s+1) that are

compatible (since S∗
k is Λk-feasible) but such that tir = hir

p and tjq = hjq
s

violate either constraint ii) or constraint iii) of Definition 2. We consider
separately the two cases.
A train-rail path precedence is violated. In this case, i = j and we can assume,
w.l.o.g., that r ≺i q. Since t

ir and tiq violate a train-rail path precedence, then

22

M

Λir
k

hirp + lr hirp+1

Λiq
k

hiqs hiqs+1 M

λir
p

λiq
s

(a) Violated train-rail path precedence between two track segments traversed by train
i, with r ≺i q.

M

Λir
k+1

hirp + lr hirp+1

Λiq
k+1

Mhiqs hiqs+1

λiq
s′ λiq

s′′

(b) Resolution of the violated train-rail path precedence shown in Figure 6a.

Figure 6: Example of resolution of a violated train-rail path precedence at Step 3 of the
DDD-TRP.

tir + lr > tiq. Moreover, as λir
p and λiq

s are compatible in S∗
k , then tir + lr <

hiq
s+1. Therefore, we construct Λk+1 from Λk (and then Gk+1 from Gk) by

replacing the interval λiq
s with the two smaller intervals λiq

s′ = [hiq
s , t

ir + lr)
and λiq

s′′ = [tir + lr, hiq
s+1).

Observe that, in Λk+1, the intervals λir
p and λiq

s′ are incompatible and, as
a consequence, the optimal set S∗

k+1 (hence the optimal schedule τ ∗k+1) that
will be calculated at the next iteration of the DDD-TRP cannot contain both
λir
p and λiq

s′ (t
ir = hir

p and tiq = hiq
s). This is equivalent to adding a vertex

for the new interval λiq
s′′ and an edge {λir

p , λ
iq
s′} in the set Ek+1. In other

words, we are inserting a term xiq
s′ to the fixed precedence clique associated

with xir
p . Concurrently, we also add a new fixed precedence clique relative to

the interval λiq
s′′ itself. Figure 6 shows how starting from a violated train-rail

path precedence (Figure 6a), new intervals λiq
s′ and λiq

s′′ are generated (Figure
6b).

A disjunctive precedence is violated. In this case, we have that i ̸= j, tjq <
tir + lrq and tir < tjq + lqr. Since λir

p and λjq
s are compatible in S∗

k , we

have that tir + lrq < hjq
s+1 and tjq + lqr < hir

p+1.We obtain Λk+1 from Λk by

23

M

Λir
k

hirp + lrq

Λjq
k

M

hjqs + lqr

hjqs+1

λir
p

λjq
s

(a) Violated disjunctive precedence between two different trains i and j traversing
the non-shareable track segments r and q.

M

Λir
k+1

hirp + lrq

Λjq
k+1

M

hjqs + lqr

hjqs+1
λjq
s′ λjq

s′′

λir
p′ λir

p′′

(b) Resolution of the disjunctive precedence shown in Figure 7a.

Figure 7: Example of resolution of a violated disjunctive precedence at Step 3 of the
DDD-TRP.

breaking λir
p into λir

p′ = [hir
p , t

jq + ljqqr) and λir
p′′ = [tjq + ljqqr, h

ir
p+1), and λjq

s into

λjq
s′ = [hjq

s , t
ir + lrq) and λjq

s′′ = [tir + lrq, hjq
s+1).

Again here, we observe that the newly generated intervals λir
p′ and λjq

s′ are

now incompatible. This implies adding an edge {λir
p′ , λ

jq
s′ } to Ek+1 since τ

∗
k+1 =

Φ(S∗
k+1) cannot contain the couple (tir = hir

p , t
jq = hjq

s). Also, note that other
conflicts and rail path incompatibilities may be generated by the definition of
the new intervals. Consequently, the new incompatibilities should be added
to the set Ek+1. In Figure 7 we visually present the generation of the new
intervals.

In both cases, once a new interval is defined, we can propagate the new
time points discovered along the train rail path to ensure a time consistency
with the intervals belonging to subsequent train track segments. With some
abuse of notation in the following, given a track segment r traversed by a
train i, we indicate the subsequent track segment on the rail path of i with
the index (r+1). Then, said λir

p = [hir
p , h

ir
p+1) a newly generated interval and

λ
i(r+1)
s = [h

i(r+1)
s , h

i(r+1)
s+1) = max{Λi(r+1)

k ∋ λ
i(r+1)
s : h

i(r+1)
s < hir

p + lr},
we define two new intervals of the type λ

i(r+1)
s′ = [h

i(r+1)
s , hir

p + lr) and

24

λ
i(r+1)
s′′ = [hir

p + lr, h
i(r+1)
s+1). This procedure allows us to identify a lower

bound h
i(r+1)
s′′ for (r+1) that avoids the violation of the rail path constraints.

The propagation is thus recursively applied on λ
i(r+1)
s′ until the final destina-

tion track segment is reached. Along with the creation of these intervals, we
need to add every rail path and/or conflict incompatibility arising between
the intervals in Λk+1.

Summarizing, said Gk(Vk, Ek) the IAP graph at a generic iteration k, the
DDD-TRP follows the steps reported below. Note that, since we apply a
rail path time consistency each time we propagate a new interval, the feasi-
bility check on the associated schedule τ ∗k can be limited to the disjunctive
constraints.

25

DDD-TRP k-th iteration

Data: Graph Gk(Vk := Λk, Ek), functions Φ(S) : Λk → IR+ and c̄(S) : Λk → IR+.

Solve the IAP (Step 2)

Find S∗
k on Gk(Vk, Ek) and compute τ∗k = Φ(S∗

k)

♢Check for solution optimality

For each i, j ∈ I, i ̸= j, and r ∈ Ri, q ∈ Rj with {r, q} ∈ D
If tir, tjq ∈ τ∗k violate a disjunctive precedence (Definition 2.iii) Then

(i) from λir
p ∈ S∗

k define λir
p′ = [hir

p , tjq + ljqqr) and λir
p′′ = [tjq +

ljqqr, h
ir
p+1), set Λ

ir
k = Λir

k \ {λir
p } ∪ {λir

p′ , λir
p′′};

(ii) from λjq
s ∈ S∗

k define λjq
s′ = [hjq

s , tir + lrq) and λjq
s′′ = [tir +

lrq, hjq
s+1), set Λ

jq
k = Λjq

k \ {λjq
s } ∪ {λjq

s′ , λ
jq
s′′};

(iii) set Ek = Ek ∪ {λir
p′ , λ

jq
s′ }.

If ∄ violated disjunctive precedence Then
Stop. τ∗ = τ∗k with value c(τ∗) = c̄(S∗

k).

Repair the IAP solution (Step 3)

Find τk by repairing τ∗k .

♢Check for solution optimality

If c(τk)− c̄(S∗
k) < ϵ Then

Stop. τ∗ = τk with value c(τk).

Refine the IAP (Step 4)

For each newly defined interval λir
p

(i) update resource assignment clique: for each λir
p′ ∈ Λir

k \ {λir
p } set

Ek = Ek ∪ {λir
p , λir

p′};

(ii) update fixed precedence clique (Definition 3): for each λiq
s ∈ Λiq

k with
(q + 1) = r such that hiq

s + liq > hir
p+1 add a new edge {λir

p , λiq
s } to

Ek;

(iii) update conflict incompatibility (Definition 4): for each λiq
s ∈ Λiq

k with

i ̸= j, {r, q} ∈ D, such that hir
p+1 < hjq

p′ + lqr and hjq
p′+1 < hir

p + lrq

add a new edge {λir
p , λjq

s } to Ek;

(iv) propagate along the train rail path: if exists (r + 1) ∈ Ri, let

λ
i(r+1)
s = max{Λi(r+1)

k ∋ λ
i(r+1)
s | h

i(r+1)
s < hir

p + lr}, define

λ
i(r+1)
s′ = [h

i(r+1)
s , hir

p + lr) and λ
i(r+1)
s′′ = [hir

p + lr, h
i(r+1)
s+1), set

Λ
i(r+1)
k = Λ

i(r+1)
k \ {λi(r+1)

s } ∪ {λi(r+1)
s′ , λ

i(r+1)
s′′ }.

Set Vk+1 = Vk and Ek+1 = Ek

k = k + 1

26

4.5. Convergence of the algorithm

We now show that the DDD-TRP converges to the optimal solution in
a finite number of steps. We remark that our approach for solving the TRP
can be also seen as a dual procedure with both row and column generations.
At each iteration k, a restricted relaxation of the basic problem is solved,
if the solution cannot be converted into a feasible solution for the original
formulation (at least) a row is added to the constraints groups and (at least)
a new variable is generated and added to the problem Dk+1. Otherwise,
Theorem 1 ensures that a solution of the same value can be obtained for the
TRP. In particular, we prove the following:

Theorem 2. The DDD-TRP terminates providing the optimal solution of
the TRP or proving that the problem is infeasible.

Proof. Theorem 1 shows that at each iteration k of the DDD-TRP, the
value of the optimal solution S∗

k defines a lower bound on the value of the
optimal solution of the TRP. At the first iteration of the algorithm, if the
heuristic mechanism fails to produce a feasible solution at step 3, we can
conclude that the problem is infeasible. Otherwise, each partition Λir is de-
fined by one interval (see Section 4.1). As shown in Section 4.4, at each
iteration k, we add at least one interval to the current set Λk. Since the
running time values lrt are assumed to be integral, the maximum number of
intervals that can be defined for each resource r ∈ Ri is then M . There-
fore, Observation 1 implies that, after at most

∑
i∈I |Ri|M iterations, the

DDD-TRP terminates either providing the optimal solution for the TRP.

5. Computational experiments

In this section, we report the results of the computational experiments
conducted to assess the performance of the DDD approach in the train re-
scheduling context and compare it with alternative approaches, especially
the Big-M approach, which is the main alternative competitor.

We solve the DDD-TRP using both a MILP solver and a MaxSAT solver
to compare their effectiveness.

The test set consists of 72 real-life instances derived from two single-track
railroad networks, later named Line A and Line B, of the Norwegian railway.
More details are given below.

27

5.1. Instances
The instances considered refer to portions of a physical railway network

infrastructure, comprising stations and single-tracks, and including junctions
between different lines. The lengths of tracks may vary considerably. A set
of trains with different speed classes traverses the network. For each of them,
we are given a desired timetable. At a given instant in time, the state of the
network is provided by the current position of all trains and their deviations
from the scheduled departure times. Note that when taking a snapshot of
the network at a particular instant, a train may be on time, i.e. its arrival
and departure times adhere to the timetable schedule, or it may be affected
by a delay. Besides, a train can be either positioned at a station (i.e. in
station) or on an open line track (i.e. in connection). In the second case,
the delay refers to the time at which the train entered the last track segment
traversed, i.e. the one it is occupying at that moment. We do not consider
the possibility of accelerating or decelerating the rolling stock, therefore we
consider the train speeds, and consequently the train travel time, as fixed.

Line A is a 124 km long line for passenger trains and includes 30 stations
and 33 track segments. The A-instances present on average a set of 20 trains
with an average of 19 track segments each. Line B is smaller (115 km, 20
stations and 25 tracks) and is crossed by commuters and freight trains. The
B-instances present, on average, 11 trains and 15 track segments for each
scheduled path. See Table D.1 in Appendix D for more details about the
original 24 test instances. We emphasize that, since the instances of Line
A include in most of cases more trains than those belonging to Line B, the
number of potential conflicting track segments can be significantly higher for
them, thus they will produce more complex models.

The snapshots were extracted from the real-time train information sys-
tem of the Norwegian railway. Most of the time, most of the trains are
running on time, which makes the re-scheduling problem easy: simply fol-
low the prescribed timetable. So, a random sampling of snapshots would
not be an interesting benchmark. Real-time train re-scheduling optimization
systems will have harder challenges and more value to the dispatchers when
many trains have large delays. When large delays happen, there are many
more possible trade-offs to make between delays on different trains, and the
optimization search tree becomes much larger. To simulate a more difficult
setting, we first modified all 24 instances to have a mandatory dwelling time
in the station equal to the timetable dwelling time. This removes the pos-
sibility for trains to catch up with their delay by shorter dwelling times.

28

Secondly, we created a third set of 24 instances with increased running time
for travelling from one station to the next, without adjusting the timetable
accordingly, to simulate slow-downs. Such slow-downs may for example be
caused by signalling equipment faults. The problem instances are available
(see https://github.com/luteberget/maxsattrainscheduling).

In the following, we denote the original instance set as O, the set of
instances with mandatory dwelling time added to stations as S, and the set
of instances obtained by adding extra time to tracks as T. We will refer to the
instances with the notation I l

n, where, by l ∈ {AO,BO,AS,BS,AT,BT} we
indicate the line (A,B) and the test set (O,S,T) to which they belong, and
by the subscript n ∈ {1, ..., 12} the instance number.

Objective functions. Following the normal practice in the railway industry,
we minimize the delays of trains only at their final destination stations. We
ran the computational experiments using the objective functions defined in
Section 2. To model the three functions, in the Big-M formulation we intro-
duced one continuous variable and one linear inequality for each tif (Linear
continuous), one integer variable and one linear inequality for each tif

(Linear rounded), and one binary variable per step (Stepwise).
The DDD-TRP implements each of these cost functions by simply eval-

uating them for each new binary variable that is added to the problem, and
adding the corresponding objective component for the binary variable.

5.2. Computational results and discussion

This section reports the computational results for the Gurobi Big-Mmodel,
the Gurobi IAP MILP model, and the MaxSAT incremental RC2 DDD
model. A timeout of 2 minutes was used.

We highlight that the algorithms work by iteratively removing conflicts
(infeasibility) while increasing the lower bound and using the primal repair
heuristic introduced in Section 4.3 to possibly produce feasible solutions dur-
ing the search. The repair heuristic is also used in the Big-M row generation
algorithm, also there taking lower bounds from the optimal solution of the
relaxed problem solved at every iteration. On some instances, both for the
DDD and Big-M implementations, the heuristic causes the solver to termi-
nate earlier by closing the gap. On instances where the solvers timed out,
the heuristic produced a feasible solution in all cases, and the remaining
optimality gap is reported in the tables of Appendix D.

29

For a complete list of all tested combinations of formulations and solvers,
we direct interested readers to Appendix B.

In our experiments, we observe that the number of iterations and the
number of solved conflicts can vary significantly from instance to instance.
Both these indicators affect the overall solution time. In fact, at each itera-
tion k, a new IAP has to be solved and its complexity grows with the number
of nodes and edges defined in Gk. We observe that the DDD-TRP solved
with a MaxSAT approach requires a higher number of iterations before it
finishes. This can be explained by two causes: first, the number includes
both refinements of the IAP graph Gk (when the SAT solver finds a feasible
solution), and refinements of the objective function (when the SAT solver
reports an infeasible problem), due to how the RC2 algorithm works. Sec-
ondly, we implemented only the least amount of refinement of the graph Gk

required, omitting step 3-(iv) of DDD-TRP. Because the SAT solver han-
dles incremental additions to its problem instance well, we believe this to
give only a negligible performance impact (including step 3-(iv)). Both the
SAT and MILP versions of the DDD-TRP spend most of their time in the
solving phase and only a very small fraction of time (< 3%) on building,
conflicts checking and refining the IAPs.

Figure 8 shows the performance profiles of the three algorithms for each
of the objective types – linear continuous, linear rounded, and stepwise, re-
spectively. Aggregated statistics for the test instances are provided in Table
1. For a comprehensive overview of computational results, please refer to
Tables D.2-D.4 within Appendix D.

Linear continuous objective. Examining the performance of the Big-M for-
mulation with the linear objective, it is observed that the MaxSAT solver for
the DDD-TRP emerges as the fastest approach in 60% of the problems within
the test sets. However, for the remaining instances, the Big-M formulation
exhibits superior performance. We believe this to be a general weakness with
exact weighted MaxSAT based directly on standard SAT solvers because such
algorithms (including RC2) work by finding logical conflicts between subsets
of components of the objective and creating cardinality constraints (linear
constraints), which are costly to translate into SAT. When weights vary a
lot, such as a cost of 1-second delay for one train in conflict with a delay
of 10 minutes for another train, or when conflicts span over a large sub-
set of the objective components, representing this trade-off exactly as SAT
constraints is computationally expensive. On the contrary, the MILP solver

30

(a) Linear continuous objective. (b) Linear rounded objective.

(c) Stepwise objective.

Figure 8: Performance profiles based on the CPU times of solved instances.

demonstrates superiority in handling such intricate numerical structures, suc-
cessfully resolving 60 out of 72 instances. Nevertheless, despite its efficiency
in solving, the MILP solver exhibits significantly slower performance, with
the MaxSAT solver being on average 20 times faster for the 57 instances it
successfully addressed.

Linear rounded objective. When we change the objective function to the step-
wise and linear rounded forms, the picture changes completely in favour of
the MaxSAT. In Table 1, it is observed that when employing the linear
rounded objective, all the problem instances successfully solved by Big-M
were also resolved by DDD-TRP using the MaxSAT approach (68 out of
72 instances). Notably, the MaxSAT approach demonstrated superior speed,
typically ranging from 2x to 10x faster. Furthermore, the MILP solver ex-

31

Table 1: Number of instances solved and average computational times for the three algo-
rithms, aggregated by objective types and test sets.

Solved Avg Time (ms)
Obj Set Big-M MILP MaxSAT Big-M MILP MaxSAT

Cont.

O 24 22 22 181 5,511 1,334
S 22 20 19 1,285 5,893 349
T 22 18 16 2,929 15,041 8,524

all 68 60 57 1,427 8,497 3,024

O 24 22 24 132 722 34

Round.
S 22 21 22 1,857 7,505 856
T 22 19 22 2,902 8,501 1,787

all 68 62 68 1,587 5,403 867

O 24 24 24 55 283 14

Step.
S 24 22 24 251 5,768 49
T 24 19 24 347 774 73

all 72 65 72 218 2,283 45

ceeds the time limit for ten instances and consistently exhibits the highest
computational time among the considered approaches.

Stepwise objective. In the case of the stepwise objective function, compu-
tation times are notably lower overall, with all instances solved within the
timeout threshold for both the Big-M and MaxSAT approaches. In con-
trast, the MILP solver exceeds the timeout for seven instances out of 72.
The MaxSAT DDD-TRP is the fastest approach over all instances, with a
speed-up of 2x-20x over the Big-M .

In Table 2 we report a comparison of computation times (in milliseconds)
for the stepwise function, focusing on the ten most challenging instances in
our set, which demand the most time for the Big-Mmodel to solve. We can
see how employing the MaxSAT solver with a stepwise function significantly
impacts computation times.

This suggests a way to extend the DDD-TRP to a dual approach where
the objective function is gradually extended from a single step to the full lin-
ear rounded objective. Simple step function objectives can be solved much
faster and can provide feasible train schedules in case the exact optimal solu-

32

Table 2: Comparison of the computation times obtained by the Big-M MILP and MaxSAT
approaches on the 10 hardest instances with a stepwise objective function.

Time (ms) Speed-up

Instance Big-M MILP MaxSAT Big-M MILP

IAT
1 2204 8376 188 11.7x 44.6x

IAT
2 753 1997 58 12.9x 34.2x

IAT
8 7953 59085 210 37.9x 281.4x

IAT
11 T/O [3% gap] 108005 396 - 272.8x

IAT
12 14680 63967 540 27.2x 118.4x

IAS
1 10559 3901 223 47.4x 17.5x

IAS
2 474 1923 116 4.1x 16.5x

IAS
8 4099 7816 215 19.1x 36.4x

IAS
11 18297 11073 437 41.9x 25.3x

IAS
12 6137 30737 286 21.4x 107.4x

tion takes too long to compute in a real-time setting. The model resolution
speed is crucial when applied to the dynamic solution of train dispatching
problems. In this case, a new instance is generated from the field every ten
seconds or so [2]. Typically instances only slightly change over time; there-
fore, one can refine the last instance generated during the previous resolution
process, aiming to generate only a few new intervals. In[50] one can observe
that this approach proved to be successful when extending the Path&Cycle
formulation to cope with dynamic instances of the TRP.

6. Conclusions and future work

This paper demonstrates how the dynamic discretization paradigm can be
adapted to make TI formulations competitive with the Big-M formulations
in the train dispatching field. When the objective function is piecewise con-
stant, our approach outperforms the Big-M formulation on all the problem
instances in our set of real-world models and data.

We achieved better performance using a MaxSAT solver instead of a
MILP solver; we believe this is due to the way that SAT solvers can solve
a sequence of incrementally constructed problem instances very efficiently.
Indeed, this is crucial for many, if not most, industrial applications of SAT
solvers (see [51]). OurDDD-TRP represents the first application of MaxSAT

33

to train re-scheduling (some work has been done on periodic railway timetabling,
see [52]). Going forward, we would like to investigate in more detail how
MILP solvers are affected by small, incremental changes in the problem in-
stance, and see if there is a way to make MILP solvers work efficiently with
the DDD-TRP.

It follows a very natural road map for future studies and developments.
First, adapt the approach to handle dynamic problems and re-optimization.
The refinement of the interval between one iteration and the next can be seen
as a decomposition, so one can ask how to fit previously generated resolution
cuts to new partial models. Also, fixed variable values retrieved in the pre-
processing (solving) phase (or previously calculated bounds) can be exploited
for those elements that are not directly “involved” in the conflicts solved at
a generic iteration k. Second, develop techniques to limit the generation of
intervals at each iteration. It can be shown that only a small subset of the
intervals defined for the last IAP solved is sufficient to find an overall feasible
(and thus optimal) solution. Third, it is possible to speed up the algorithm
by selecting different and/or multiple time points in the intervals. Currently,
we obtain the optimal solution by assigning each interval its lower end, but
we can also make different choices and possibly obtain a faster yet feasi-
ble solution. Fourth, the described methodology applies to every job-shop
scheduling problem, so it is logical to extend it to cope with other contexts,
such as industrial production or project scheduling.

Data Availability Statement

The authors confirm that the data supporting the findings of this study
are available within the article and its supplementary materials. The data do
not violate the protection of human subjects, or other valid ethical, privacy,
or security concerns.

Disclosure statement

The authors report there are no competing interests to declare.

References

[1] V. Cacchiani, P. Toth, Robust train timetabling, in: Handbook of Op-
timization in the Railway Industry, Springer, 2018, pp. 93–115.

34

[2] L. Lamorgese, C. Mannino, D. Pacciarelli, J. T. Krasemann, Train dis-
patching, Handbook of Optimization in the Railway Industry (2018)
265–283.

[3] A. L. Croella, V. Sasso, L. Lamorgese, C. Mannino, P. Ventura, Disrup-
tion management in railway systems by safe place assignment, Trans-
portation Science 56 (01 2022). doi:10.1287/trsc.2021.1107.

[4] M. Fischetti, M. Monaci, Light robustness, in: Robust and online large-
scale optimization, Springer, 2009, pp. 61–84.

[5] SBB Swiss Federal Railways - Train Schedule Optimisation Challenge,
https://www.aicrowd.com/challenges/train-schedule-optimisation-
challenge (2019).

[6] SBB Swiss Federal Railways - Flatland Challenge,
https://www.aicrowd.com/challenges/flatland-challenge (2020).

[7] The 2023 RAS problem solving competition,
https://connect.informs.org/railway-applications/new-item3/problem-
solving-competition681 (2023).

[8] D. Abels, J. Jordi, M. Ostrowski, T. Schaub, A. Toletti,
P. Wanko, Train scheduling with hybrid answer set programming,
Theory and Practice of Logic Programming 21 (3) (2021) 317–347.
doi:10.1017/S1471068420000046.

[9] A. Mascis, D. Pacciarelli, Job-shop scheduling with blocking and no-wait
constraints, European Journal of Operational Research 143 (3) (2002)
498–517.

[10] W. Fang, X. Yao, A survey on problem models and solution
approaches to rescheduling in railway networks, IEEE Transac-
tions on Intelligent Transportation Systems 16 (2015) 2997–3016.
doi:10.1109/TITS.2015.2446985.

[11] S. Harrod, A tutorial on fundamental model structures for railway
timetable optimization, Surveys in Operations Research and Manage-
ment Science 17 (2) (2012) 85–96.

35

[12] M. Queyranne, A. S. Schulz, Polyhedral approaches to machine schedul-
ing, Citeseer, 1994.

[13] C. Mannino, A. Mascis, Optimal real-time traffic control in metro sta-
tions, Operations Research 57 (4) (2009) 1026–1039.

[14] S. Harrod, Modeling network transition constraints with hypergraphs,
Transportation Science 45 (1) (2011) 81–97.

[15] N. L. Boland, M. W. Savelsbergh, Perspectives on integer programming
for time-dependent models, Top 27 (2) (2019) 147–173.

[16] A. Bettinelli, A. Santini, D. Vigo, A real-time conflict solution algorithm
for the train rescheduling problem, Transportation Research Part B:
Methodological 106 (2017) 237–265.

[17] G. Caimi, M. Fuchsberger, M. Laumanns, M. Lüthi, A model predic-
tive control approach for discrete-time rescheduling in complex central
railway station areas, Computers & Operations Research 39 (11) (2012)
2578–2593.

[18] L. Meng, X. Zhou, Simultaneous train rerouting and rescheduling on an
n-track network: A model reformulation with network-based cumula-
tive flow variables, Transportation Research Part B: Methodological 67
(2014) 208–234.

[19] E. Reynolds, M. Ehrgott, S. J. Maher, A. Patman, J. Y. Wang, A multi-
commodity flow model for rerouting and retiming trains in real-time to
reduce reactionary delay in complex station areas, Optimization Online
(2020).

[20] G. Desaulniers, J. Desrosiers, M. M. Solomon, Column generation,
Vol. 5, Springer Science & Business Media, 2006.

[21] R. Gao, H. Niu, A priority-based admm approach for flexible train
scheduling problems, Transportation Research Part C: Emerging Tech-
nologies 123 (2021) 102960. doi:10.1016/j.trc.2020.102960.

[22] S. Zhan, S. Wong, P. Shang, Q. Peng, J. Xie, S. Lo, Integrated
railway timetable rescheduling and dynamic passenger routing during
a complete blockage, Transportation Research Part B: Methodological

36

143 (2021) 86–123. doi:https://doi.org/10.1016/j.trb.2020.11.006.
URL https://www.sciencedirect.com/science/article/pii/

S0191261520304264

[23] R. Lusby, J. Larsen, D. Ryan, M. Ehrgott, Routing trains through rail-
way junctions: A new set-packing approach, Transportation Science 45
(2011) 228–245. doi:10.1287/trsc.1100.0362.

[24] R. M. Lusby, J. Larsen, M. Ehrgott, D. M. Ryan, A set packing
inspired method for real-time junction train routing, Computers &
Operations Research 40 (3) (2013) 713–724, transport Scheduling.
doi:https://doi.org/10.1016/j.cor.2011.12.004.
URL https://www.sciencedirect.com/science/article/pii/

S0305054811003595

[25] P. Pellegrini, G. Marlière, J. Rodriguez, Optimal train routing and
scheduling for managing traffic perturbations in complex junctions,
Transportation Research Part B: Methodological 59 (2014) 58–80.

[26] N. Boland, M. Hewitt, L. Marshall, M. Savelsbergh, The continuous-
time service network design problem, Operations research 65 (5) (2017)
1303–1321.

[27] M. Hewitt, Enhanced dynamic discretization discovery for the continu-
ous time load plan design problem, Transportation Science 53 (6) (2019)
1731–1750.

[28] L. Marshall, N. Boland, M. Savelsbergh, M. Hewitt, Interval-based dy-
namic discretization discovery for solving the continuous-time service
network design problem, Transportation Science 55 (1) (2021) 29–51.

[29] Y. O. Scherr, M. Hewitt, B. A. N. Saavedra, D. C. Mattfeld, Dynamic
discretization discovery for the service network design problem with
mixed autonomous fleets, Transportation Research Part B: Methodolog-
ical 141 (2020) 164–195.

[30] D. M. Vu, M. Hewitt, N. Boland, M. Savelsbergh, Dynamic discretiza-
tion discovery for solving the time-dependent traveling salesman prob-
lem with time windows, Transportation Science 54 (3) (2020) 703–720.

37

[31] S. Dash, O. Günlük, A. Lodi, A. Tramontani, A time bucket formula-
tion for the traveling salesman problem with time windows, INFORMS
Journal on Computing 24 (1) (2012) 132–147.

[32] X. Wang, A. C. Regan, Local truckload pickup and delivery with hard
time window constraints, Transportation Research Part B: Methodolog-
ical 36 (2) (2002) 97–112.

[33] F. Leutwiler, F. Corman, A logic-based benders decomposition for mi-
croscopic railway timetable planning, European Journal of Operational
Research (2022).

[34] G. P. Matos, L. M. Albino, R. L. Saldanha, E. M. Morgado, Solving
periodic timetabling problems with SAT and machine learning, Vol. 13,
2021, pp. 625–648. doi:10.1007/s12469-020-00244-.

[35] F. Bacchus, M. Järvisalo, R. Martins, Maxsat evaluation 2018: New
developments and detailed results, J. Satisf. Boolean Model. Comput.
11 (1) (2019) 99–131. doi:10.3233/SAT190119.
URL https://doi.org/10.3233/SAT190119

[36] A. Ignatiev, A. Morgado, J. Marques-Silva, RC2: an efficient maxsat
solver, J. Satisf. Boolean Model. Comput. 11 (1) (2019) 53–64.
doi:10.3233/SAT190116.
URL https://doi.org/10.3233/SAT190116

[37] A. L. Croella, C. Mannino, P. Ventura, Dynamic discretization discov-
ery for the train scheduling problem, in: RailBeijing 2021, the 9th In-
ternational Conference on Railway Operations Modelling and Analysis
(ICROMA), Beijing, China, November 3 - 7, 2021, Conference Proceed-
ings, 2021.

[38] A. L. Croella, Real-time train scheduling: reactive and proactive algo-
rithms for safe and reliable railway networks, Ph.D. thesis, Sapienza
University of Rome, Department of Computer, Control, and Manage-
ment Engineering Antonio Ruberti (DIAG), Italy (2022).

[39] I. A. Hansen, J. Pachl, Railway timetabling & operations, Eurailpress,
Hamburg (2014).

38

[40] N. Bešinović, R. M. Goverde, E. Quaglietta, R. Roberti, An integrated
micro–macro approach to robust railway timetabling, Transportation
Research Part B: Methodological 87 (2016) 14–32.

[41] L. Lamorgese, C. Mannino, M. Piacentini, Optimal train dispatching by
benders’ like reformulation, Transportation Science 50 (3) (2016) 910–
925.

[42] L. Lamorgese, C. Mannino, E. Natvig, An exact micro–macro approach
to cyclic and non-cyclic train timetabling, Omega 72 (2017) 59–70.

[43] T. Schlechte, R. Borndörfer, B. Erol, T. Graffagnino, E. Swarat, Micro–
macro transformation of railway networks, Journal of Rail Transport
Planning & Management 1 (1) (2011) 38–48.

[44] C. Mannino, A. Nakkerud, Optimal train rescheduling in oslo central
station, Omega 116 (2023).

[45] D. M. Vu, M. Hewitt, D. D. Vu, Solving the time dependent minimum
tour duration and delivery man problems with dynamic discretization
discovery, European Journal of Operational Research 302 (3) (2022)
831–846. doi:https://doi.org/10.1016/j.ejor.2022.01.029.
URL https://www.sciencedirect.com/science/article/pii/

S0377221722000674

[46] C. M. Li, F. Manyà, Maxsat, hard and soft constraints, in: A. Biere,
M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability
- Second Edition, Vol. 336 of Frontiers in Artificial Intelligence and Ap-
plications, IOS Press, 2021, pp. 903–927. doi:10.3233/FAIA201007.
URL https://doi.org/10.3233/FAIA201007

[47] O. Roussel, V. M. Manquinho, Pseudo-boolean and cardinality con-
straints, in: A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.),
Handbook of Satisfiability - Second Edition, Vol. 336 of Frontiers in Ar-
tificial Intelligence and Applications, IOS Press, 2021, pp. 1087–1129.
doi:10.3233/FAIA201012.
URL https://doi.org/10.3233/FAIA201012

[48] M. Björk, Successful SAT encoding techniques, J. Satisf. Boolean Model.
Comput. 7 (4) (2011) 189–201. doi:10.3233/sat190085.
URL https://doi.org/10.3233/sat190085

39

[49] S. D. Prestwich, CNF encodings, in: A. Biere, M. Heule, H. van Maaren,
T. Walsh (Eds.), Handbook of Satisfiability - Second Edition, Vol. 336
of Frontiers in Artificial Intelligence and Applications, IOS Press, 2021,
pp. 75–100. doi:10.3233/FAIA200985.
URL https://doi.org/10.3233/FAIA200985

[50] C. Mannino, G. Sartor, An exact (re) optimization framework for real-
time traffic management, optimization on line (2020).

[51] S. Kochemazov, A. Ignatiev, J. Marques-Silva, Assessing progress in
SAT solvers through the lens of incremental SAT, in: C. Li, F. Manyà
(Eds.), Theory and Applications of Satisfiability Testing - SAT 2021 -
24th International Conference, Barcelona, Spain, July 5-9, 2021, Pro-
ceedings, Vol. 12831 of Lecture Notes in Computer Science, Springer,
2021, pp. 280–298. doi:10.1007/978-3-030-80223-3 20.
URL https://doi.org/10.1007/978-3-030-80223-3_20

[52] J. Reisch, Railway timetable optimization, Ph.D. thesis, Freie Univer-
sität Berlin (2021).
URL http://dx.doi.org/10.17169/refubium-30524

[53] L. Lamorgese, C. Mannino, An exact decomposition approach for the
real-time train dispatching problem, Operations Research 63 (1) (2015)
48–64.

40

Appendix A. A basic Big-M formulation

For the sake of clarity, we write here the basic Big-M formulation which
is used in the experiments for comparisons. Note that we limit our model to
the macroscopic representation of the network adopted in this paper and we
neglect routing. All details about the model and the delayed row generation
algorithm can be found in [53].

The schedule is represented by introducing, for every train i ∈ I and
every track segment r ∈ Ri, a continuous variable tir ∈ Q+ denoting the time
when i enters track segment r. We now introduce constraints and additional
variables to model the feasibility conditions of Definition 2. In particular,
conditions 2.i) and 2.ii) translate immediately into the following two sets of
constraints

tir ≥ tir, i ∈ I, r ∈ Ri (A.1)

tiq ≥ tir + lr, i ∈ I, r, q ∈ Ri with r ≺i q (A.2)

As for the conflict-free condition 2.iii), we model it by using the classic
”Big-M trick”. For each i, j ∈ I, i < j, and each (r, q) ∈ Dij, we introduce
a binary variable yijrq ∈ {0, 1}. We let yijrq = 1 if i ”wins” the conflict and t
must satisfy tjq ≥ tir + lrq; and we let yijrq = 0 if j wins the conflict and t
must satisfy tir ≥ tjq + lqr. Then the conflict resolution constraints write as

tjq ≥ tir + lrq −M(1− yijrq) (r, q) ∈ Dij, (A.3)

tir ≥ tjq + lqr −Myijrq (r, q) ∈ Dij, (A.4)

where M is a large constant.

Objective Function. In the case of the linear cost objective function c, we
simply want to find:

min
∑
i∈I

∑
r∈Ri

cir(tir) .

For the step-wise objective function, instead, we need to introduce a
binary variable zirs for each train i ∈ I and route r ∈ Ri and each threshold
dis, for s ∈ S = {1, 2, . . . , q}. Assume the costs of threshold violation are

41

monotonically increasing, with 0 = ci1 < ci2 < · · · < ciq. Then we add the
constraints

tir ≤
∑
s∈S

disz
ir
s i ∈ I, r ∈ Ri (A.5)

∑
s∈S

zirs = 1 i ∈ I, r ∈ Ri, s ∈ S (A.6)

And then let the objective be:

min
∑
s∈S

∑
i∈I

∑
r∈Ri

cisz
ir
s . (A.7)

Appendix B. Formulations and solver setups for the IAP

We considered the following combinations of formulations and solvers.

Big-M . In [53] (and in these experiments) the Big-M model is solved by row
generation. In particular, once the current model is solved and a tentative
schedule is generated, we check if it contains conflicts. If this is the case,
specific conflict elimination constraints are added to the model, and the pro-
cess iterates until a conflict-free schedule is generated. A 10-minute run of
the Gurobi tuning tool produced no significant difference in solving time, so
we used standard Gurobi parameters.

Full TI formulation. To build the full TI formulation, we need to find reason-
able values for the upper bounds of each timing variable and the resolution
of the discretization. The upper bounds should not be too low and the dis-
cretization should not be too coarse to ensure that optimal solutions are
not excluded. A reasonable compromise is to allow up to 1-hour delay for
every event with a 10-second resolution. This would result in 360 intervals
per event. Since our instances contain up to around 990 events, the full TI
formulation then requires up to 356,400 binary variables.

We solved the resulting full TI MILP problems using Gurobi v9.5.0. We
also solved the corresponding MaxSAT problems using the conversion de-
scribed in 3.3. For at-most-one constraints, we tried both the pairwise and
the bitwise encodings described in [49]. As MaxSAT solvers, we tried Eval-
MaxSAT 2022 and UWrMaxSat 14, both among the most highly ranked
solvers in the MaxSAT Evaluation 2022 competition.

42

Full TI exhibited much worse performance than Big-M and DDD. For the
problem instances described in Section 5, all of these TI solver setups were
more than 100x slower than the Big-M and DDD approaches on average.
Very few instances were solved within the time limit of 2 minutes. Since this
is nowhere near competitive with the Big-M and DDD approaches, we do
not report detailed results.

IAP MILP formulation (Sec. 3.2). The DDD-ALG was implemented using
Gurobi v9.5.0 to solve the IAP MILP problems. A 10-minute run of the
Gurobi tuning tool produced no significant difference in solving time, so we
used standard Gurobi parameters.

IAP MaxSAT formulation (Sec. 3.3 and 3.4). The DDD-ALG using MaxSAT
was tested in several configurations. First, we used standalone MaxSAT
solvers EvalMaxSAT 2022 and UWrMaxSat 14 to solve the basic IAPMaxSAT
formulation described in Sec. 3.3. We also compared with an incremental
version of the same formulation where we use the IPAMIR interface1 and in-
crementally change the IAP problem after each iteration of the DDD-ALG.

The lower bound formulation in Sec. 3.4 was tested using the same IPAMIR
solvers, and also with a custom implementation of the RC2 MaxSAT algo-
rithm [36] in Rust, with MiniSat v2.1.0 as the SAT solver. In this algorithm,
cardinality constraints representing a lower bound on the objective value are
built incrementally, and additional variables and clauses can also be added
to the problem incrementally.

An overview of the MaxSAT results is shown in Table B.3. It can be
seen that the solver setup with the incremental RC2 algorithm on the lower
bound formulation outperformed the other setups.

Appendix C. An illustrative example

In this section we present an example application showing how the IAP
graph is iteratively built by the DDD-TRP.

We are given four trains: I = {1, 2, 3, 4} running on a railway network
portion composed by seven distinct track segments: R = {a, b, c, d, e, f, g}.

1The IPAMIR interface for incremental MaxSAT introduced in the MaxSAT Evaluation
2022 – see https://maxsat-evaluations.github.io/2022/incremental.html.

43

Table B.3: Performance comparison of different MaxSAT solver setups for the iterated
IAP problem on the stepwise objective with 3 steps.

Formulation Solver Incremental # solved Avg. time (ms)

Basic EvalMaxSAT No 69 1770
Basic UWrMaxSat No 70 2798
Basic EvalMaxSAT Yes 64 907
Basic UWrMaxSat Yes 67 1989
Lower bound EvalMaxSAT Yes 72 221
Lower bound UWrMaxSat Yes 72 344
Lower bound RC2 Yes 72 20

la = 6

ld = 9

lb = 3

lg = 8

lc = 4

lf = 5
le = 10

Figure C.1: Topography of the example rail network. For each track segment, we report
in red the time needed by all trains to traverse it.

Trains rail paths, i.e. the ordered sequences of track segments occupied by
each train, are defined as follows: R1 : {a, b, g}, R2 : {c, b}, R3 : {d, b, f} and
R4 : {e, f}. All trains have the same characteristics and priorities, there-
fore the time needed to traverse the track segments does not depend on the
rolling stock and the train service. We have that l = {la, lb, lc, ld, le, lf , lg} =
{6, 3, 4, 9, 10, 5, 8}. All trains depart from their origin at time 0. For clarity
of the example and w.l.o.g., the event associated with the entry of trains into
stations is omitted in the following. Figure C.1 then schematically depicts the
railway network topography, showing for each track segment the traversing
time. Then, the graph in Figure C.2 presents the trains given rail paths (ori-
ented black lines) and the potentially conflicting pairs of non-shareable track
segments (red lines) defined by the set: D = {{1b, 2b},{1b, 3b},{2b, 3b},{3f, 4f}}.
We simply consider the cost function in terms of scheduled departure times
and for each interval λir

p we set c̄ir(λir
p) = cir(hir

p) = hir
p .

44

(1, a) (1, b) (1, g)

(2, c) (2, b)

(3, d) (3, b) (3, f)

(4, e) (4, f)

Train 1

Train 2

Train 3

Train 4

Figure C.2: Graph of the trains rail paths. Oriented black lines represent trains fixed
precedence, while red edges identify the couples of potentially conflicting events.

Initialize the DDD-TRP (Step 1). We build the initial IAP graphG0(V0, E0)
considering for each i ∈ I and r ∈ Ri an initial partition composed only by
the interval λir

1 = {[tir,M)} = {[0, 30)}. We thus associate with each interval
a node in V0. Each node is referred as virh , where h is the lower bound hir

p of
the represented interval λir

p , and labelled with h. We initialize E0 = ∅. In
Figure C.3 we report the IAP graph G0, where each train corresponds to a
different layer in the graph. Note that at the beginning of the DDD-TRP
we have only isolated nodes since we define a partition set with no rail path
or conflict incompatibilities (see Definition 3 and Definition 4).

Apply the DDD-TRP (Step 2 and Step 4). We set k = 1 and iteratively
apply Step 2 and Step 4 to the example. Figure C.4a, C.4b and C.4c respec-
tively report the IAP graphs at the end of each iteration k = {1, 2, 3}. In
particular, for each train i we visually group the nodes by track segments. We
draw the edges belonging to the resource assignment clique in black and the
one belonging to the fixed precedence clique in blue, while the arcs referring
to the disjunctive conflicts are colored in red. Finally, the nodes belonging
to the optimal set computed at step 2 are depicted filled in light green.
Note that at termination, the set S∗

3 in the IAP graph G3(V3, E3) does not
contain any adjacent node. The solution is therefore a stable set for the
graph, namely the one having the minimum cost.

45

0 6 9

0 4

0 9 12

0 10

Train 1

Train 2

Train 3

Train 4

(1, a) (1, b) (1, g)

(4, f)

(2, b)

(3, b)

(2, c)

(3, d) (3, f)

(4, e)

Figure C.3: Graph G0(V0, E0) associated with the initialization (Step 1) of the DDD-
TRP.

46

0 10

0 4

0 9 15

0 10

Train 1

Train 2

Train 3

Train 4

(1, a) (1, b) (1, g)

(4, f)

(2, b)

(3, b)

(2, c)

(3, d) (3, f)

(4, e)

76 9

9

12

17

(a) G1(V1, E1)

0 10

0 4

0 10 15

0 10

Train 1

Train 2

Train 3

Train 4

(1, a) (1, b) (1, g)

(4, f)

(2, b)

(3, b)

(2, c)

(3, d) (3, f)

(4, e)

76 9

9

12

17

9 13

1512

(b) G2(V2, E2)

0 10

0 4

0 10 15

0 10

Train 1

Train 2

Train 3

Train 4

(1, a) (1, b) (1, g)

(4, f)

(2, b)

(3, b)

(2, c)

(3, d) (3, f)

(4, e)

76 9

9

12

17

9 13

1512

(c) G3(V3, E3)

Figure C.4: Graphs associated with the iterations of the DDD-TRP.

47

DDD-TRP 1− st iteration

Data: G1(V1, ∅), Φ, c̄.

Solve the IAP (Step 2)

S∗
1 = V1 = {v1a0 , v1b6 , v1g9 , v2c0 , v2b4 , v3d0 , v3b9 , v3f12 , v

4f
0 , v4f10 },

τ∗1 = {0, 6, 9, 0, 4, 0, 9, 12, 0, 10}

♢Check for solution optimality

We find t1b = 6 and t2b = 4 such that 6 < 4 + 3 = 7 and 4 < 6 + 3 = 9 hence:

(i) we define λ1b
1 = [6, 7), λ1b

2 = [7, 30), and add v1b7 to V1;

(ii) we define λ2b
1 = [4, 9), λ2b

2 = [9, 30), and add v2b9 to V1;

(iii) we add edge {v1b6 , v2b4 } to E1.

We find t3f = 12 and t4f = 10 such that 12 < 10 + 5 = 15 and 10 < 12 + 5 = 17
hence:

(i) we define λ3f
1 = [12, 15), λ3f

2 = [15, 30), and add v3f15 to V1;

(ii) we define λ4f
1 = [10, 17), λ4f

2 = [17, 30), and add v4f17 to V1;

(iii) we add edge {v3f12 , v
4f
10 } to E1.

Refine the IAP (Step 4)

We select the new interval λ1b
2 = [7, 30):

(i) we add edge {v1b6 , v1b7 } to E1;

(ii) we add edge {v1b7 , v1g9 } to E1;

(iv) we propagate λ1b
2 = [7, 30) on track segment g: we define λ1g

1 = [9, 10),
λ1g
2 = [10, 30), and add v1g10 to V1.

We select the new interval λ2b
2 = [9, 30):

(i) we add edge {v2b4 , v2b9 } to E1.

We select the new interval λ3f
2 = [15, 30):

(i) we add edge {v3f9 , v3f15 } to E1.

We select the new interval λ4f
2 = [17, 30):

(i) we add edge {v3f17 , v
4f
10 } to E1.

We select the new interval λ1g
2 = [10, 30):

(i) we add edge {v1g9 , v1g10} to E1.

We set V2 = V1 and E2 = E1

k = 2

48

DDD-TRP 2− nd iteration

Data: G2(V2, E2), Φ, c̄.

Solve the IAP (Step 2)

S∗
2 = {v1a0 , v1b7 , v1g10 , v

2c
0 , v2b4 , v3d0 , v3b9 , v3f15 , v

4f
0 , v4f10 },

τ∗2 = {0, 7, 10, 0, 4, 0, 9, 15, 0, 10}

♢Check for solution optimality

We find t1b = 7 and t3b = 9 such that 7 < 9 + 3 = 12 and 9 < 7 + 3 = 10 hence:

(i) we define λ1b
2 = [7, 12), λ1b

3 = [12, 30), and add v1b12 to V2;

(ii) we define λ3b
2 = [9, 10), λ3b

3 = [10, 30), and add v3b10 to V2;

(iii) we add edge {v2b7 , v2b9 } to E2.

Refine the IAP (Step 4)

We select the new interval λ1b
3 = [12, 30):

(i) we add edges {v1b6 , v1b12} and {v1b7 , v1b12} to E2;

(ii) we add edges {v1b12, v
1g
9 } and {v1b12, v

1g
10} to E2;

(iv) we propagate tλ1b
3 = [12, 30) on track segment g: we define λ1g

2 =
[10, 15), λ1g

3 = [15, 30), and add v1g15 to V2.

We select the new interval λ3b
3 = [10, 30):

(i) we add edges {v3b9 , v3b10} to E2;

(ii) we add edges {v3b10, v
3f
12 } to E2;

(iv) we propagate λ3b
3 = [10, 30) on track segment f : we define λ3f

2 =

[10, 13), λ1g
3 = [13, 15), and add v3f13 to V2.

We select the new interval λ1g
3 = [15, 30):

(i) we add edges {v1g9 , v1g15} and {v1g10 , v
1g
15} to E2.

We select the new interval λ3f
3 = [13, 15):

(i) we add edges {v3f13 , v
3f
12 } and {v3f13 , v

3f
15 } to E2;

(iii) we add edge {v3f13 , v
4f
10 } to E2.

We set V3 = V2 and E3 = E2

k = 3

49

DDD-TRP 3− rd iteration

Data: G3(V3, E3), Φ, c̄.

Solve the IAP (Step 2)

S∗
3 = {v1a0 , v1b7 , v1g10 , v

2c
0 , v2b4 , v3d0 , v3b10, v

3f
15 , v

4f
0 , v4f10 },

τ∗3 = {0, 7, 10, 0, 4, 0, 10, 15, 0, 10}

♢Check for solution optimality

No violated disjunctive precedence.
Stop. τ ∗ = τ ∗3 with value c(τ ∗) = c̄(S∗

3) = 56.

50

Appendix D. Computational experiment full tables

Table D.1 reports some details about the original 24 test instances. For
each of them, we present the number of trains (|I|), the total number of
tracks (|R|), the average number of track segments per train (E[Ri]), the
total number of conflicting tracks pairs (|D|), the number of trains having
a positive delay at the ”snapshot time” (#Dly) and their average delay in
seconds (E[d]).

Instance |I| |R| E[Ri] |D| # Dly E[d]
IA
1 28 33 21.46 5861 4 1200

IA
2 25 33 19.00 3735 9 499

IA
3 17 33 21.06 2061 4 376

IA
4 14 33 19.21 1175 6 286

IA
5 12 33 19.25 876 6 286

IA
6 8 33 18.62 307 4 406

IA
7 8 33 12.62 126 7 115

IA
8 28 33 19.21 4877 8 1640

IA
9 21 33 19.10 2616 7 715

IA
10 17 33 18.18 1632 9 391

IA
11 30 33 19.83 6162 6 116

IA
12 28 33 21.71 6393 5 370

IB
1 18 25 17.33 2022 2 228

IB
2 5 25 14.80 87 3 5789

IB
3 5 25 16.80 136 4 93

IB
4 18 25 16.61 1952 8 6643

IB
5 5 25 17.80 136 1 157

IB
6 6 25 12.67 93 3 61

IB
7 22 25 15.73 2527 11 4144

IB
8 5 25 13.40 72 4 110

IB
9 7 25 13.57 150 6 896

IB
10 8 25 11.38 130 7 697

IB
11 22 25 16.14 2674 8 7064

IB
12 14 25 16.21 970 3 242

Table D.1: Relevant statistics of test instances.

51

Table D.2, Table D.3 and Table D.4 show the computational results obtained
by applying the DDD-TRP, using both a MILP and a MaxSAT solver, and
by solving the Big-M formulation of the considered instances. Dashes indi-
cate that the solver timeout of two minutes was exceeded, and the percentages
in the corresponding Time columns show the remaining gap (ub−lb

ub
) after two

minutes.
The first set of columns presents, for each instance (Inst.), the number

of iterations performed for the Big-M formulation (# It.), the number of
violated disjunctive constraints identified in the optimality check (# Con.),
and the time in milliseconds (Time) needed to find the optimal solution for
the Big-M formulation. Further columns describe the performance obtained
by the DDD-TRP performed with MaxSAT and MILP solvers: columns #
It. and # Int. show the number of iterations, (i.e., the number of solver
calls) and the total number of time intervals added (i.e., nodes in the IAP
graph Gk), respectively; whereas column Time shows the time in milliseconds
to find the optimal solution. The final set of columns (Speed-up) shows
the relative speed-up between solvers by taking the Big-M and MILP times
divided by the MaxSAT time (i.e., a speed-up > 1 means that the MaxSAT
resolution was faster).

Table D.2: Computational results for the continuous linear objective function.
Big-M MaxSAT MILP Speed-up

Inst. #It. #Con. Time #It. #Int. Time #It. #Int. Time Big-M MILP

IAO
1 5 10 137 231 2678 56 5 2107 596 2.5x 10.7x

IAO
2 4 16 92 222 2188 152 5 1823 640 0.6x 4.2x

IAO
3 4 9 58 136 1295 15 4 1214 196 3.9x 13.3x

IAO
4 2 6 26 106 1089 14 4 1046 157 1.9x 11.4x

IAO
5 3 7 30 104 933 11 3 878 81 2.8x 7.6x

IAO
6 3 5 23 93 532 6 3 544 48 4.1x 8.5x

IAO
7 2 5 13 90 584 6 2 450 43 2.0x 7.0x

IAO
8 8 59 1563 - - [8%] - - [1.6%] - -

IAO
9 5 18 85 251 2533 92 6 2104 1014 0.9x 11.0x

IAO
10 5 17 64 230 2158 81 6 1761 1195 0.8x 14.7x

IAO
11 5 34 187 218 4187 185 6 3926 7352 1.0x 39.7x

IAO
12 6 37 548 562 4644 35227 7 4428 45607 0.0x 1.3x

IBO
1 4 4 39 95 804 9 4 798 75 4.2x 8.0x

IBO
2 2 1 9 55 233 3 2 205 13 2.9x 4.2x

IBO
3 3 4 14 88 432 6 4 467 107 2.5x 18.7x

IBO
4 6 10 71 128 1570 28 7 1128 393 2.5x 14.0x

IBO
5 4 3 16 107 330 5 4 319 39 3.3x 8.4x

IBO
6 2 1 8 44 208 2 2 199 12 4.5x 6.7x

Continued on next page

52

Table D.2 – continued from previous page

Big-M MaxSAT MILP Speed-up
Inst. #It. #Con. Time #It. #Int. Time #It. #Int. Time Big-M MILP

IBO
7 7 26 133 496 2763 10706 22 2858 114505 0.0x 10.7x

IBO
8 2 1 9 46 180 2 2 181 9 4.9x 4.8x

IBO
9 5 9 37 112 607 12 5 577 239 3.1x 20.1x

IBO
10 3 8 19 84 525 6 3 546 100 3.3x 17.7x

IBO
11 23 61 766 - - [0.2%] - - [0.2%] - -

IBO
12 2 3 21 57 800 6 2 604 27 3.7x 4.9x

IAT
1 4 61 343 248 5474 446 7 5097 12691 0.8x 28.5x

IAT
2 4 52 231 359 4171 1606 8 3951 26138 0.1x 16.3x

IAT
3 4 31 91 247 2659 169 6 3024 1979 0.5x 11.7x

IAT
4 3 16 37 112 1294 19 3 1268 152 1.9x 7.9x

IAT
5 4 15 50 260 1236 444 5 1326 513 0.1x 1.2x

IAT
6 3 6 20 101 733 7 5 704 195 2.7x 27.0x

IAT
7 2 6 18 95 508 7 3 476 75 2.6x 11.2x

IAT
8 10 156 96220 - - [44%] - - [21%] - -

IAT
9 4 40 122 368 3827 1200 6 3116 6749 0.1x 5.6x

IAT
10 4 18 57 165 1823 53 4 1709 443 1.1x 8.4x

IAT
11 - - [30%] - - [79%] - - [50%] - -

IAT
12 - - [38%] - - [79%] - - [54%] - -

IBT
1 3 21 49 127 1915 32 4 1864 525 1.5x 16.2x

IBT
2 3 6 14 60 302 4 4 353 74 3.8x 20.7x

IBT
3 3 7 18 73 499 6 4 553 120 3.3x 21.7x

IBT
4 6 36 138 - - [0.3%] - - [0.1%] - -

IBT
5 4 10 32 101 787 10 6 769 429 3.3x 44.3x

IBT
6 2 3 10 52 268 2 2 279 15 4.2x 6.2x

IBT
7 7 39 220 251 2962 360 10 3264 7658 0.6x 21.3x

IBT
8 4 6 19 144 446 16 8 497 312 1.2x 19.7x

IBT
9 4 9 24 155 946 23 8 853 664 1.1x 29.0x

IBT
10 2 3 11 48 294 2 2 291 11 4.9x 5.0x

IBT
11 4 42 127 274 3159 399 8 2911 3567 0.3x 8.9x

IBT
12 7 35 171 - - [2.3%] 17 2582 43734 - -

IAS
1 6 68 6720 - - [15%] - - [3%] - -

IAS
2 7 64 3614 - - [20%] - - [2.1%] - -

IAS
3 4 31 123 - - [4%] 11 4240 83387 - -

IAS
4 4 20 68 193 2036 69 6 2102 1965 1.0x 28.5x

IAS
5 5 20 70 307 1741 964 6 1780 1864 0.1x 1.9x

IAS
6 2 4 13 62 543 4 2 490 27 3.2x 6.3x

IAS
7 3 8 20 112 586 6 3 650 173 3.2x 26.8x

IAS
8 - - [8%] - - [52%] - - [15%] - -

IAS
9 4 40 252 - - [9%] 8 4314 48137 - -

IAS
10 5 30 107 565 2393 9505 8 2679 11298 0.0x 1.2x

IAS
11 - - [34%] - - [86%] - - [47%] - -

IAS
12 - - [31%] - - [84%] - - [44%] - -

IBS
1 3 27 111 722 2732 102049 7 2786 14524 0.0x 0.1x

IBS
2 3 6 13 49 290 3 3 353 48 5.1x 19.3x

Continued on next page

53

Table D.2 – continued from previous page

Big-M MaxSAT MILP Speed-up
Inst. #It. #Con. Time #It. #Int. Time #It. #Int. Time Big-M MILP

IBS
3 2 5 10 75 512 5 3 425 52 2.2x 10.7x

IBS
4 6 43 301 588 3495 18823 10 3116 30446 0.0x 1.6x

IBS
5 6 10 33 107 880 13 6 567 236 2.6x 18.8x

IBS
6 2 3 9 46 303 2 2 283 14 3.8x 5.7x

IBS
7 5 46 905 463 3808 6941 7 3510 23191 0.1x 3.3x

IBS
8 3 5 14 95 351 6 5 377 146 2.4x 25.9x

IBS
9 4 9 34 102 717 12 5 687 184 2.7x 15.0x

IBS
10 2 3 12 48 289 2 2 291 16 4.7x 6.7x

IBS
11 5 52 1286 520 3744 22565 8 3613 30118 0.1x 1.3x

IBS
12 7 30 131 - - [11%] 9 2040 7585 - -

Table D.3: Computational results for the rounded linear objective function.
Big-M MaxSAT MILP Speed-up

Inst. #It. #Con. Time #It. #Int. Time #It. #Int. Time Big-M MILP

IAO
1 4 9 115 150 2252 35 4 1921 308 3.3x 8.8x

IAO
2 6 23 130 156 2061 28 6 2031 614 4.7x 22.2x

IAO
3 9 16 133 226 1612 33 6 1368 307 4.1x 9.5x

IAO
4 3 7 40 148 1130 18 4 1108 162 2.2x 8.9x

IAO
5 4 9 42 100 861 10 3 816 74 4.2x 7.5x

IAO
6 5 6 45 89 531 7 4 594 69 6.7x 10.2x

IAO
7 2 5 13 91 447 8 2 450 32 1.8x 4.3x

IAO
8 8 61 1354 279 6746 364 11 6578 62147 3.7x 170.9x

IAO
9 6 23 131 232 2564 79 6 1844 777 1.7x 9.8x

IAO
10 4 16 72 153 1675 29 7 1645 600 2.5x 20.9x

IAO
11 4 29 142 178 3526 98 6 3272 1331 1.4x 13.6x

IAO
12 7 37 725 226 3291 129 7 3322 5581 5.6x 43.4x

IBO
1 3 3 47 74 775 8 4 798 101 6.1x 13.3x

IBO
2 2 1 11 56 233 3 2 205 11 4.0x 4.1x

IBO
3 3 4 22 86 435 6 3 425 53 3.4x 8.4x

IBO
4 6 10 85 99 1342 19 3 968 89 4.4x 4.6x

IBO
5 3 2 21 73 283 2 2 225 12 8.4x 5.0x

IBO
6 2 1 10 17 172 1 2 199 12 10.1x 12.7x

IBO
7 6 23 120 119 2330 37 7 2152 1814 3.3x 49.3x

IBO
8 2 1 11 47 180 1 2 181 9 7.5x 6.2x

IBO
9 4 9 27 93 545 10 4 525 137 2.6x 13.6x

IBO
10 3 8 24 92 554 11 3 588 63 2.3x 5.9x

IBO
11 16 60 588 318 3837 146 - - [0.2%] 4.0x -

IBO
12 2 3 22 57 757 6 2 604 31 3.5x 5.0x

IAT
1 5 74 581 196 5068 211 9 5593 6147 2.8x 29.1x

IAT
2 4 52 634 263 4157 230 7 3981 10802 2.8x 47.0x

IAT
3 4 32 161 293 3143 140 6 2692 1324 1.2x 9.5x

IAT
4 4 17 59 203 1612 47 5 1646 458 1.2x 9.7x

Continued on next page

54

Table D.3 – continued from previous page

Big-M MaxSAT MILP Speed-up
Inst. #It. #Con. Time #It. #Int. Time #It. #Int. Time Big-M MILP

IAT
5 4 15 48 186 1393 34 5 1290 373 1.4x 10.9x

IAT
6 4 7 23 108 634 7 4 642 110 3.3x 15.6x

IAT
7 3 8 22 71 468 8 3 476 75 2.9x 10.0x

IAT
8 - - [2.0%] 379 19371 15523 - - [21%] - -

IAT
9 6 47 453 208 3832 97 7 3724 10307 4.7x 106.6x

IAT
10 4 19 67 107 1870 21 3 1469 195 3.2x 9.4x

IAT
11 - - [32%] - - [34%] - - [46%] - -

IAT
12 - - [37%] - - [37%] - - [51%] - -

IBT
1 4 23 87 154 2032 39 5 1826 384 2.2x 9.8x

IBT
2 3 6 14 62 324 5 3 339 49 2.8x 9.4x

IBT
3 3 7 20 69 483 7 3 375 40 2.9x 5.9x

IBT
4 7 39 192 175 2863 94 14 4000 37913 2.0x 402.7x

IBT
5 4 10 26 101 775 9 5 609 166 2.9x 18.3x

IBT
6 2 3 11 51 268 2 2 279 14 4.6x 5.9x

IBT
7 4 41 136 190 3306 164 7 2816 1433 0.8x 8.7x

IBT
8 4 6 19 107 432 6 5 385 94 3.2x 16.0x

IBT
9 5 11 37 120 941 14 8 873 589 2.7x 42.0x

IBT
10 2 3 11 47 294 3 2 291 11 3.3x 3.4x

IBT
11 6 46 289 169 2837 78 7 2737 1293 3.7x 16.6x

IBT
12 7 34 137 194 1995 131 15 2146 12302 1.0x 93.8x

IAS
1 7 77 10298 351 8475 722 10 7275 77419 14.3x 107.2x

IAS
2 5 63 1571 218 5934 295 7 4883 18588 5.3x 63.1x

IAS
3 4 31 157 235 3604 104 10 4152 19989 1.5x 192.0x

IAS
4 4 19 71 158 1954 27 5 1880 701 2.6x 25.7x

IAS
5 3 15 37 146 1905 32 6 1718 996 1.2x 31.2x

IAS
6 2 4 15 56 501 5 2 490 26 3.0x 5.2x

IAS
7 3 7 26 138 656 12 4 650 146 2.2x 12.3x

IAS
8 - - [9%] 563 24773 54003 - - [14%] - -

IAS
9 6 46 528 191 3741 93 7 4072 18038 5.7x 194.0x

IAS
10 3 21 61 131 2041 27 6 2291 1676 2.3x 63.2x

IAS
11 - - [26%] - - [35%] - - [38%] - -

IAS
12 - - [33%] - - [40%] - - [41%] - -

IBS
1 4 29 198 192 2603 93 7 2674 12104 2.1x 130.4x

IBS
2 3 6 14 53 290 4 3 353 60 3.9x 16.6x

IBS
3 2 5 12 67 477 5 3 467 63 2.6x 14.0x

IBS
4 5 36 364 219 2979 133 7 2714 3413 2.7x 25.7x

IBS
5 6 10 40 107 870 15 6 567 219 2.6x 14.3x

IBS
6 2 3 12 46 303 3 2 283 16 4.0x 5.3x

IBS
7 4 47 883 202 3742 170 8 3522 9559 5.2x 56.1x

IBS
8 3 5 16 123 381 5 6 389 141 3.0x 26.0x

IBS
9 5 10 33 83 746 7 4 545 95 4.4x 12.7x

IBS
10 2 3 16 52 289 3 2 291 18 4.6x 5.3x

IBS
11 6 57 1944 201 3571 141 12 4005 29879 13.8x 212.5x

IBS
12 6 32 203 166 1800 105 7 2064 2992 1.9x 28.6x

55

Table D.4: Computational results for the stepwise linear objective function.
Big-M MaxSAT MILP Speed-up

Inst. #It. #Con. Time #It. #Int. Time #It. #Int. Time Big-M MILP

IAO
1 3 8 88 127 1887 19 3 1623 170 4.6x 8.7x

IAO
2 8 25 154 135 1684 25 5 1749 205 6.2x 8.3x

IAO
3 4 9 60 126 1298 16 4 1264 121 3.8x 7.7x

IAO
4 7 13 95 152 1069 16 5 1222 135 5.8x 8.3x

IAO
5 4 8 45 127 824 12 4 878 131 3.8x 10.9x

IAO
6 3 4 27 93 520 5 4 552 60 5.3x 12.1x

IAO
7 4 7 20 55 398 4 2 450 15 5.2x 4.0x

IAO
8 6 56 182 214 3514 80 5 3728 507 2.3x 6.3x

IAO
9 6 22 78 128 1874 20 5 1636 175 3.9x 8.7x

IAO
10 5 19 58 115 1303 15 5 1447 194 3.8x 12.6x

IAO
11 6 31 212 129 3000 49 4 2736 474 4.4x 9.8x

IAO
12 6 35 320 206 2971 86 7 3480 1379 3.7x 16.1x

IBO
1 2 2 30 39 719 4 2 726 36 8.5x 10.4x

IBO
2 3 2 14 61 242 3 2 205 9 4.5x 2.9x

IBO
3 3 4 16 50 346 3 3 341 26 6.0x 9.5x

IBO
4 3 6 43 121 1380 16 6 1096 134 2.6x 8.1x

IBO
5 3 2 17 73 293 3 2 225 13 5.5x 4.1x

IBO
6 2 1 8 17 172 1 2 199 9 10.5x 11.2x

IBO
7 6 25 100 104 2299 30 5 1744 188 3.3x 6.2x

IBO
8 2 1 11 47 180 2 2 181 10 4.7x 4.6x

IBO
9 3 6 20 96 548 10 4 563 60 2.0x 6.0x

IBO
10 5 10 28 64 506 6 3 546 36 5.1x 6.6x

IBO
11 7 33 92 112 2164 25 5 1577 158 3.7x 6.4x

IBO
12 2 3 25 57 730 5 2 604 24 4.8x 4.5x

IAT
1 7 92 2204 221 5017 188 8 6287 8376 11.7x 44.6x

IAT
2 6 63 753 159 3732 58 7 4559 1997 12.9x 34.2x

IAT
3 6 40 284 307 3114 114 6 2782 981 2.5x 8.6x

IAT
4 4 25 72 95 1423 19 3 1384 150 3.9x 8.1x

IAT
5 6 20 69 104 1096 11 3 1024 99 6.2x 9.0x

IAT
6 4 7 28 104 652 8 4 632 96 3.7x 12.5x

IAT
7 4 9 28 63 437 5 3 524 62 5.5x 12.1x

IAT
8 8 147 7953 187 9743 210 10 9607 59085 37.9x 281.4x

IAT
9 5 45 167 157 2567 47 4 2786 377 3.6x 8.1x

IAT
10 5 25 79 88 1504 17 6 1617 272 4.7x 16.0x

IAT
11 - - [3%] 207 10554 396 9 11093 108005 - 272.8x

IAT
12 5 153 14680 222 12754 540 8 11428 63967 27.2x 118.4x

IBT
1 4 21 107 106 1605 29 6 1926 494 3.7x 17.3x

IBT
2 3 6 16 58 277 3 3 325 34 5.5x 11.9x

IBT
3 3 7 19 72 434 5 3 375 32 4.2x 7.0x

IBT
4 5 33 103 118 2494 39 4 2116 271 2.7x 7.0x

IBT
5 4 10 33 92 702 7 4 597 90 4.5x 12.3x

IBT
6 2 3 12 51 268 4 2 279 13 2.9x 3.0x

IBT
7 7 42 169 131 2722 43 4 2112 256 4.0x 6.0x

IBT
8 3 5 13 87 372 6 4 371 60 2.1x 10.0x

IBT
9 6 10 42 67 707 6 5 579 165 6.8x 26.6x

Continued on next page

56

Table D.4 – continued from previous page

Big-M MaxSAT MILP Speed-up
Inst. #It. #Con. Time #It. #Int. Time #It. #Int. Time Big-M MILP

IBT
10 2 3 11 49 294 3 2 291 12 3.4x 3.8x

IBT
11 5 43 175 147 3083 53 6 2469 635 3.3x 12.0x

IBT
12 4 27 83 106 1286 15 5 1588 321 5.5x 21.4x

IAS
1 4 92 10559 201 6620 223 3 5257 3901 47.4x 17.5x

IAS
2 3 66 474 210 5181 116 4 4747 1923 4.1x 16.5x

IAS
3 4 38 130 144 2607 39 3 2336 411 3.4x 10.6x

IAS
4 4 25 69 167 1751 30 3 1410 176 2.3x 6.0x

IAS
5 4 16 58 103 1371 12 3 1246 165 4.7x 13.3x

IAS
6 2 4 16 51 495 3 2 490 27 4.6x 8.0x

IAS
7 3 8 22 107 558 8 4 712 90 2.8x 11.4x

IAS
8 4 113 4099 194 9805 215 4 6471 7816 19.1x 36.4x

IAS
9 6 53 193 141 2843 40 3 2902 405 4.8x 10.1x

IAS
10 5 27 83 110 1886 19 3 1827 160 4.5x 8.6x

IAS
11 3 96 18297 167 10963 437 4 6855 11073 41.9x 25.3x

IAS
12 3 109 6137 168 12056 286 6 10004 30737 21.4x 107.4x

IBS
1 4 30 105 90 1882 19 3 1842 248 5.5x 13.0x

IBS
2 4 8 21 48 267 2 3 339 47 9.6x 22.0x

IBS
3 2 5 12 71 473 6 3 425 44 2.1x 7.7x

IBS
4 4 33 144 149 2564 44 3 2074 330 3.3x 7.4x

IBS
5 5 9 38 75 721 7 4 555 93 5.2x 13.0x

IBS
6 2 3 13 46 303 3 2 283 21 4.0x 6.5x

IBS
7 5 50 535 148 3184 58 5 3130 1059 9.2x 18.2x

IBS
8 3 5 16 83 342 4 3 331 29 3.7x 6.8x

IBS
9 8 19 71 66 566 5 5 501 67 13.3x 12.5x

IBS
10 5 6 28 58 316 4 5 357 56 7.3x 14.6x

IBS
11 3 42 414 122 3076 36 3 2463 437 11.6x 12.2x

IBS
12 6 27 122 121 1655 28 5 1658 465 4.4x 16.6x

All the three tables give evidence that the DDD-TRP algorithm offers
better performances when it uses the MaxSAT solver instead of the MILP
one. In particular, on the instances that could be solved to optimality, the
speed-up among the two algorithms is always greater than one (with only one
exception in Table D.2) and its average value is 12.7 for the continuous linear
objective function (Table D.2), 39.7 for the rounded linear objective function
(Table D.3), and 18.4 for the stepwise linear objective function (Table D.4).
The comparison between DDD-TRP with MaxSAT and the MILP formu-
lation requires a more detailed analysis. In particular, for the case of the
linear objective function, MILP could solve 67 of the 72 instances within the
time limit, while MaxSAT only 57. On the other hand, on the instances that
could be solved by both the algorithms, MaxSAT is faster than MILP on 38

57

(over 57) cases. For the rounded linear objective function (Table D.3), the
situation is more clearly in favour of MaxSAT. Indeed, here MaxSAT could
solve 3 instances more than MILP (68 vs 65 over 72). Moreover, MaxSAT
results in all cases (with only one exception) to be the faster algorithm, with
an average speed up on the solved instances of 3.8. The same behaviour is
confirmed in the case of stepwise linear functions (Table D.4). Here both
MaxSAT and MILP could solve all (but one, for MILP) the instances within
the time limit but MaxSAT presents computational times always smaller
than MILP (the average speed up is 7.3).

Finally, in order to illustrate the scale of SAT instances addressed by the
MaxSAT RC2 algorithm, Table D.5 presents the most challenging instances
(corresponding to those in Table 2). The table includes information on the
number of variables and clauses in the MiniSat solver instance after all the
required IAP instances have been solved, i.e. at the end of the DDD-ALG.

Table D.5: Comparison of SAT instance sizes at the convergence of the DDD-ALG using
RC2 and MiniSat on the 10 hardest instances with a stepwise objective function.

Instance Time (ms) Variables Clauses

IAS
1 249 5894 11626

IAS
2 78 4147 8025

IAS
8 186 8499 18839

IAS
11 419 9374 20773

IAS
12 553 12284 27899

IAT
1 86 4757 9428

IAT
2 63 3212 5923

IAT
8 181 9610 22198

IAT
11 300 9869 22619

IAT
12 285 10858 24791

58

