
Preprint

RailCNL: A Controlled Natural Language for Railway Design
Verification Specifications

Bjørnar Luteberget · John J. Camilleri · Christian Johansen · Gerardo Schneider

2019-05-07

Acknowledgements We would like to thank Martin Steffen and
Aarne Ranta for numerous fruitful interactions, and Claus Feyling
(CEO of Railcomplete AS) for allowing us to use the time of his en-
gineers for testing our results and other railway specific interactions.
This work was supported by the Norwegian Research Council under
the grant RailCons – Automated Methods and Tools for Ensuring Con-
sistency of Railway Designs.

Abstract Designs for railway infrastructure (tracks, sig-
nalling and control systems, etc.) need to comply with com-
prehensive sets of regulations describing safety require-
ments, engineering conventions, and design heuristics. We
have previously worked on automating the verification of
railway designs against such regulations, and integrated a
verification tool based on Datalog reasoning into the draw-
ing tools of railway engineers. We would like railway en-
gineers with limited logic programming experience to par-
ticipate in the verification process, and we propose general
principles of participatory verification which are exempli-
fied throughout the paper. For our specific need for partic-
ipatory verification, we introduce a controlled natural lan-
guage (CNL), called RailCNL, which is designed as a mid-
dle ground between informal regulations and Datalog code.
Phrases in RailCNL correspond closely to those in the regu-

B. Luteberget
RailComplete AS, Sandvika, Norway
E-mail: bjlut@railcomplete.no

J.J. Camilleri
Chalmers University of Technology and University of Gothenburg,
Sweden
E-mail: john.j.camilleri@cse.gu.se

C. Johansen
University of Oslo, Norway
E-mail: cristi@ifi.uio.no

G. Schneider
Chalmers University of Technology and University of Gothenburg,
Sweden
E-mail: gerardo@cse.gu.se

lation texts, and can be translated automatically into the in-
put language of the verifier. We demonstrate a prototype sys-
tem which, upon detecting regulation violations, traces back
from errors in the design through the CNL to the marked-up
original text, allowing domain experts to examine the cor-
rectness of each translation step and better identify sources
of errors. We also describe a design methodology based on
CNL best practices and previous experience with creating
verification front-end languages useful for designing similar
CNLs.

1 Introduction

Automated formal verification techniques have the poten-
tial to greatly increase the efficiency of engineering. How-
ever, verification engines are not easy to take up in industrial
practice. Even if the verification process is fully automated,
integrating the tools into the users’ workflow and formaliz-
ing properties and models requires careful thinking and do-
main expertise. The gap between automated verification and
domain expert users is often caused by the lack of user in-
volvement. The users are usually not experts in verification
techniques, i.e. they do not know how to write properties
in the verifier’s language, nor how to build models for the
verifier, nor how to interpret the output of the verifier when
violated properties are found. In our case, the users are ex-
pert engineers from the railway domain, designing railway
infrastructure.

We want to allow the end users to participate in the ver-
ification process. Firstly, the domain experts need to under-
stand the verification properties that the tool actually veri-
fies, as well as the model of the system that the tool works
with. Secondly, we want to allow the users to actively partic-
ipate in maintaining the verification properties, i.e. to change

http://www.mn.uio.no/ifi/english/research/projects/railcons

Fig. 1: CAD integrated verification engine, displaying errors
and warnings after checking the model extracted from the
CAD design against railway regulations on-the-fly.

and adjust them when needed.1 Thirdly, we want that the do-
main experts are able to create their own specifications and
feed these into the verification engine, e.g. define specific
expert knowledge as verification conditions.2

Involving the user in the design of a system is well-
studied in the field of participatory design [49,22]. We use
the term participatory verification when talking about meth-
ods for including the end user in the verification process.
The goal is to make automated verification techniques ac-
cessible to engineers with little programming or verification
experience.

We have previously demonstrated [34,33] an efficient
verification and troubleshooting tool integrated into the
CAD-based program used by railway planning engineers.
This tool performs a lightweight type of verification which
we call static infrastructure verification, and the results are
updated continuously as the engineer is modifying the sta-
tion (see Fig. 1). However, the Prolog-like formal logical
specification language that we used for describing railway
rules and regulations is not easy for inexperienced program-
mers to write. Ideally, railway engineers should be able to
read the logical specifications to ensure that they correctly
represent the engineering domain. Furthermore, engineers
should themselves be able to maintain and extend the rule
base with limited support from verification experts. When
we evaluated our verification prototype with railway engi-
neers from RailCOMPLETE AS3, they raised yet another
concern: how could they trace the violation, which the tool
displays graphically, back to the regulations documents?

These observations have led us to develop a controlled
natural language (CNL), which we call RailCNL, meant to
be used as an intermediate representation between natural
language texts (i.e. the railway regulations) and Datalog [53]
logic programs. RailCNL aims to be human-friendly enough
for our domain experts to work with to overcome the above

1 Authorities typically make small adjustments to regulations sev-
eral times per year, whereas engineering best practices can be revised
at any time.

2 Such expert knowledge is often seen as proprietary valuable assets
of the company.

3 http://railcomplete.no

challenges, and thus getting them involved in using and im-
proving the automated verification tool. At the same time,
the language is a formal language which can be automati-
cally translated into Datalog.

The contributions of this work are twofold. We propose
participatory verification as an agenda for making verifica-
tion methods more accepted by their intended users. Sec-
tion 2 describes a general view on participatory verification,
and the rest of the paper is concerned with applying this this
view in a specific use case, namely the writing of verification
properties by engineers, with the proposed solution of using
controlled natural languages. The second contribution is our
methodology for designing controlled natural languages for
verification, described in Section 3, and the RailCNL made
specific for railway regulations and specifications, which is
described in detail in Section 4 and evaluated in Section 5.
To fully evaluate the usefulness of using controlled natural
languages for verification properties, we present two tools
making use of RailCNL in Section 6. The concluding Sec-
tion 7 contains some more related works and suggestions for
possible continuations of this work.

This article is an extended and revised version of the pa-
per presented at SEFM 2017 [32]. Besides adding consid-
erably more examples and explanations to sections 3 and
4, this paper also includes the following new contributions:
Section 2 about participatory verification is new, as well
as the CNL editor survey in Section 6.2, and a specialized
text editor tool was developed and described in Section 6.3.
Moreover, this article has a new structure allowing the reader
to follow the content from the most general ideas presented
as participatory verification in Section 2 to more specific one
in subsequent sections until reaching the tools Section 6.

2 Participatory Verification

We propose to adopt techniques from participatory design
[49] into formal verification processes. We try to convey
here how the formal verification process can be seen as a
participatory design process, pointing out what stages and
components from verification can be enhanced by participa-
tory design ideas, so to make verification more user friendly,
and to properly include the user in those verification tasks
where their participation is needed.

Formal verification techniques are developed by theo-
retical computer science researchers based on mathematical
models, like automata, and logical formalisms, like temporal
logics, aiming to verify complex properties of complex sys-
tems, where human reasoning or testing techniques cannot
encompass the large amount of details. The formal verifi-
cation technique is implemented into a verification engine
which takes as input:

– a model (i.e., the system with some details omitted) and

2

http://railcomplete.no

– a property to be verified;

and returns an answer:

– either correct when the model satisfies the property, or
– error when the model violates the property and
– an explanation of why the violation happens.

A plethora of verification engines exists, each for different
kinds of systems (avionics, railways, software, microchip)
and different kinds of properties of interest (deadlocks,
safety, availability, correctness). Many of these have reached
enough maturity to be usable in industry on more than proof
of concept scenarios. A main impediment in the wider adop-
tion of verification engines and techniques is the high level
of specialized expertise that is required in order to:

– build models that the engine will accept and work nicely
with,

– write properties,
– understand the output explanations of these engines,
– understand what the verification engine does (how the

verification algorithm works) so to increase trust.

Usually those that can perform these tasks are the same
experts that also built the respective verification engine,
with knowledge of specific types of logics, specific kinds of
mathematical objects representing the models, and deep un-
derstanding of the verification algorithms employed in order
to be able to decipher the outputs of the verification engine
and know how to use them to repair the system problem dis-
covered by the verification process.

However, one would want the users of the verification
engine to be the respective engineers that design and work
with the respective real life complex systems like avionics
designers, software engineers, railway engineers. These are
persons with high level of skill in their own field, but not
in the field of verification. We want persons that work with
defining the specifications for the complex system and the
various safety regulations and standards, to be the ones writ-
ing also the verification properties. We want those that build
the complex systems to be able to run the verification algo-
rithm, understanding what it is supposed to do for them, on
the models provided by their peer engineers on the proper-
ties provided by regulators, and to understand the explana-
tions of the verification tool when properties are not satis-
fied, i.e., to be able to use these explanations to debug their
implementations and designs.

Like in any other product design process, the verifica-
tion experts should go out of the loop as soon as they have
finished designing and developing a specific verification en-
gine (e.g., a verification tool built for some specific avion-
ics system and specific kinds of safety properties as com-
missioned by some specific company). The verification en-
gine is the product, and the users are the various field en-
gineers. The users should be able to use a product in their

daily tasks without any help from experts. However, since
the final product is such a complex system, we need addi-
tional tools around the verification engine that would help
the users participate in the verification process without need-
ing interaction with verification experts.

Therefore, in participatory verification we define two
phases and two main classes of software components.

Phase D: The design and development of the verification
method and engine for the specific verification task (or
area).

Phase V: The verification time when field engineers use
the verification tools to debug and check their designs
against specific regulations/properties.

Verification software components are seen as organized
into:

Expert components include the verification algorithm and
engine, various optimization modules, various transla-
tion tools between various specific mathematical struc-
tures as input to these modules and engine, includ-
ing models like automata and property description lan-
guages like temporal logics.

User components include the UI tools, e.g., for displaying
models, for writing properties, various modules for in-
teracting with existing field tools and their UIs, various
graphical/diagrammatic languages, editors for domain
specific languages.

We observe that usually most of the resources are spent
on expert components, whereas the user components are of-
ten disregarded in favor of hiring verification experts to use
the expert verification components in doing the verification
tasks during the verification phase. If some verification tool
suite is becoming so popular as to attract companies, then in-
vestments in user components appear. The rest of our paper
is concerned with Phase V and User components.

In participatory verification the concept of “participa-
tion” comes in two flavors:

(i) Users participate during the Phase D in usability studies
[13], helping the verification experts to develop a tool
best fit for the specific verification task and for the field
in which the engineers are supposed to use the new tool.

(ii) Users actively participate in the verification process,
during Phase V, to define the models and properties for
the verification engine and to interact and understand the
outputs from the engine.

Traditionally, participatory design (or interaction de-
sign) is concerned with Phase D of building a product un-
til its delivery on the market, and less concerned with Phase
V, when the product is used, unless subsequent versions of
improved products are planned.

3

It is a particular challenge of participatory verification
to achieve the second form of participation because of the
complexity of the product. It is often the case with verifi-
cation tools that the difficult learning curve required to use
them is too big for the field engineers to overcome. Because
of this, too many good verification algorithms and methods
are not adopted.

Participatory verification aims to increase adoption of
verification techniques, making two fundamental observa-
tions:

Sympathy for the verification tool: if the end user is in-
volved in the development (specification, testing, etc)
of a complex tool for them (thus prone to seeing the
bugs along the way), then the user will be more aware
of which features of the tool are difficult to implement,
and thus buggy, and which work well.

Empathy for the intended user: if the developer works with
the stated intention of making the tool for the end user,
knowing the capabilities of the end user, how she nor-
mally will use the tool, spending enough time on tailor-
ing the tool to the actual expressed user needs, then the
user will require little learning and effort for using the
new tool with her normal working methods, also mak-
ing use of all the features of the tool.

In our previous work [33] we have had the role of the de-
velopers, building a verification engine for railway designs.
We have tried to follow the Empathy guidelines, working
closer with the engineers and integrating our engine into
the engineers’ design tools. We observed their working pro-
cedures and tools as well as interviewed representatives.
However, we did not achieve the Sympathy goals, one of
the major impediments being the opacity of the verification
method, including the encoding of the regulations that our
engine was working with. Moreover, it was clear in the end
that the engineers would not be able to write or change any
of the verification properties by themselves.

The remainder of the section presents our solution for al-
lowing the user of a verification method to participate in the
definition of the properties to be checked. The rest of the pa-
per goes into further details, presenting first a methodology
that we devised and followed for building such front-ends,
then defining an actual constrained natural language that we
called RailCNL, and finishing with the way we use RailCNL
in practice both for reading and writing properties.

2.1 Approach to Participatory Verification for Railway
Regulations

To promote participatory verification of infrastructure rail-
way designs against regulations, we design a property spec-
ification language for expressing railway regulations and ex-
pert knowledge, integrating it with our previously developed

verification engine. Fig. 2 presents the overall workflow of
using the property language with special-made tooling, inte-
grated with the engineer’s CAD-based environment and our
verification engine. Specifically, railway infrastructure static
verification requires:

1. Models: railway infrastructure plans, typically created
by arranging the station layout using CAD-based pro-
grams, e.g. extensions of Autodesk AutoCAD.

2. Properties: regulations and expert knowledge, extracted
from regulatory and best-practices documents.

The formalization of these into Datalog is described in
our previous work [33] which allows efficient automatic rea-
soning. The reasoning happens continuously, in the back-
ground, while the user is working on the CAD drawing. Vi-
olations of regulations and best practices are presented to the
user in the CAD program graphically, on the drawing.

We are not concerned with the model because in our case
it is automatically generated from CAD drawings, which is
already the tool of choice for engineers, thus they are ac-
tively involved in making the models while drawing in the
CAD-based RailCOMPLETE framework.

Describing verification properties using logical rules in
Datalog is not new (along with other logics like temporal [3]
or dynamic logics [18,4]), and we expected that the declar-
ative style of Datalog would make it easy for railway en-
gineers to read and write such properties. However, a pi-
lot project with the RailCOMPLETE engineers showed that
they were not proficient enough in logic programming to un-
derstand our encodings.

To allow the engineers to participate in the verification
process, we develop the controlled natural language Rail-
CNL for representing properties on a higher level of ab-
straction, making them closer to the original text while still
retaining the possibility for automatic translation into Data-
log. This approach has the following advantages:

– RailCNL is domain-specific, i.e., tailored both to the
types of logical statements needed by the verification
engine, and to the regulations terminology. This allows
concise and readable expressions, increasing naturalness
and maintainability.

– The language closely resembles natural language, and
can be read by engineers with the required domain
knowledge without learning a programming language.

– A separate textual explanation (such as comments used
in programming) is not needed for presenting violations
textually, as the properties are now directly readable as
natural text. Comments could still be used, e.g., to clar-
ify edge cases or to clarify semantics, as is done in the
original regulations texts where commenting is needed
since the expected natural semantics of some regulations
needs confirmation in certain cases (e.g., “yes, this rule
applies even when (...)”).

4

CNL editor
See Section 6.3

Properties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation

of infrastructure
See Section 1

Datalog
reasoner

Issues presentation
(warnings, errors)

See Fig. 1

Original text
(w/marked-

up sentences)
See Section 6.1

Side by side tracing through
CNL to original text.

See Fig. 8

Fig. 2: Verification process overview. Models come directly from the CAD program, which engineers are already familiar
with. Properties come from paraphrasing the regulations using CNL, which in turn are translated into Datalog. The reasoner
outputs issues (warnings and errors) which are presented to the user in the CAD program by highlighting the objects involved
in the violation. Issues are traced back to the original text (i.e. the regulations) though identifiers on the marked-up sentences.

– Statements in RailCNL can be linked to statements in the
original text, so that reading them side by side reveals
to domain experts whether the CNL paraphrasing of the
natural text is valid. If not, they can edit the CNL text.

3 Design Methodology for a Verification Front-End
Language

A controlled natural languages (CNL) is a constructed lan-
guage resembling a natural language (such as English) but
with added restrictions on its grammar and vocabulary. The
restrictions are typically aimed at reducing the ambiguity
and complexity of unrestricted natural language. A CNL
may or may not also be a formal language, depending on its
intended use. Wyner et al. [59] give high-level recommenda-
tions on how to design controlled natural languages ranging
from informal to formal, general to domain-specific, simple
to complex. For a recent survey of CNLs, see Kuhn [27],
whereas in Section 6.2 we survey CNL editors and their
properties.

3.1 Using the Grammatical Framework to build CNLs

Grammatical Framework (GF) is a programming language
for multilingual grammar applications [41]. A GF program
defines a grammar consisting of an abstract syntax and one
or more concrete syntaxes. The project also features the re-
source grammar library (RGL), which is a comprehensive
linguistic model of natural languages with a unified API for
forming sentences, and implementations of this API for 32

languages. The RGL encapsulates the linguistic complex-
ity of the underlying natural languages, minimizing the ef-
fort needed to map an abstract syntax into another natural
language, often reducing to simply providing the domain-
specific vocabulary. This makes GF a valuable tool for build-
ing CNLs.

An abstract syntax consists of categories and construc-
tors (functions), corresponding to a set of algebraic data
types, which define the abstract syntax tree (AST) of the lan-
guage. The following is an example of abstract syntax used
to form sentences about distance restrictions on railway ob-
jects:

abstract Railway = {
cat Object; Length; Restriction; Statement;
fun
Signal, Switch, Detector : Object;
LengthMeters : Int -> Length;
GreaterThan, LessThan : Restriction;
ObjectSpacing : Object -> Object ->

Restriction -> Length -> Statement; }

To express that signals should not be closer than 20m from
a switch, we write:

AST: ObjectSpacing Signal Switch

GreaterThan (LengthMeters 20)

The concrete syntax creates a mapping from the tree-
structured abstract syntax to text. Applying this mapping is
called linearization. GF concrete syntaxes are invertible so
that the concrete syntax also defines a parser for the lan-
guage. This inversion is complete except for situations with
ambiguities in the concrete syntax. Therefore, and especially
when designing formal language front-ends, it is essential to
limit the possible ambiguities in the language to get an exact

5

correspondence between the concrete language (lineariza-
tion) and the AST. Concrete syntax definitions in GF assign
concrete data types to the abstract categories, e.g. strings or
record types, and provide implementations of the construc-
tors as functions.

A concrete syntax for the above AST concerning railway
object spacing is:

concrete RailwayEng of Railway = {
lincat Object = Str; Length = Str;

Restriction = Str; Statement = Str;
lin Signal = "signal";
Switch = "switch";
Detector = "detector";
LengthMeters i = i.s ++ "m";
GreaterThan = "greater than";
LessThan = "less than";
ObjectSpacing o1 o2 r l = "a" ++ o1 ++ "

must be" ++ r ++ l ++ "from a" ++ o2;
}

After both an abstract syntax and a corresponding con-
crete syntax has been defined, we can parse this language:

Text: a switch must be more than 20 m from a signal
AST: ObjectSpacing Switch Signal

LessThan (LengthMeters 20)

We can also linearize the language from the the abstract
syntax:

AST: ObjectSpacing Detector Signal

LessThan (LengthMeters 2)

Text: a detector must be less than 2 m from a signal

Although this example is close to natural language, ex-
tending the language in the same style would quickly run
into trouble trying to cover all the linguistic variation that
arises from composing complex sentences. For example,
adding words to the vocabulary which start with vowel
sounds would require the article “a” to be replaced with “an”
in these cases, breaking the compositionality of the program.

The resource grammar library defines a comprehensive
set of linguistic categories such as noun phrases (NP), verb
phrases (VP), clauses (Cl) and sentences (S) which can be
used to compose texts. The type-safety enforced by the GF
compiler on the constructors which use these linguistic cate-
gories ensures that the compositions are grammatical. Each
language resource in the RGL implements these categories
with the required attributes for that particular language. For
example, the English grammar contains a determiner phrase
a Det, which can be linearized as “a” or “an”, depending
on the composition of the noun phrase in which it is used.
The example from above can be re-written to use the English
resource grammar as follows:

concrete RailwayEngRGL of Railway = open
SyntaxEng, ParadigmsEng, SymbolicEng, (Res
=ResEng) in {

lincat Object = N; Length = NP;
Restriction = A2; Statement = S;

lin Signal = mkN "signal";
Switch = mkN "switch";
Detector = mkN "detector";
LengthMeters i = symb (i.s ++ "m");
GreaterThan = mkA2 (mkA "more") (mkPrep "

than");
LessThan = mkA2 (mkA "less") (mkPrep "than")

;
ObjectSpacing obj1 obj2 restriction length =
mkS (mkCl (mkNP a_Det obj1)
(mkVP (mkVP must_VV (mkVP (mkAP

restriction length)))
(SyntaxEng.mkAdv from_Prep (mkNP a_Det

obj2))));
}

Using the resource grammar library allows us to separate
the concerns of composing sentences from the concern of
inflections and word ordering.

3.2 Design methodology overview

Our methodology is based on CNL and GF best practices;
in particular, Ranta et al. [46] describe the construction of a
CNL by creating an abstract syntax corresponding to a se-
mantic model, mapping it into natural language, and also
how to avoid or handle ambiguity in parsing and translating.
In a later report, Ranta et al. [45] give explicit best practices,
such as: (i) using a modular structure separating generic and
domain-specific parts of the grammar, (ii) letting the AST
model the semantics of the text, as opposed to the logic of
the underlying formalism, and (iii) trade-offs in modelling
language restrictions purely in context-free grammar versus
using dependent types. We expand on these best practices
as well as on the works from [20,2,9] that created domain-
specific CNLs as verification front-ends.

We present here the methodology that we apply in Sec-
tion 4 to design RailCNL, a verification front-end language
for describing rules for static railway infrastructure verifi-
cation. This methodology combines concrete advises from
the above works with our own experience from creating a
railway infrastructure verification platform [34,33].

The main activities for defining a verification front-end
language using GF are:

1. Define an abstract syntax which is able to repre-
sent statements of relevant texts. We suggest two sub-
activities to help manage the difficulty and complexity of
modelling domain-specific, yet diverse and informally
structured, texts:
(a) Logic-driven design where basic (often non-

domain-specific) constructs which are known from
the verification logic are added in a “bottom-up”
fashion.

(b) Text-driven design where highly domain-specific
constructs are added to the language to model spe-

6

cific examples in original texts in a “top-down” fash-
ion.

2. Write a concrete syntax, mapping the abstract syntax
into one or more natural languages, using the Grammat-
ical Framework and its resource grammar library.

3. Create a translation from the abstract syntax to the tar-
get logic formalism, i.e., the verification properties ex-
pressed in the input language of the solver.

In theory, these steps could be performed one after the
other, each depending only on the previous steps in the
list. In practice, however, the activities have subtle cross-
dependencies, for example the need for reducing ambiguity
by encoding more restrictions in the types, the usage of re-
stricted keywords, or the need for structure on larger scales
than a single sentence. Section 3.4 addresses each of these
concerns.

Developing a specialized translation algorithm (see Sec-
tion 4.2) instead of going through the GF typing system is
encouraged when the end result is a complex logical lan-
guage, as in our case. In the translation algorithm we can
also incorporate various optimization aspects.

3.3 Abstract Syntax

Attempting to formally model a body of informal specifica-
tions in its entirety may be neither feasible nor desirable, for
a variety of reasons:

1. The text might have some amount of non-normative con-
tent intended only to give readers a better understanding
of the subject matter.

2. Parts of the normative content might not be suitable for
modelling in the target verification tool. For example,
overly broad statements, such as “the system shall en-
sure safety in all possible conditions”, are often part of
regulations even if they do not lend themselves to any di-
rect action. Our railway verification method is used for
static infrastructure properties, whereas any properties
requiring dynamic analysis are left to other stages (and
tools) of the system design. A CNL can still be designed
to model more properties than those which are translat-
able into the verification language.

3. The available body of text might be large and complex,
and covering all parts of it could require diverse domain
knowledge from various disciplines. In our railway case,
we focus on the disciplines of track and signalling de-
sign, as these are the sub-disciplines of railway engi-
neering for which we have had access to domain experts
during the design of our verification system.

Furthermore, starting from arbitrary sentences in the natural
text and trying to cover it with the CNL will often prove to
be a daunting task, given the variety of sentence structures,

variety of contexts and levels of abstraction, and variety of
domain knowledge needed to make sense of the statements.

Our approach to handling this difficulty is to split the
process of designing the abstract syntax into two parts.

(a) We start with a logic-driven design, where we define ba-
sic concepts in a bottom-up fashion, such as classifying
the statement types (constraints, restrictions, etc.) and
describing sets of objects based on their class and their
properties.
Even when deciding on the basic logic of the language,
it might still be wise to abstract away from the details
of the underlying verification logic (as noted in [45,
Sec. 5.2]). In our railway verification case, even if many
regulations can be concisely expressed as Datalog pro-
grams, the abstract syntax of these programs might not
resemble the structure of the original text they were ex-
pressed in. As an example, Datalog does not nest predi-
cates, so explicitly naming variables is required to ex-
press that an object has both a class and a property,
while in natural language, a named variable would not
be needed for such a statement.

Datalog: main signal(X) :- signal(X),

type(X,main).

By designing a language to have a level of abstraction
closer to how the original texts are written, the details of
the underlying formal language, its logic, or the verifi-
cation system, might be changed without devaluing the
knowledge base built by encoding domain knowledge
into the front-end language. For example, the ontolog-
ical statements in RailCNL could also be translated into
an ontology language such as OWL.

(b) Next follows a text-driven design phase, where we look
for text samples that can be captured in the CNL, and
make adjustments and additions to the grammar to cover
them. This phase might eventually lead to finding new
basic building blocks, such as adding the graph mod-
ule to RailCNL for describing railway layout, or adding
relations to the ontology module. However, it is easy
to get carried away and construct a highly nested lan-
guage which has too much freedom and therefore be-
comes difficult to parse. Until the need for more gener-
ality is proven, each newly added construct is kept spe-
cific.

Alternating between the logic-driven and the text-driven
phases can be useful for handling complexity and discov-
ering the middle ground between informal specifications
and verification logic. This approach follows the notion of
language oriented programming [57], where identifying a
high-level language to be used as a middle ground between
bottom-up and top-down programming breaks the system
design into two parts which can be handled separately. Sim-

7

ilarly, we use the CNL as a middle-ground between the orig-
inal texts and the verification system.

A consequence of this compromise is that the language
will seldom be able to cover the exact wordings used in the
original texts. We accept this consequence and aim instead
to provide a user-friendly comparison of original text and
CNL text for traceability (see Section 6.1). The logic-driven
design phase is exemplified for our RailCNL in Section 4.1.

3.4 Concrete Syntax

The abstract syntax is mapped into a natural language us-
ing the GF resource grammar library (RGL), which is well-
covered in the GF documentation and literature (e.g. [46,
45]). Each category of the abstract syntax is mapped into
a linearization type, often a record data structure. For ex-
ample, the Subject category of RailCNL is assigned the
complex noun (CN) record type, and Statement is as-
signed to utterance (Utt).

A major motivation for formal CNLs is that they can be
unambiguously parsed as long as the language is restricted
enough. Languages written using GF are often restricted to
a pre-compiled vocabulary, to be able to identify structure
and handle morphological variation. For our verification ap-
plication, however, we need users to be able to define new
terms dynamically, e.g. class names, and afterwards write
statements using both built-in and user-defined terms. But
allowing arbitrary string tokens can introduce ambiguity, i.e.
the parser returning many parse trees for a single statement.
We keep ambiguity under control through several means:

Type-level Restrictions. The railway term “main signal” is
the common way to refer to a signal which is of type
main. A straight-forward way to add such modifying ad-
jectives as a prefix to class names would be to add a
constructor, for example:

Adjective : String -> Class -> Class

This constructor can be used to add adjectives to any
class, and with the result of this operation also being
a class. However, this approach would mean that any
amount of arbitrary words ending with a class name
(which could also be an arbitrary string) would be a valid
parse. An undesired example is that the subject “a main
signal which has height 10m” could be parsed as the
class “10m” with six modifying prefix adjectives.
Usually, only one or two adjectives are prefixed to a class
name. We can encode this restriction in the type system
by separating the adjective-prefixed class name from the
non-prefixed one. We also add two adjective construc-
tors, one for adding an adjective and one for transform-
ing the type BaseClass into Class without prefixing
an adjective.

StringClassAdjective
: String -> BaseClass -> Class

StringClassNoAdjective
: BaseClass -> Class

In this way, we greatly reduce the ambiguity introduced
by adding arbitrary prefixed strings to class names. We
use this approach for RailCNL a number times, for ex-
ample to add optional names to areas as described above.

Reserved Keywords. Using arbitrary names as building
blocks of our language resembles the use of identifiers as
variables in programming languages. Programming lan-
guages have restricted keywords which cannot be used
as variable names. Similarly, we use the GF parser call-
backs system to remove parses which contain function
words (such as “which”, “has”, “is”, “must”, “be”, etc.)
as arbitrary names. These are very unlikely to be needed
as class or property names.

Weighted Constructors. The GF parser has support for
probabilistic grammars, which work by assigning
weights (probabilities) to the constructors of the abstract
syntax. By assigning a low weight to any constructor
which uses the String category, we ensure that built-in
syntax is always prioritized over arbitrary tokens.

Syntactic Guides. As in programming languages, special
symbols and punctuation can be used as guides for the
parser if we are willing to compromise on naturalness.
For example, in the following sentence we could use the
curly brackets to indicate a class name (now allowing
any number of tokens), and the square brackets could
indicate placement.

Text: A {home main signal} should not be
placed [in a tunnel].

For a human reader, if the meaning of the statement is
preserved when ignoring the brackets, the CNL can still
be said to be readable as natural text.
Alternatively, we can increase the verbosity of the syn-
tax, to reduce the likelihood of causing ambiguity when
embedded in a longer statement. Compare the following
examples:

Text: A signal of height 5.0m.
Text: A signal which has height which is equal to

5.0m.

The second one is less likely to cause ambiguity when
embedded in a longer statement. Adjusting the verbosity
of the syntax is a method for making a trade-off between
naturalness/conciseness and potential ambiguity.

3.5 Vocabulary: Static vs. Dynamic

If the full vocabulary of the language is known in advance,
we can define constant constructors which represent each

8

atomic concept. In this case, the resource grammar library
provides functions for setting up the required morphologi-
cal variations of lexical categories, for example by giving
the stem and gender of a noun. However, we would like our
CNL to be able to also define new terms and subsequently
construct statements using these new terms. This would im-
ply that the vocabulary is not static, and cannot be compiled
in advance.

The most important lexical category for dynamic vocab-
ulary would be nouns, possibly composite nouns. Most of
the morphological variation for these (in Norwegian) would
be given by their gender. A work-around for dynamic vo-
cabulary could be to encode the gender in the abstract syn-
tax. This would allow natural and consistent use of gender
for noun added dynamically to the vocabulary, but this tech-
nique ties the AST to the concrete language and could thus
make it harder to handle several concrete syntaxes.

To avoid excessive ambiguity caused by allowing arbi-
trary words in the grammar, we can declare a set of keywords
which should never be parsed in the arbitrary names cate-
gory. This is implemented in the Grammatical Framework’s
runtime library as a callback function which disqualifies cer-
tain parses by examining the arbitrary word.

Another work-around used in [20] is to write new vocab-
ulary items back into the GF source code for the language
and recompile the GF grammar. We rule this approach out
for this project to avoid having to distribute the GF compiler
and Haskell runtime with our CAD tool (see Section 6).

3.6 Translation into the Target Logic Formalism

If the abstract syntax is made to faithfully model the logic
of the verification system, then the translation into the logic
formalism can be made by implementing another GF con-
crete syntax for the target language. However, target log-
ics are often too low-level to represent regulations directly.
GF incorporates dependent type features which could allow
for a more concise representation of this translation, but this
practice has not yet matured to a state in which it can be
said to be a recommended practice (see [45]). For RailCNL
we have instead written a separate program (in C#, as it is
a part of the verification CAD plugin) which translates from
the abstract syntax of the CNL into Datalog. Section 4.2 de-
scribes the main techniques that we used for RailCNL.

4 RailCNL: a Front-End Language for Railway
Verification

With RailCNL we aim to cover the following content (see
Section 5 on page 15 for a detailed account of the coverage
that we achieve):

〈Statement〉 ::=
〈OntologyAssertion〉

| 〈OntologyRestriction〉
| 〈DistanceRestriction〉
| 〈PathRestriction〉
| 〈PlacementRestriction〉
| (...) // Partial

grammar
〈OntologyAssertion〉 ::=

〈Subject〉 〈Condition〉
〈OntologyRestriction〉 ::=

〈Subject〉 〈Modality〉
〈Condition〉

〈DistanceRestriction〉 ::=
‘the distance from’
〈Subject〉 ‘to’
〈GoalObject〉 〈Modality〉
〈Restriction〉

〈PathRestriction〉 ::=
〈PathQuantifier〉 ‘from’
〈Subject〉 ‘to’
〈GoalObject〉 〈Modality〉
〈PathCondition〉

〈PlacementRestriction〉 ::=
〈Subject〉 〈Modality〉
‘be placed in’ 〈Area〉

〈Modality〉 ::= ‘must’ |
‘shall not’

| ‘should’ |
‘should not’

〈PathQuantifier〉 ::=
‘all paths’

| ‘no paths’ | (...)
〈PathCondition〉 ::= ‘pass’

〈DirectionalObject〉
〈GoalObject〉 ::=

〈DirectionalObject〉
| ‘the first’
〈DirectionalObject〉

〈DirectionalObject〉 ::=
〈SearchSubject〉

| ‘a facing switch’
| ‘a trailing switch’
| 〈SearchSubject〉
〈RelativeDirection〉

〈RelativeDirection〉 ::=
‘same dir.’

| ‘opposite dir.’
〈SearchSubject〉 ::= ‘a’ 〈Subject〉
| ‘another’
〈Area〉 ::= 〈BaseArea〉
| 〈BaseArea〉 ‘which has’
〈PropertyRestriction〉

| 〈Area〉 ‘or’ 〈Area〉
| 〈Area〉 ‘and’ 〈Area〉
〈BaseArea〉 ::= ‘tunnel’ |

‘bridge’
| ‘local release area’
| 〈Identifier〉

〈Subject〉 ::= ‘a’ 〈Class〉
| ‘a’ 〈Class〉 ‘which’
〈Condition〉

〈Condition〉 ::= ‘is a’
〈ClassRestriction〉

| ‘has’ 〈PropertyRestriction〉
| ‘is a’ 〈ClassRestriction〉

‘which has’
〈PropertyRestriction〉

〈PropertyRestriction〉 ::=
〈Property〉
〈ValueRestriction〉

| (...) // and/or
〈ClassRestriction〉 ::= 〈Class〉
| (...) // and/or
〈ValueRestriction〉 ::= 〈Value〉
| ‘not equal to’ 〈Value〉
| ‘less than’ 〈Value〉
| (...) // ≤, >, ≥
| (...) // and/or
〈Value〉 ::= 〈Identifier〉 |

〈Number〉 〈Unit〉
〈Property〉 ::= 〈Identifier〉
〈Class〉 ::= 〈Identifier〉

Fig. 3: English version of RailCNL’s core grammar in BNF
(GF notation shown in Appendix 8). Some linguistic com-
plexity such as subject-verb agreement is ignored here; the
actual grammar is fully specified as GF code, which is ide-
ally suited for handling such cases.

1. Definitions of railway-domain terms from a set of ba-
sic terms given by the object types present in the CAD
program and the railML exchange format.

2. Regulations (from infrastructure manager technical reg-
ulations4) which give obligations or recommendations
on the design of the railway infrastructure.

4 Norwegian infrastructure manager Bane NOR’s regulations:
https://trv.jbv.no/

9

https://trv.jbv.no/

Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Generic
Domain-specific

Module
Dependency

Fig. 4: Modules of the RailCNL (boxes) and their dependen-
cies (arrows). The generic modules could be reused when
building CNLs for verification in other domains. The spe-
cific modules are, however, tailored to railway regulations.

3. Expert knowledge given in textual form apart from offi-
cial regulations, used to gather and formalize engineer-
ing practice.

An English version of RailCNL’s core grammar is pre-
sented in Fig. 3. The full grammar is defined in GF (see Ap-
pendix 8 at page 25 for an excerpt of the RailCNL grammar
in GF notation), which has some advantages over classical
BNF parsers: (i) separation of abstract syntax and concrete
syntax; (ii) resource grammar library for natural languages,
allowing us to compose sentences in natural language while
abstracting away from morphological details; (iii) modular-
ity and extensibility, which we need for evolving a domain-
specific language alongside its application; and (iv) tool sup-
port for managing text (editors, predictive parsing, visualiza-
tion).

RailCNL has been developed to support Norwegian lan-
guage regulations. All the examples presented below have
been translated into English for the purpose of presenting
them in this paper.

4.1 RailCNL Modules and Examples

RailCNL has a modular design (see Fig. 4) where domain-
specific constructs are separated from generic ones. How-
ever, CNL modules are not always trivially composable, and
care must be taken to retain naturalness while avoiding am-
biguity when increasing the complexity of the language (as
presented in Section 3). We describe below the main mod-
ules and constructs of RailCNL, with examples of CNL text
and the corresponding abstract syntax tree (AST) obtained
from the GF parser.

4.1.1 Top-Level Statement Types

Most normative sentences in railway regulations are classi-
fied into one of the following types, or their negation:

– Constraint: logical constraints on the railway infras-
tructure model. These sentences can be used by the Dat-
alog reasoner to infer new statements.

Example 1 (Parse tree for a constraint statement)
CNL: A signal which has type main is a main signal.
AST:
OntologyAssertion
(SubjectPropertyRestriction
(StringClass "signal")
(MkPropertyRestriction

(StringProperty "type")
(Eq (MkValue

(StringTerm "main")))))
(ConditionClass
(StringClass "main_signal"))

– Obligation: design requirements on the railway infras-
tructure. The CAD model is checked for compliance,
and violations are presented as errors to the user.

Example 2 (Parse tree for an obligation statement)
CNL: A vertical segment must have length greater
than 20.
AST:
OntologyRestriction Obligation
(SubjectClass (StringClassGen1

"vertical segment"))
(ConditionPropertyRestriction
(MkPropertyRestriction

(StringProperty "length")
(Gt (MkValue (StringTerm "20")))))

– Recommendation: design heuristics for railway infras-
tructure. The CAD model is checked for compliance, but
violations are presented as warnings or for information
only, which can be dismissed from the view.

Example 3 (Parse tree for a recommendation stmt.)
CNL: A switch should be placed on a straight seg-
ment.
AST:
PlacementRestriction Recommendation
(SubjectClass (StringClass "switch"))
(SingleArea
(NoRestrictionArea

(NonSpecificArea
(MkNamedArea "straight segment"))))

4.1.2 Generic Ontology Module

Statements about classes of objects and their properties form
a natural basis for knowledge representation. We allow arbi-
trary string tokens to represent class names, property names
and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed
with another arbitrary word. The reason for allowing this
is to give the CNL the power to define new words. As an
example, we define “railway object”:

10

OntologyAssertion
: Statement

SubjectPropertyRestriction
: Subject

StringClass
: Class

signal

MkPropertyRestriction
: PropertyRestriction

StringProperty
: Property

type

Eq
: Restriction

main

ConditionClass
: Condition

StringClassAdjective
: Class

StringClassNeutrum
: BaseClass

main signala which has is a

Fig. 5: The parse tree of the ontology assertion statement from Example 1.

Example 4 (Parse tree for using class names)
CNL: A signal is a railway object.
AST:
OntologyAssertion
(SubjectClass
(StringClassNoAdjective
(StringClassNeutrum "signal")))

(ConditionClassRestriction
(MkClassRestriction
(StringClassAdjective

"railway"
(StringClassNeutrum "object"))))

– Properties and values: can be arbitrary string tokens.
These can be joined by “and” or “or” both on the level
of values and of properties.

Example 5 (Parse tree using properties and values)
CNL: A project which is a new construction should
have quality normal or high.
AST:
OntologyRestriction Recommendation
(SubjectCondition
(StringClassNoAdjective
(StringClassNeutrum "project"))

(ConditionClassRestriction
(MkClassRestriction

(StringClassAdjective
"new" (StringClassNeutrum

"construction")))))
(ConditionPropertyRestriction
(MkPropertyRestriction
(StringProperty "quality")
(OrRestr
(Eq (MkValue (StringTerm "normal")))
(Eq (MkValue (StringTerm "high"))))))

– Restrictions: Equality (shown as Eq in the AST exam-
ple above) is a common case of restriction for which

we simply choose the wording “to be”. Other restriction
types such as greater than (Gt), less than (Lt), etc. are
worded more verbosely.

Example 6 (Parse tree using restrictions)
CNL: A main signal should have height which is
greater than 1.5m and less than 5.0m.
AST:
OntologyRestriction Recommendation
(SubjectClass
(StringClassAdjective

"main" (StringClassNeutrum "signal")))
(ConditionPropertyRestriction
(MkPropertyRestriction
(StringProperty "height")
(AndRestr
(Gt (MkValue (StringTerm "1.5m")))
(Lt (MkValue (StringTerm "5.0m"))))))

– Relations: the basic ontology module contains multi-
plicity restrictions on relations. In the layout module pre-
sented below, we will see how relations are used when
writing statements which are concerned with more than
one object simultaneously.

Example 7 (Parse tree using relations)
CNL: A distant signal should have one or more asso-
ciated signals.
AST:
OntologyRestriction Obligation
(SubjectClass (StringClassAdjective

"distant"
(StringClassNeutrum "signal")))

(ConditionRelationRestriction
ManyRelation (StringClassAdjective

"associated"
(StringClassMasculine "signals")))

11

4.1.3 Layout Module

For writing statements about the topology of the railway
track, e.g. about paths as illustrated in Fig. 6c, we use the
following language constructs:

– Goal object: modifies the Subject type defined in the
ontology module to add conditions which make sense in
a railway graph search, such as the object’s orientation
(same direction or opposite direction) the search’s direc-
tion (forwards or backwards) or the termination proper-
ties of the search.

– Path condition: argument to the search constructors
which specifies what restrictions are placed on the paths
from source to goal object.

– Path restrictions: the combination of the source object,
goal object and path conditions. (See Fig. 6a)

Example 8 (Parse tree using path restriction)
CNL: All paths from a station border to the first fac-
ing switch must pass an entry signal.
AST:
AllPathsObligation
(SubjectClass
(StringClassAdjective "station"
(StringClassMasculine "border")))

(FirstFound FacingSwitch)
(PathContains (AnyDirectionObject
(AnySearchSubject (SubjectClass
(StringClassAdjective "entry"

(StringClassNeutrum "signal"))))))

– Distance restrictions: See also Fig. 6b.

Example 9 (Parse tree using distance restriction)
CNL: The distance from an entry signal to the first
facing switch must be greater than 200m.
AST:
DistanceObligation
(SubjectClass
(StringClassAdjective
"entry" (StringClassNeutrum "signal")))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm "200m")))

4.1.4 Area Module

The area module modifies subjects to express whether they
are inside a planar area, such as station areas, tunnels or
bridges, or belongs to a linear segment of a track, such as
being located in a curve or on an incline (see Fig. 6d).

– Subject constructor: the Subject is extended to add
a prepositional phrase containing area information, such
as being inside of a tunnel or on a bridge.

– Placement restriction: extends the constructors for the
type OntologyRestriction to allow restrictions
on object being inside areas.

Station
boundary

Entry
signal

Facing
switch

All paths

(a) Path restrictions are constructed from a subject, a goal, a
quantifier and a condition.

200 m

Entry
signal

Facing
switch

(b) Distance restrictions are constructed from a subject, a goal,
and a value restriction.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defining a graph of
railway tracks.

Tunnel

Bridge

(d) Area containment can refer to either a planar region or an
interval on a track.

Fig. 6: Conditions on railway geographical layout as sup-
ported by RailCNL.

Example 10 (Parse tree using areas)
CNL: A main signal should not be placed in tunnel
or bridge.
AST:
PlacementRestriction NegativeRecommendation
(StringClassAdjective

"main" (StringClassNeutrum "signal"))
(MkArea

(OrArea
(SingleAreaConj (NoRestrictionArea
(NonSpecificArea TunnelArea)))

(SingleAreaConj (NoRestrictionArea
(NonSpecificArea BridgeArea)))))

12

4.1.5 Signalling Layout Regulations

– Running times: a variation on the distance restriction
is to use running time (travel time) from one place to
another. These are used as heuristics for the control sys-
tem’s performance. This running time can be, e.g., nom-
inal speed (allowable speed) or maximum dynamic time
(maximum speeds taking acceleration and braking into
account).

Example 11 (Heuristic for axle counter placement.)

CNL: Running time at nominal speed from an axle
counter to an adjacent axle counter must be less than
25s.
AST:
RunningTimeObligation NominalSpeed
(SubjectClass
(StringClassAdjective
"axle"
(StringClassMasculine "counter")))

(AnyFound (AnyDirectionObject
SubjectOtherImplied))

(Lt (MkValue (StringTerm "25s")))

4.2 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, ASTs ob-
tained by parsing CNL phrases with the GF runtime are
transformed into Datalog rules. Each top-level constructor
in the CNL definition has a translation function into the Dat-
alog AST.

Predicate Conventions. We employ the following predi-
cate conventions:
– Class membership as classname(object).
– Object properties as propertyname(object , value).
– Relation between objects as

relationname(object , otherobject).

Explicit Variables. The Subject of the sentences of the
Ontology module defines an arbitrary individual whose def-
inition does not depend on other information. To translate it,
we create a new variable denoting the arbitrary individual.

Example 12 (Datalog translation of a subject con-
structor)

CNL: A signal which has height 4.5m
Datalog: signal(X), height(X, 4.5).

The subject is the starting point for the transla-
tion, as other parts of the phrase refer back to the
subject. In the following example, we first process the
SubjectCondition part of the sentence (“A signal
which has height 4.5m”), find a fresh variable name for it,
and then process the consequent (“is a tall signal”), which
implicitly refers to the subject (“X”).

Example 13 (Datalog translation using implicit vari-
able reference)

CNL: A signal which has height 4.5m is a tall signal.
AST:
OntologyAssertion
(SubjectCondition
(StringClassNoAdjective

(StringClassNeutrum "signal"))
(ConditionPropertyRestriction

(MkPropertyRestriction
(StringProperty "height")
(Eq (MkValue (StringTerm "4.5m"))))))

(ConditionClassRestriction
(MkClassRestriction

(StringClassAdjective
"tall"
(StringClassNeutrum "signal"))))

Datalog: tall_signal(X) :- signal(X),
height(X, 4.5).

Ontology Assertions. As seen in the previous example,
translations of ontology assertions take the subject, con-
struct a rule body from it, then take the consequent condi-
tion, and create a rule head containing a rule head from it.
As Datalog allows only single predicates as rule heads, this
means that we cannot write assertions which imply disjunc-
tions. For example, the following text can be parsed by our
CNL parser, but not translated to Datalog.

Example 14 (Ontology assertion which would result in
disjuntive head and is thus not expressible in Datalog)

CNL: A signal has height 4.0m or 4.5m.
AST:
OntologyAssertion (SubjectClass

(StringClassNoAdjective
(StringClassNeutrum "signal")))

(ConditionPropertyRestriction
(MkPropertyRestriction
(StringProperty "height")
(OrRestr
(Eq (MkValue (StringTerm "4.0m")))
(Eq (MkValue (StringTerm "4.5m"))))))

This limitation corresponds to the theoretical restrictions
on Datalog. Allowing such sentences is the defining charac-
teristic of a Datalog extension called Datalog with disjunc-
tive heads, which has higher computational complexity than
plain Datalog. For example, three-coloring of a graph would
be expressible in Datalog with disjunctive heads. Note that
merely checking that all signals have height either 4.0m or
4.5m is certainly expressible in Datalog, and is covered by
ontology restrictions.

Ontology Restrictions. For ontology restrictions, such
as obligations (“must”) and recommendations (“should”),

13

the Datalog rule head contains a predicate which captures
any violations of the text. This is achieved by first defining
the restrictions themselves (r1_found in Example 12 be-
low) and then declaring a rule which uses the negation of
these restrictions (!r1_found) in order to yield a counter-
example.

Example 15 (Datalog translation of an ontology re-
striction)

CNL: A signal must have height 4.0m or 4.5m.
AST:
OntologyRestriction Obligation
(SubjectClass
(StringClassNoAdjective
(StringClass "signal")))

(ConditionPropertyRestriction
(MkPropertyRestriction
(StringProperty "height")
(OrRestr
(Eq (MkValue (StringTerm "4.0m")))
(Eq (MkValue (StringTerm "4.5m"))))))

Datalog:
r1_found(Subj0) :- signal(Subj0),

height(Subj0, 4.0).
r1_found(Subj0) :- signal(Subj0),

height(Subj0, 4.5).
r1_obl(Subj0) :- signal(Subj0),

!r1_found(Subj0).

Disjunctive Normal Form. As Datalog does not neces-
sarily have an or operator, nor negation over complex terms,
these must be factored out into separate rules and auxiliary
predicates. This transformation can be performed by con-
sidering the result of the translation of a sentence to be a set
of rules (such as the two definitions of r1_found in Ex-
ample 12), and the result of the partial translation (such as
adding a class or property constraint to a rule) to be a set of
conjunctions which are prefixes of the final rules.

Vocabulary Matching. The Norwegian regulations are
written in Norwegian and use other terms for class names,
properties and relations than the railML representation does.
After identifying the class names from the CNL, they will
be looked up in a Norwegian/railML dictionary. For exam-
ple, Norwegian “akselteller” is mapped into the railML class
“trainDetector” with the “axlecounting” property.

Simplifications and optimizations. Creating Datalog
rules for layout properties requires reasoning about paths
and distances of a directed graph. We start from a rela-
tion describing edges of the graph, from e1 to e2 with dis-
tance d is next(e1, e2, d). It could be possible to define gen-
eral connected and distance predicates, as we have used in
our previous work [34]. However, this can become ineffi-
cient, especially if using a bottom-up materializing Datalog
solver, which would then compute the transitive closure of
the whole graph and distances of all paths in the graph. For a

qstart qend

home main signal(a)
next(a, , l)

qstart(a, b, l1)
¬facing switch(b)

next(b, c, l2)
Σl < 250.0

qstart(a, b, l)
facing switch(b)

Fig. 7: Datalog rules used to execute the distance search
from “home main signal” to “first facing switch”.

single design concerning a small to medium-sized train sta-
tion, this might be acceptable as verification procedure, but
to achieve our goal of on-the-fly verification and large-scale
verification of railway lines spanning many stations, or even
a whole national network, we must ensure that rules can be
localized. For example, specifying minimum distances be-
tween objects (such as the minimum separation of 21.0m for
train detectors) should not lead to calculation of distances
between all pairs of train detectors.

To achieve a local search, we avoid the global distance
and connected predicates, and use instead the underlying
next relation directly when translating the CNL to Datalog.
We think of the search as a state machine with one Datalog
rule corresponding to each state, see Figure 7. One or more
searching states are recursively defined to create a transitive
closure of the next relation, guarded by distance conditions,
path conditions, etc. Finding the search goal, under the given
conditions, leads to an accepting state, which is a relation
containing the violation of the specification given in the text.

Example 16 (Datalog distance search)

CNL: The distance from a home main signal to the
first facing switch must be greater than 250.0m.
AST:
DistanceRestriction
Obligation
(SubjectClass
(StringClassNoAdjective

(StringClassNeutrum
"home_main_signal")))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm "250.0m")))

Datalog:
r1_goal(Goal0) :- switch(Goal0).
r1_start(S0,E,D) :- signal(S0),

next(S0, E, D).
r1_start(S0,E,D) :- r1_start(S0, M, D0),

next(M, E, D1),
D=D0+D1, D < 250.0,
!rule1_goal(M).

r1_end(S,E,D) :- r1_start(S,E,D),
rule1_goals(E).

14

Inlining. Simple instances of
OntologyRestriction statements can often be
written as a single rule. However, the general translation
procedure splits this up into finding correct instances
(predicate name ending in “found”), and a separate
rule identifying the same objects with a negation of the
found rule (predicate name ending in “obligation” or
“recommendation”). Whenever the found predicate
has only a single atom which is different from the obliga-
tion/recommendation rule, then it can be inlined into the
same rule.

Example 17 (Inlining)

CNL: A sign should have angle to the track tangent
which is greater than 94◦.
Datalog:
sign_found(Subj0) :- sign(Subj0),

tangent(Subj0, Val2), Val2 > 94.
sign_recommendation(Subj0) :-

sign(Subj0), !sign2_found(Subj0).

After performing inlining simplification we get in-
stead:
Datalog:
sign_recommendation(Subj0) :- sign(Subj0),

tangent(Subj0, Val2), Val2 >= 94.

5 Evaluation of RailCNL Coverage of Norwegian
regulations

Table 1 is based on an analysis of phrases from a selection
of technical regulations from Norwegian infrastructure man-
ager Bane Nor (https.//trv.jbv.no/). Content from
regulations concerning the engineering disciplines of rail-
way tracks and signalling were selected for the evaluation
because they were the focus of the RailCOMPLETE devel-
opment, and as such was the domains for which the com-
pany had available expertise. (See Appendix 9 at page 26 for
representative examples and Appendix 10 for a comprehen-
sive overview of the Norwegian technical regulations that
we worked with.)

Each sentence or table cell of the original text was clas-
sified according to the following:

1. Sentence type:classifying the sentence into formalia
(headings, captions, etc), meta (describing the text), ap-
plicability (declaring scope, referring to other sections,
etc.), normative (considered relevant for translation to
RailCNL), or other.

2. Discipline: identifying whether phrases were belonging
to another discipline than what the chapter heading had
declared.

3. Stage: identifying whether the phrase was relevant for
the planning stage of a railway construction project,

excluding e.g. generic construction or operation state-
ments.

4. Static checkability: for normative statements relevant
for planning, there is also the possibility that they do not
fit into the layout and specification part of the planning,
thus not being suitable for static infrastructure verifica-
tion. This is most notably the case for railway interlock-
ing (control system) regulations, where statements about
the dynamic behavior of the control system (concerning
e.g. latency, timeouts, and state) are typically not part of
the station-specific specification, and are not relevant for
static infrastructure verification.

Table cells from the regulations were considered sepa-
rate phrases, e.g. a number in a table cell was re-phrased as
a self-contained CNL statement using information from the
row and column headers. Phrases that were reasonably nat-
urally expressible in RailCNL (either straight-forwardly in
the basic logic, or after adding appropriate domain-specific
constructs), were counted as covered. The results are de-
tailed in Table 1.

6 Tool Integration

There are three ways of making use of a CNL for participa-
tory verification.

Reading is the most simple to implement, but offers least
benefits. For participatory verification purposes, only al-
lowing an engineer to read in natural language the veri-
fication properties that the verifier works with is already
valuable as it establishes trust in the opaque verification
mechanisms. Moreover, using the CNL would shield the
engineer from various logical formalisms that are used
by complex processes like formal verification or certi-
fication. In Section 6.1 we show how using RailCNL
only in a reading mode allows us to provide real help
to the engineer in understanding the errors reported by
our verification engine in a way that the engineer can
make sense out of.

Template Editing, as a limited tool-support for editing
phrases, would offer simple forms of editing, in addition
to all the reading benefits. Changing a numerical value
or changing words by selecting from a list of choices is
easy to do and easy to understand for users, without re-
quiring full understanding of the formal grammar behind
the structure of the phrase. In the railway domain, the na-
tional regulations change seldom, and when they do, it
is often enough to do only simple changes, e.g., when
a new speed limit is imposed we only need to change
a number. Besides being useful to regulators, template
editing can also be used by engineers in companies to
adjust regulations or properties that their specific designs

15

https.//trv.jbv.no/

Engineering discipline Chapter title Phrases Normative Relevant Covered Coverage
Track Planning: general technical 140 74 74 70 95%
Track Planning: geometry 278 157 152 119 78%
Signalling Planning: detectors 144 106 35 21 60%
Signalling Planning: interlocking 376 265 130 81 62%
Total 938 602 391 291 74%

Table 1: Coverage evaluation for a subset of Norwegian regulations. Phrases of the original text which could be classified
as normative (i.e. applying some restriction on design) were evaluated for relevance to static infrastructure verification. The
coverage is the percentage of relevant phrases expressible in RailCNL.

need (maybe only temporarily, like for debugging pur-
poses).

Writing and editing phrases allows the CNL to be used at
its full potential, but developing an editor which allows
a user to edit phrases without having a thorough un-
derstanding of the formal CNL grammar is a challenge.
Section 6.2 presents the many difficulties and features of
CNL editors. Model-checking is not only useful for veri-
fying compliance with regulations, but more importantly
engineers would like to add ’rule-of-thumb’ properties
which they normally abide by when making new de-
signs. These are usually considered valuable and propri-
etary for a company. The RailCNL editor that we present
in Section 6.3 is meant to allow railway engineers to
write properties in their natural domain language which
can be verified by our engine, so that their know-how is
kept in-house, without the need for an external expert (in
verification).

6.1 Traceability Support in RailCNL

Verification tools usually output a counter-example when
the requirements are violated by the model. It is often dif-
ficult to understand from the counter-example which of
the (possibly several) requirements have been violated, and
why. We use the notion of tracing to trace such errors from
the verification output all the way to the original text reg-
ulations. Fig. 8(top) shows our prototype tool (running as
a plug-in for the AutoCAD program used by Norwegian
railway engineers) presenting a problem in the CAD view.
Fig. 8(middle) shows how the error message can be traced
back through the Datalog code, the AST, and the CNL code,
to the original, highlighted, regulations text Fig. 8(bottom).

We mark-up sentences of the original text with an iden-
tifier, and create a separate document containing the formal-
ized representation using RailCNL, using the identifiers as
references back into the original text (Fig. 9). When the ver-
ification program finds a violation among the regulations, it
outputs the identifier of the rule that has been violated, en-
abling the tracing.

When producing new regulatory texts or writing down
expert knowledge for which a CNL exists, the approach of
embedded controlled language [43] can be used to create
natural texts where some sentences are directly parsable into
verification properties. The other parts of such a text is then
considered to be comments or explanations, similar to the
programming approach known as literate programming.

6.2 An Overview of CNL Editors and their Features and
Properties

While a CNL is usually designed to be easy to read with-
out any prior training, the process of writing in a restricted
language is less straightforward. In order to write in CNL,
users need to be able to construct phrases which are correct
with respect to the particular syntactic restrictions of that
language, and which moreover have the intended meaning.

A CNL that presents itself as user-friendly may not ex-
pect that its users are willing to study its rules thoroughly
before attempting to compose something in that language.
This poses a challenge: the user wants to compose a phrase
which is structurally correct, yet without having to know the
rules governing that structure, or even seeing the underlying
structure at all. This challenge is often aided by some soft-
ware interface or tool designed specifically to help the user
construct phrases which are valid in the particular CNL. We
refer to such tools generally as CNL editors.

In this section, we give an overview of the state of the art
in this area and compare the features of various CNL editors
found in the literature. This section is useful to understand
the choices that we made when developing the RailCNL ed-
itor presented in Section 6.3.

When we talk about CNL editors, we are implicitly as-
suming that the goal of the CNL in question is formalization,
and thus that there exists some formal definition of the CNL
itself, along with a parser. Therefore, we will not consider
CNLs that have not been formalized or for which no parser
exists.

There are two predominant paradigms to CNL editing:

16

CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringClassMasculine
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValue (StringTerm "21.0m")))

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End, Dist), Dist < 21.0.

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.

Fig. 8: Tracing of requirements backwards from CAD program through CNL to marked-up original texts. From a regulation
violation presented as a warning or error, the user can browse to the corresponding regulatory text, shown side by side with
the CNL text.

CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringClassMasculine
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValue (StringTerm "21.0m")))

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End, Dist), Dist < 21.0.

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.

Fig. 8: Tracing of requirements backwards from CAD program through CNL to marked-up original texts. From a regulation
violation presented as a warning or error, the user can browse to the corresponding regulatory text, shown side by side with
the CNL text.

Original text
marked up with

labels

==General==
a) <label id="detector_1">
No detection section shall be
shorter than 21 meters. </label>

b) No dead zones shall be
longer than 3 meters.

CNL properties
with references

to labels

<rule class="static-infr-datalog"
textref="detector_1">

<RailCNL>
The distance from an axle counter
to another must be greater than
21.0m.

</RailCNL>
</rule>

Fig. 9: Excerpt of original text marked-up with sentence
identifiers, and properties represented in CNL with refer-
ences to original text.

– Surface editing: where the user is inputting text, with
varying degrees of guidance from the editor, which even-
tually needs to be checked for conformity.

These can be seen as the opposite ends of a spectrum where
most CNL editors out there can be placed neatly at either
end, while only a few fall in between.

This distinction goes back to [58], who outline the de-
sign issues that arise in the construction of language-based

editors. Even though [58] treats primarily programming lan-
guages and not CNLs, many of the ideas discussed there are
quite relevant to CNL editing:

“The assumption that all users are willing and able
to think exclusively in tree terms is clearly false. In
practice, many users have a pluralistic view of the
programs they manipulate, seeing them sometimes as
tree structures, sometimes as symbol sequences, and
sometimes as character texts.”

The authors put forward the idea of pluralistic editors,
which should support editing on these different levels of ab-
straction. These ideas are not surprising, and seem to serve
as the basis for most of the CNL editors we have seen.

6.2.1 Structural editing

The idea of structural editing for programming languages
goes back at least to Mentor [12] and the Cornell Program
Syntehsizer [50]. These early editors were based on the phi-
losophy that since programs are not text, it does not make
sense to treat them as such. “They are hierarchical com-
positions of computational structures and should should be
edited, executed, and debugged in an environment that con-
sistently acknowledges and reinforces this viewpoint.”[50].
These programming tools put the underlying structure of the
language very much in focus, minimising the role of their
text-based concrete syntax. This demands full understanding

17

Fig. 9: Excerpt of original text marked-up with sentence
identifiers, and properties represented in CNL with refer-
ences to original text.

– Structural editing: where the user is building a formal
representation (generally a tree) in a structural way, pre-
vented from going outside the bounds of the CNL.

– Surface editing: where the user is inputting text, with
varying degrees of guidance from the editor, which even-
tually needs to be checked for conformity.

These can be seen as the opposite ends of a spectrum where
most CNL editors out there can be placed neatly at either
end, while only a few fall in between.

This distinction goes back to [58], who outline the de-
sign issues that arise in the construction of language-based
editors. Even though [58] treats primarily programming lan-
guages and not CNLs, many of the ideas discussed there are
quite relevant to CNL editing:

“The assumption that all users are willing and able
to think exclusively in tree terms is clearly false. In
practice, many users have a pluralistic view of the
programs they manipulate, seeing them sometimes as
tree structures, sometimes as symbol sequences, and
sometimes as character texts.”

The authors put forward the idea of pluralistic editors,
which should support editing on these different levels of ab-
straction. These ideas are not surprising, and seem to serve
as the basis for most of the CNL editors we have seen.

6.2.1 Structural Editing

The idea of structural editing for programming languages
goes back at least to Mentor [12] and the Cornell Program
Synthesizer [50]. These early editors were based on the phi-
losophy that since programs are not text, it does not make
sense to treat them as such. “They are hierarchical com-
positions of computational structures and should should be
edited, executed, and debugged in an environment that con-
sistently acknowledges and reinforces this viewpoint.”[50].
These programming tools put the underlying structure of the

17

language very much in focus, minimizing the role of their
text-based concrete syntax. This demands full understanding
by the user of the language’s grammar. While this idea did
not really catch on for mainstream programming languages
(which are still very much written and debugged using text-
based formats) it still comes up in a number of CNL editors,
in various guises. Scott and Power [39] introduce the idea of
WYSIWYM editing (What You See Is What You Meant) for
multilingual authoring, where users edit on the level of se-
mantic representation, in their case a knowledge base, which
is linearized into “feedback texts” in multiple languages for
the user during the editing phase.

This idea is also mirrored in the syntax tree editing tools
for CNLs defined using the Grammatical Framework [42]
of which there are a few different implementations [23,38,
7]. In these editors the user is directly building a tree in a
top-down fashion by choosing the functions to be used at
each node. The partial tree can be immediately linearized in
multiple languages while the user works, including holes for
yet unspecified nodes. Sub-trees can be inserted by parsing
free text, but no guidance is provided to the user at this stage;
the parse either succeeds or fails, and ambiguities must be
fixed manually.

Ljunglöf [30] proposes the use of interactive tree build-
ing for dialogue management. The general idea is that a tree
is built by asking questions to the user and then the tree is
refined based on the responses obtained, filling in the miss-
ing holes until a complete tree is obtained. There is however
no concrete tool associated with this work.

6.2.2 Structured Surface Editing

This class of editors comes somewhere in between the two
major extremes described above. They are structural in the
sense that you are directly building a tree and cannot stray
outside the CNL, but they are also surface-based because
the user is interacting with the editor on the surface string
level, not necessarily seeing the underlying structure at all.

Menu-based input. Within this class, a number of editors
tend to use similar user interface components, in particular
the ideas of templates with holes which are filled by select-
ing completions from some kind of menu. An early example
of this idea can be found in [51], which continued into var-
ious other works including NLMenu [52], ROSY [5], and
MenuGen [17], which all follow more or less the same ideas.
The authors of [55] discuss a general architecture of a menu-
based input system for a multilingual translation systems,
underlining the benefits of menu-based input for avoiding
user input error.

The authors of [16] coined the term Conceptual Author-
ing for their input system for building database queries. Con-
tinuing this menu-based idea, their interface replaces the tra-
ditional query-writing as plain text with a set of templates

with holes which are filled using menus. All editing oper-
ations are defined directly on an underlying logical repre-
sentation, governed by a predefined ontology. The method
avoids the problems associated with parsing, and is particu-
larly well suited for query interfaces to closed-domain sys-
tems.

Similarly, the Phrasomatic editor5 is a web-based inter-
face for multilingual CNL phrases, powered by GF gram-
mars. It has a distinctly menu-driven approach where the
kinds of phrases one can write are pre-determined, and the
user’s task is to fill slots from the existing lexicon. The in-
terface is hard-coded to be grammar-specific, in the sense
that it is not generated by the grammar alone. This approach
makes sense for small languages where the number of pos-
sible choices at each point is small, and there is no benefit to
be had by allowing free-text input.

A slightly different approach within this class of edi-
tors is the MUSTE editor6 [31], which is an experiment in
keyboard-free structural editing on the surface level, where
the tree is not revealed to the user. There is no text input
at all, instead, the user edits an existing phrase by click-
ing words to show possible replacements. Clicking multi-
ple times changes the scope currently under focus, extend-
ing from words to sub-phrases, and allowing potentially
any sub-tree to be edited in accordance with the underly-
ing grammar. It is an experiment in editing techniques and
does not scale to larger CNLs.

Blocks and frames. Some editors are based on the concept
of blocks which fit together and reveal the underlying struc-
ture of the text. The Blockly project7 provides a UI library
for building such kinds of interfaces. It is mainly promoted
as an educational tool for teaching people to understand the
structure behind programming languages. Color-coding and
visual connectors are used to give some type information,
for example distinguishing between statements and expres-
sions. Alice8 is a programming environment for creating an-
imations and program simple games in 3D, which uses an
editor based on this block-based interface.

In a similar fashion, the ATTAC-L editor [54,11] uses
”bricks” as the basic building blocks of its language, which
can be pieced together and which reveal a lot of the structure
behind the CNL. The representation which the user works
with ends up as some kind of tree-like structure combined
with snippets of text embedded in it.

The idea of frame-based editing introduced in [29] also
falls within this class, and aims to combine the advantages

5 http://www.phrasomatic.net/ by Michal Boleslav
Měchura in 2011.

6 “MUSTE: Multimodal semantic text editing” by Ljunglöf, Peter.
https://heatherleaf.github.io/muste/

7 https://developers.google.com/blockly/
8 “Alice — Tell stories. Build games. Learn to program.” http:

//www.alice.org/

18

http://www.phrasomatic.net/
https://heatherleaf.github.io/muste/
https://developers.google.com/blockly/
http://www.alice.org/
http://www.alice.org/

of block-based and text-based editing systems for program-
ming languages. In essence, they propose a text-editing in-
terface with additional visual markups to aid understanding,
and template-and-menu editing of code to reduce syntax and
type errors. The focus of this work is programming lan-
guages, and to our knowledge their approach has not been
applied to CNLs.

6.2.3 Surface Editing

By surface editing, we mean that the user is composing in-
put phrases rather than constructing them from menus. This
allows more freedom of input and the user may construct
incorrect phrases which will later get rejected by the CNL
parser.

The most basic kind of surface editor can be seen as a
typical parser which allows arbitrary input but returns an er-
ror when it is not syntactically correct. This is familiar to
us from the world of programming languages, and any CNL
which has a parser written for it can provide this function-
ality. The quality and helpfulness of the supplied error mes-
sages can of course vary greatly, which directly impacts the
user experience.

To improve on this, most CNL editors provide some
kinds of cues to guide the user in the direction of writing
something correct. The standard paradigm here is that of se-
quential left-to-right textual input with suggested comple-
tions for every word or phrase. The completions themselves
may often be categorized and/or sorted in some way.

One such example is the WebALT project’s WExEd tool
for designing multilingual mathematics exercises, which
uses TextMathEditor for input of individual phrases [10].
The input language here is a multilingual CNL for mathe-
matics, which converts phrases into objects in the OpenMath
formalism.

Attempto Controlled English (ACE), one of the best
known modern CNLs, also has a few different editors for
it which all follow this paradigm [28,24,21]. They pro-
vide predictive text editing where completions are split into
’function word’, ’proper name’, ’verb’, ’variables’, ’nouns’,
etc. along with some pop-up warnings when the user enters
something incorrect. The editor has undergone a usability
study [25], and the project itself has even produced a gram-
mar notation for CNLs focusing on predictive editors and
anaphora [26].

The GF runtime also provides incremental parsing,
which has been used to create various predictive editors. The
standard example of this interface is the Minibar9, which has
been used in various other applications (for example [8,6,
9]).

9 Minibar by Thomas Hallgren: http://cloud.
grammaticalframework.org/minibar/minibar.html

Other CNL editors which also follow this paradigm in-
clude the ECOLE editor [47] for the PENG language, and
its web-based successor for PENGASP [15]. These editors
include the ability to add out-of-vocabulary (OOV) words,
support for anaphora across different phrases, and comple-
tions sorted by category in drop-down menus. The Ask Data
Anything editor [48] uses a similar approach for allowing
users to write complex database queries in a custom CNL.
The editor also includes some automatic correction of erro-
neous input using fuzzy matching, rather than strictly pre-
venting incorrect user input.

The KANTOO controlled language checker [35] is an
editor for the KANT Controlled English (KCE) which takes
a prescriptive approach: rather than forcing user input to be
correct with respect to the CNL, the user is allowed free text
input and is then given diagnostic information suggesting
what can be improved, such as missing constituents, punc-
tuation, or incorrect coordination between phrases.

This approach is also taken in the MuTUAL editor [37],
designed for assisting non-professional writers in creating
Japanese texts that conform to a set of writing rules for en-
abling translation to English. The tool allows free text in-
put, detecting problems in the source text in real-time and
providing diagnostic messages for interactive rewriting. The
editor uses highlighting to indicate rule violations and pre-
scribed terms, provides suggestions for alternate expressions
and shows the CNL rules to aid users in making their text
conformant. The tool also comes with an extensive user
evaluation [36].

6.2.4 Search-based Editing

In search-based editors the user inputs free text, but rather
than being fed to a parser, this input is used to search for
closely matching phrases within the CNL.

The work of [1] generates phrases from a CNL grammar,
and combines this with a full text search engine. The advan-
tage is that text-based search is well studied and one can
use off-the-shelf search engines like Apache solar. However
having to exhaustively generate phrases from a CNL can still
be a bottleneck when the language is non-trivial in size, or
even infinite as in our case.

In [44] it is presented a more advanced approach where
instead of relying on exhaustive generation and a text search
engine, phrases from both the input and the CNL are repre-
sented as vectors with infinite dimensionality. By consider-
ing only the non-zero elements, which are finite in number,
closeness between input and valid CNL phrases can then
be computed using cosine similarity. While this has been
shown to work well on small CNL grammars, scalability is a
problem because of the large number of comparisons which
need to be made when searching for matches.

19

http://cloud.grammaticalframework.org/minibar/minibar.html
http://cloud.grammaticalframework.org/minibar/minibar.html

🚂🚃 RailCNL editor 🚃🚃

>

PlacementRestriction

CloseSubject

StringClassNoAdjective StringProperty
Gt

NegativeRecommendation MkArea

et skilt som har høyde som er større enn 4.5m bør ikke være plassert i tunnel.

⇄ Modality
NegativeObligation (0)
Obligation (0)
Recommendation (0)

Fig. 10: Example from the RailCNL phrase editor demonstrating the menu for substituting constructors.

🚂🚃 RailCNL editor 🚃🚃

>

OntologyRestriction

CloseSubject

StringClassNoAdjective

Recommendation

MkConsequent

MkConsequent

StringProperty
Gt

MkArea

et signal bør ha høyde som er større enn 3.9m i tunnel

⇤ Merge chunks
AreaChunk into StatementChunk

Fig. 11: Example from the RailCNL phrase editor demonstrating the menu for merging chunks.

6.3 An Editor for RailCNL

Taking clues from several of the approaches for building
CNL editors described in Section 6.2, we developed an edi-
tor for Grammatical Framework languages with the specific
use case of having railway regulations written by railway
engineers using RailCNL. 10. The figures in this section are
actual screen-shots from the editor, and the input texts are
therefore not translated into English.

The RailCNL editor consists of a text input field con-
taining the phrase which is being edited. There are no re-
strictions on the input to the text field, so the phrase can
be empty, unparsable, partially parsable, or fully parsable.
Whenever any change is made to the text, the parser will
re-evaluate the text and update a drop-down menu and a
partial parse tree visualization. The editor is thus mainly a
surface editor (as described in Section 6.2.3), specifically an
unrestricted text editor like mainstream programming lan-
guage editors, but with two menu-based features: (1) a drop-
down list giving menu choices relevant for the current text
phrase and cursor position, and (2) a partial visualization of
the parse tree where selected abstract syntax node types are
drawn with a given a color above or below the text input
field. The drop-down menu may be compared to the auto-
complete feature of mainstream programming editors, while

10 RailCNL editor prototype demo: https://luteberget.
github.io/ControlText/

the partial parse tree visualization can be seen as a hybrid be-
tween a full parse tree visualization and the kind of syntax
highlighting used in mainstream programming editors.

The interaction between the text input, drop-down menu,
and tree visualization works as follows:

– Menu choices exist for any concrete words which are
grammatically correct to insert at the current position.
This works similarly to the auto-complete feature of
mainstream programming editors, and the choices are
supplied by the predictive parsing capability of GF.

🚂🚃 RailCNL editor 🚃🚃

> et
signal
for

✦ Statement
DistanceRelationRestriction
DistanceRestriction
OntologyAssertion
OntologyRestriction
PathObligation
PlacementRestriction
RelatedObjectsToRelatedObjects
RelationDefiningPath
RelationPathRestriction

✦ Subject
CloseSubject
SubjectArea

✦ GoalObject
AnyFound
FirstFound

✦ ConsequentCondition
MkConsequent

✦ Area
MkArea

✦ RelationMultiplicity
ExistsRelation
ManyRelation
OneRelation

✦ Property
C l P

– If the parsing has failed, and there is no top-level con-
structor of the parse tree, the menu will contain sug-
gestions to insert constructor. When the text is empty,
this part of the menu will suggest all top-level construc-
tors, giving an overview of possible sentence structures.
If the user chooses to insert constructors for which not
all arguments are available in the current set of chunks,
the smallest tree that has the required type is then con-
structed.

20

https://luteberget.github.io/ControlText/
https://luteberget.github.io/ControlText/

>
signal
ingen
et
en
ei
avstanden
alle
all

✦ Statement
DistanceRelationRestriction
DistanceRestriction

alle
all

✦ Statement
DistanceRelationRestriction
DistanceRestriction
OntologyAssertion
OntologyRestriction
PathObligation
PlacementRestriction
RelatedObjectsToRelatedObjects
RelationDefiningPath
RelationPathRestriction

✦ Subject
CloseSubject

– When the parser has provided a full or partial parse tree,
then a partial parse tree visualization is performed by
consulting a list of selected types in the parse tree which
are drawn as curly braces over the relevant part of the
text using the bracketed linearization capability of GF.
This allows the users to see while they are typing, what
the parser is able to recognize.
🚂🚃 RailCNL editor 🚃🚃

>

OntologyAssertion

CloseSubject

StringClassAdjective

MkConsequent
MkConsequent

StringClassNoAdjective

en styrt balise er et jernbaneobjekt

– When the cursor is positioned inside a part of the text
that has a valid parse tree, the menu shows suggestions
for substituting constructors. All constructors which
match the type of the tree nodes that cover the current
cursor position have a corresponding list of alternative
constructors, ranked by the number of terms that do not
match in number and type. In the example below, the
cursor is positioned on the word “bør” (“should” in En-
glish translation), which is tagged with the type Modal-
ity. Other modalities are suggested, giving an overview
of possible expression types and thereby letting the user
learn about the language as they are editing. See Fig. 10.

– If more than one chunk is recognized, clicking the top-
level constructor in one chunk will search for nodes in
the trees of the other chunks where a constructor sub-
stitution would allow the current chunk to be inserted,
thereby merging chunks. In the example below, the user
has a valid phrase of type OntologyRestriction, and has
tried to add a condition to the end saying that the restric-
tion applies only in tunnels. However, the grammar spec-
ifies that the area modifier applies to the subject part of
the sentence, and must therefore be moved further ahead

in the sentence to be valid. When the cursor is placed on
the area chunk, the editor will add a menu choice that
will merge the area chunk into the statement chunk, pro-
ducing a fully parsable phrase. See Fig. 11.

– Dynamic vocabulary is used in the RailCNL system, for
example, the user might define and name a new class,
property or relation which is not part of the standard
vocabulary. The grammar accepts this by allowing ar-
bitrary strings in certain positions. Such unparsed words
are highlighted in the editor by underlining. In the exam-
ple below, “styrt balise” and “jernbaneobjekt” are part of
the dynamic vocabulary.🚂🚃 RailCNL editor 🚃🚃

>

OntologyAssertion

CloseSubject

StringClassAdjective

MkConsequent
MkConsequent

StringClassNoAdjective

en styrt balise er et jernbaneobjekt

The RailCNL editor works similarly to a programming
source code editor. The design is based on the assumption
that the user is a professional willing to learn about how the
formal language and the verification system works. Even so,
the editor’s parse tree visualization and contextual menu-
based operation encourages experimentation, exploration,
and learning from examples.

The prototype RailCNL editor was implemented in
JavaScript and HTML, which is suitable for demonstrations
and entry into on-line databases, but a reimplementation us-
ing desktop application technologies should be considered
to allow working with files on each engineer’s local file sys-
tem. The editor implementation uses the the grammar file
produced by the Grammatical Framework for parsing and
related functions through the Grammatical Framework run-
time API. It also uses an editor-specific configuration file
containing types and colors for the partial tree visualization,
and for on-line documentation of constructors, which cus-
tomizes the editor to the specific grammar.

7 Conclusions

RailCNL is our approach to participatory verification,
where the end users (railway engineers, in our case) get
full access to the verification properties. This allows them
to actively participate in the verification by maintaining the
rule base and managing their own properties (often based
on experience and best practice). RailCNL formalizes, in a
human-readable manner, relevant parts of the technical reg-
ulations and expert knowledge used in an on-the-fly verifi-
cation engine integrated within railway construction design
software.

21

We have collaborated with railway engineers associated
with RailCOMPLETE during the design of the language and
the writing of the verification properties. Their feedback on
limitations in the coverage of the language and suggestions
for simplification will continue to drive the design forwards.

We surveyed the Norwegian railway regulations and
counted how much of the relevant regulations our basic Rail-
CNL covers (see Section 5). The survey is limited to parts
of the regulations covering railway track and signalling, as
these are the disciplines that the RailCOMPLETE software
development is currently focusing on.

RailCNL is implemented using the Grammatical Frame-
work and its resource grammar library. While we have used
Norwegian for representing regulations, RailCNL could be
easily extended with other languages supported by the RGL.
This would allow the system to be used for other authori-
ties’ regulations written in other languages. As long as most
of the abstract syntax is re-used, the translation into Datalog
should also be readily adaptable. The CNL literature, and
Grammatical Framework specifically, contains a lot of ex-
plicit and implicit knowledge about constructing languages
with natural syntax, and this paper makes explicit some of
this knowledge gathered from the CNL and GF community
by describing details of the language design methodology in
a general way.

A formal CNL with well-chosen linearizations can
be very natural, and often perfectly readable for a non-
programmer with the required domain knowledge; and we
used this in Section 6.1 in our application to traceability
of verification error messages. However, writing in a for-
mal CNL can potentially be as difficult as writing in a pro-
gramming language. A solution to this problem is the use of
special-purpose editors which guide the user towards struc-
turing their text according to the underlying formal gram-
mar. Different approaches to CNL editors have been ex-
plored, which we reviewed in Section 6.2. We have been
guided by these existing experiences when creating one such
editor for RailCNL, presented in Section 6.3, which we plan
to integrate in the RailCOMPLETE CAD environment, and
carry out a usability study on its efficacy.

Focusing on empathy towards the intended user in the
participatory verification process has shown us that inte-
grated systems with familiar graphical user interfaces is an
important requirement to engage non-programmer engineer
users to adopt new tools into their daily routines. We hope
that prioritizing according to the principles of participatory
verification will in the long run help verification tools and
techniques based on formal methods take hold in industrial
practice, also outside the fields of software and electrical en-
gineering.

7.1 Related Work

Johannisson [20] describes a CNL targeting the Object Con-
straint Language (OCL) for use in reasoning about Java pro-
gram correctness in the KeY system [4]. The language fea-
tures dynamic vocabulary based on input UML diagrams
where vocabulary updates are achieved by re-compiling the
grammar using the GF compiler when needed. Angelov et
al. [2] present a conflict detection framework where GF is
used to map the contract language CL [40] into a CNL.
Statement modalities, such as obligation, permission and
prohibition, are applied to complex actions. The structure of
the CNL is modelled after the CL language. Camilleri et al.
[9] take a CNL approach to manipulating contract-oriented
diagrams using a visual diagram editor, a CNL with text ed-
itor support, and a spreadsheet representation as interfaces
to a common model, which can be translated into timed au-
tomata for reasoning about system properties.

Other efforts to define domain specific languages for
railway verification have typically focused on the implemen-
tation of control systems, such as Vu et al. [56], while also
considering the verification to be an activity which is sepa-
rate from design and implementation. James et al. [19] show
how to integrate UML modelling of the railway domain with
graphical modelling and specification and verification lan-
guages, also keeping the focus on verifying the control sys-
tem implementation of a fixed design.

7.2 Future Work

In working with railway engineers, we discovered language
features which could be added to increase the coverage of
RailCNL:

1. A notion of scopes and exceptions, so that more complex
conditional restrictions can be expressed more naturally.

2. Mathematical formulas as a sub-language.
3. Vague or soft requirements represented not for direct use

in verification, but for requiring manual checks at some
points.

We are continuing our collaboration with Norwegian
railway engineers to evaluate the usability of our prototype
tools, increase the text coverage and extend the language to
handle other railway engineering disciplines such as cate-
nary lines and ground works.

Some of the constructs in the CNL are highly specific to
the text we are modelling, which is expected since the text
freely uses a wide range of background railway knowledge,
general engineering and mathematical knowledge. The main
challenge in designing such a CNL is to find the under-
lying concepts, and to strike a balance between matching
the level of abstraction on which the original text is based
and introducing many special-purpose language constructs.

22

More generally, any domain-specific language (DSL) must
to some extent evolve alongside the needs of the applications
it supports. See [14] for a general treatment of DSLs.

We envisage that RailCNL will evolve over time to in-
clude both new terminology appearing in new regulations
as well as new knowledge and engineering practices. There-
fore, the language would be maintained by engineers, maybe
a proprietary version of RailCNL would be used internally
by a company, including specific proprietary knowledge of
the domain and practice.

References

1. Agfjord, M., Angelov, K., Fredelius, P., Marinov, S.: Grammar-
based suggestion engine with keyword search. In: Proceedings
of The Fifth Swedish Language Technology Conference (SLTC
2014), Uppsala, Sweden (2014)

2. Angelov, K., Camilleri, J.J., Schneider, G.: A Framework for Con-
flict Analysis of Normative Texts Written in Controlled Natural
Language. The Journal of Logic and Algebraic Programming
82(5-7), 216–240 (2013). DOI 10.1016/j.jlap.2013.03.002

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press
(2008)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of
Object-Oriented Software: The KeY Approach. Springer (2007)

5. Blum, E.J.: ROSY – Menü-basiertes Parsing natürlicher Sprache
unter besonderer Berücksichtigung des Deutschen. Diploma the-
sis, FB. Informatik, University of Saarland, Saarbrücken (1987)

6. Calafato, A., Colombo, C., Pace, G.J.: A controlled natural lan-
guage for tax fraud detection. In: B. Davis, G.J. Pace, A.Z. Wyner
(eds.) International Workshop on Controlled Natural Language
(CNL 2016), Lecture Notes in Computer Science, vol. 9767, pp.
1–12. Springer (2016). DOI 10.1007/978-3-319-41498-0 1

7. Camilleri, J.J.: GF Syntax Editor. Online: http://cloud.
grammaticalframework.org/syntax-editor/
editor.html (2012). Accessed 2017-11-20

8. Camilleri, J.J., Pace, G.J., Rosner, M.: Controlled natural lan-
guage in a game for legal assistance. In: M. Rosner, N.E. Fuchs
(eds.) International Workshop on Controlled Natural Language
(CNL 2010). Revised Papers, Lecture Notes in Computer Sci-
ence, vol. 7175, pp. 137–153. Springer (2010). DOI 10.1007/
978-3-642-31175-8 8

9. Camilleri, J.J., Paganelli, G., Schneider, G.: A CNL for contract-
oriented diagrams. In: B. Davis, K. Kaljurand, T. Kuhn (eds.)
International Workshop on Controlled Natural Language (CNL
2014), Lecture Notes in Computer Science, vol. 8625, pp. 135–
146. Springer (2014). DOI 10.1007/978-3-319-10223-8 13

10. Cohen, A., Cuypers, H., Poels, K., Spanbroek, M., Verrijzer, R.:
WExEd — WebALT exercise editor for multilingual mathematics
exercises. In: M. Seppälä, S. Xambo, O. Caprotti (eds.) WebALT
Conference and Exhibition (WebALT 2006), pp. 141–145 (2006).
URL http://www.win.tue.nl/˜amc/pub/wexed.pdf

11. De Troyer, O., Van Broeckhoven, F., Vlieghe, J.: Creating story-
based serious games using a controlled natural language domain
specific modeling language. In: M. Ma, A. Oikonomou (eds.)
Serious Games and Edutainment Applications: Volume II, pp.
567–603. Springer International Publishing, Cham (2017). DOI
10.1007/978-3-319-51645-5 25

12. Donzeau-Gouge, V., Kahn, G., Lang, B., Mélèse, B.: Document
structure and modularity in mentor. In: W.E. Riddle, P.B. Hen-
derson (eds.) Software Engineering Symposium on Practical Soft-
ware Development Environments, pp. 141–148. ACM (1984).
DOI 10.1145/800020.808259

13. Dumas, J.S., Dumas, J.S., Redish, J.: A practical guide to usability
testing. Intellect books (1999)

14. Fowler, M.: Domain-Specific Languages. Addison-Wesley Pro-
fessional (2010)

15. Guy, S., Schwitter, R.: Architecture of a web-based predictive
editor for controlled natural language processing. In: B. Davis,
K. Kaljurand, T. Kuhn (eds.) International Workshop on Con-
trolled Natural Language (CNL 2014), Lecture Notes in Com-
puter Science, vol. 8625, pp. 167–178. Springer (2014). DOI
10.1007/978-3-319-10223-8 16

16. Hallett, C.: Generic querying of relational databases using natural
language generation techniques. In: N. Colineau, C. Paris, S. Wan,
R. Dale, A. Belz (eds.) INLG 2006 - Proceedings of the Fourth
International Natural Language Generation Conference, pp. 95–
102. The Association for Computer Linguistics (2006). URL
http://www.aclweb.org/anthology/W06-1414

17. Hammerich, S.: Menübasierte generierung natürlicher sprache.
Project thesis (studienarbeit), University of Hamburg (1999)

18. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press
(2000)

19. James, P., Roggenbach, M.: Encapsulating formal methods within
domain specific languages: A solution for verifying railway
scheme plans. Mathematics in Computer Science 8(1), 11–38
(2014). DOI 10.1007/s11786-014-0174-0

20. Johannisson, K.: Natural language specifications. In: Beckert et al.
[4], pp. 317–333. DOI 10.1007/978-3-540-69061-0 7

21. Kaljurand, K., Kuhn, T.: A multilingual semantic wiki based on
attempto controlled english and grammatical framework. In:
P. Cimiano, Ó. Corcho, V. Presutti, L. Hollink, S. Rudolph
(eds.) International Conference on The Semantic Web: Seman-
tics and Big Data (ESWC 2013), Lecture Notes in Computer Sci-
ence, vol. 7882, pp. 427–441. Springer (2013). DOI 10.1007/
978-3-642-38288-8 29

22. Kensing, F., Blomberg, J.: Participatory design: Issues and con-
cerns. Computer Supported Cooperative Work (CSCW) 7(3),
167–185 (1998). DOI 10.1023/A:1008689307411

23. Khegai, J., Nordström, B., Ranta, A.: Multilingual syntax editing
in GF. In: A.F. Gelbukh (ed.) International Conference on Com-
putational Linguistics and Intelligent Text Processing (CICLing
2003), Lecture Notes in Computer Science, vol. 2588, pp. 453–
464. Springer (2003). DOI 10.1007/3-540-36456-0 48

24. Kuhn, T.: AceWiki: Collaborative ontology management in con-
trolled natural language. In: C. Lange, S. Schaffert, H. Skaf-Molli,
M. Völkel (eds.) Semantic Wiki Workshop (SemWiki 2008),
CEUR Workshop Proceedings, vol. 360. CEUR-WS.org (2008).
URL http://ceur-ws.org/Vol-360/paper-5.pdf

25. Kuhn, T.: How controlled english can improve semantic wikis. In:
C. Lange, S. Schaffert, H. Skaf-Molli, M. Völkel (eds.) Semantic
Wiki Workshop (SemWiki 2009), CEUR Workshop Proceedings,
vol. 464. CEUR-WS.org (2009). URL http://ceur-ws.
org/Vol-464/paper-03.pdf

26. Kuhn, T.: Codeco: A practical notation for controlled english
grammars in predictive editors. In: M. Rosner, N.E. Fuchs
(eds.) International Workshop on Controlled Natural Language
(CNL 2010), Revised Papers, Lecture Notes in Computer Sci-
ence, vol. 7175, pp. 95–114. Springer (2010). DOI 10.1007/
978-3-642-31175-8 6

27. Kuhn, T.: A survey and classification of controlled natural lan-
guages. Computational Linguistics 40(1), 121–170 (2014). DOI
10.1162/COLI a 00168

28. Kuhn, T., Schwitter, R.: Writing support for controlled
natural languages. In: Australasian Language Technol-
ogy Association Workshop (ALTA 2008) (2008). URL
http://attempto.ifi.uzh.ch/site/pubs/
papers/alta2008_kuhnschwitter.pdf

23

http://cloud.grammaticalframework.org/syntax-editor/editor.html
http://cloud.grammaticalframework.org/syntax-editor/editor.html
http://cloud.grammaticalframework.org/syntax-editor/editor.html
http://www.win.tue.nl/~amc/pub/wexed.pdf
http://www.aclweb.org/anthology/W06-1414
http://ceur-ws.org/Vol-360/paper-5.pdf
http://ceur-ws.org/Vol-464/paper-03.pdf
http://ceur-ws.org/Vol-464/paper-03.pdf
http://attempto.ifi.uzh.ch/site/pubs/papers/alta2008_kuhnschwitter.pdf
http://attempto.ifi.uzh.ch/site/pubs/papers/alta2008_kuhnschwitter.pdf

29. Kölling, M., Brown, N., Altadmri, A.: Frame-based edit-
ing. Journal of Visual Languages and Sentient Sys-
tems 3 (2017). DOI 10.18293/VLSS2017-012. URL
https://kclpure.kcl.ac.uk/portal/files/
71018111/Frame_based_editing.pdf

30. Ljunglöf, P.: Dialogue management as interactive tree building.
In: Workshop on the Semantics and Pragmatics of Dialogue (Dia-
Holmia 2009). Stockholm, Sweden (2009)

31. Ljunglöf, P.: Editing syntax trees on the surface. In: Nordic Con-
ference of Computational Linguistics (NoDaLiDa 2011), pp. 138–
145 (2011). URL http://aclweb.org/anthology/W/
W11/W11-4619.pdf

32. Luteberget, B., Camilleri, J.J., Johansen, C., Schneider, G.: Par-
ticipatory Verification of Railway Infrastructure by Representing
Regulations in RailCNL. In: A. Cimatti, M. Sirjani (eds.) Software
Engineering and Formal Methods, Lecture Notes in Computer Sci-
ence, vol. 10469, pp. 87–103. Springer (2017)

33. Luteberget, B., Johansen, C.: Efficient verification of railway in-
frastructure designs against standard regulations. Formal Meth-
ods in System Design 52(1), 1–32 (2018). DOI 10.1007/
s10703-017-0281-z

34. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency
checking of railway infrastructure designs. In: E. Ábrahám,
M. Huisman (eds.) 12th International Conference on Inte-
grated Formal Methods, Lecture Notes in Computer Science,
vol. 9681, pp. 491–507. Springer (2016). DOI 10.1007/
978-3-319-33693-0 31

35. Mitamura, T., Baker, K., Nyberg, E., Svoboda, D.: Diagnostics for
interactive controlled language checking. In: Controlled Language
Application Workshop (CLAW 2003), pp. 237–244 (2003)

36. Miyata, R., Hartley, A., Kageura, K., Paris, C.: Evaluating the us-
ability of a controlled language authoring assistant. The Prague
Bulletin of Mathematical Linguistics 108(1), 147–158 (2017).
DOI 10.1515/pralin-2017-0016

37. Miyata, R., Hartley, A., Paris, C., Kageura, K.: Evaluating and
implementing a controlled language checker. In: K.S. Choi,
S. Nam (eds.) Controlled Language Applications Workshop
(CLAW 2016), pp. 30–35. KAIST (2016)

38. Moreno, M.S.M., Bringert, B.: Interactive multilingual web appli-
cations with grammatical framework. In: B. Nordström, A. Ranta
(eds.) International Conference in Advances in Natural Lan-
guage Processing (GoTAL 2008), Lecture Notes in Computer Sci-
ence, vol. 5221, pp. 336–347. Springer (2008). DOI 10.1007/
978-3-540-85287-2 32

39. Power, R., Scott, D., Evans, R.: What you see is what you meant:
direct knowledge editing with natural language feedback. In: Eu-
ropean Conference on Artificial Intelligence (ECAI 1998), pp.
677–681 (1998)

40. Prisacariu, C., Schneider, G.: A Dynamic Deontic Logic for Com-
plex Contracts. The Journal of Logic and Algebraic Programming
(JLAP) 81(4), 458–490 (2012). DOI 10.1016/j.jlap.2012.03.003

41. Ranta, A.: Grammatical Framework. Journal of Func-
tional Programming 14(2), 145–189 (2004). DOI 10.1017/
S0956796803004738

42. Ranta, A.: Grammatical Framework: Programming with Multilin-
gual Grammars. CSLI Publications, Stanford (2011)

43. Ranta, A.: Embedded controlled languages. In: B. Davis,
K. Kaljurand, T. Kuhn (eds.) International Workshop on Con-
trolled Natural Language (CNL 2014), Lecture Notes in Com-
puter Science, vol. 8625, pp. 1–7. Springer-Verlag (2014). DOI
10.1007/978-3-319-10223-8 1

44. Ranta, A., Angelov, K., Höglind, R., Axelsson, C., Sandsjö, L.: A
mobile language interpreter app for prehospital/emergency care.
In: Medicinteknik dagarna. Västerås (2017). URL http://
www.trippus.se/eventus/userfiles/86430.pdf

45. Ranta, A., Camilleri, J., Détrez, G., Enache, R., Hallgren, T.:
Grammar tool manual and best practices. Tech. rep., MOLTO

Deliverable D2.3, MOLTO Consortium, Göteborg (2012). http:
//www.molto-project.eu/biblio/deliverable/
grammar-tools-and-best-practices

46. Ranta, A., Enache, R., Détrez, G.: Controlled language for every-
day use: The MOLTO phrasebook. In: CNL 2012, Lecture Notes
in Computer Science, vol. 7175, pp. 115–136. Springer-Verlag
(2012). DOI 10.1007/978-3-642-31175-8 7

47. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE — a look-
ahead editor for a controlled language. In: Controlled
Language Applications Workshop (CLAW 2003), pp. 141–
150 (2003). URL http://web.science.mq.edu.au/

˜rolfs/papers/CLAW03-ECOLE.pdf
48. Seganti, A., Kaplanski, P., Campo, J.D.N., Cieslinski, K., Kozi-

olkiewicz, J., Zarzycki, P.: Asking data in a controlled way with
ask data anything NQL. In: B. Davis, G.J. Pace, A.Z. Wyner (eds.)
International Workshop on Controlled Natural Language, (CNL
2016), Lecture Notes in Computer Science, vol. 9767, pp. 58–68.
Springer (2016). DOI 10.1007/978-3-319-41498-0 6

49. Sharp, H., Rogers, Y., Preece, J.: Interaction design: beyond
human-computer interaction. John Wiley (2007)

50. Teitelbaum, T., Reps, T.W.: The cornell program synthesizer: A
syntax-directed programming environment. Communications of
the ACM 24(9), 563–573 (1981). DOI 10.1145/358746.358755

51. Tennant, H.R., Ross, K.M., Saenz, R.M., Thompson, C.W., Miller,
J.R.: Menu-based natural language understanding. In: M.P. Mar-
cus (ed.) Annual Meeting of the Association for Computational
Linguistics (ACL 1983), pp. 151–158. ACL (1983). URL http:
//aclweb.org/anthology/P/P83/P83-1023.pdf

52. Thompson, C.W.: Using menu-based natural language under-
standing to avoid problems associated with traditional interfaces
to databases. Ph.D. Dissertation, Deptartment of Computer Sci-
ence, University of Texas, Austin (1989)

53. Ullman, J.D.: Principles of Database and Knowledge-Base Sys-
tems. W. H. Freeman & Co., New York (1983)

54. Van Broeckhoven, F., Vlieghe, J., De Troyer, O.: Using a con-
trolled natural language for specifying the narratives of seri-
ous games. In: H. Schoenau-Fog, L.E. Bruni, S. Louchart,
S. Baceviciute (eds.) International Conference on Interactive Dig-
ital Storytelling (ICIDS 2015), Lecture Notes in Computer Sci-
ence, vol. 9445, pp. 142–153. Springer (2015). DOI 10.1007/
978-3-319-27036-4 13

55. Vertan, C., von Hahn, W.: Menu choice translation — a flexible
menu-based controlled natural language system. In: Controlled
Language Application Workshop (CLAW 2003) (2003)

56. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific lan-
guage for railway interlocking systems. In: Proceedings of the
10th Symposium on Formal Methods for Automation and Safety
in Railway and Automotive Systems, FORMS/FORMAT 2014,
pp. 200–209. Technische Universität Braunschweig (2014)

57. Ward, M.P.: Language-oriented programming. Software - Con-
cepts and Tools 15(4), 147–161 (1994)

58. Welsh, J., Broom, B., Kiong, D.: A design rationale for a
language-based editor. Software: Practice and Experience 21(9),
923–948 (1991). DOI 10.1002/spe.4380210904

59. Wyner, A.Z., Angelov, K., Barzdins, G., Damljanovic, D., Davis,
B., Fuchs, N.E., Höfler, S., Jones, K., Kaljurand, K., Kuhn, T.:
On controlled natural languages: Properties and prospects. In:
N.E. Fuchs (ed.) Controlled Natural Language, Workshop on Con-
trolled Natural Language (CNL 2009), Lecture Notes in Com-
puter Science, vol. 5972, pp. 281–289. Springer (2009). DOI
10.1007/978-3-642-14418-9 17

24

https://kclpure.kcl.ac.uk/portal/files/71018111/Frame_based_editing.pdf
https://kclpure.kcl.ac.uk/portal/files/71018111/Frame_based_editing.pdf
http://aclweb.org/anthology/W/W11/W11-4619.pdf
http://aclweb.org/anthology/W/W11/W11-4619.pdf
http://www.trippus.se/eventus/userfiles/86430.pdf
http://www.trippus.se/eventus/userfiles/86430.pdf
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://web.science.mq.edu.au/~rolfs/papers/CLAW03-ECOLE.pdf
http://web.science.mq.edu.au/~rolfs/papers/CLAW03-ECOLE.pdf
http://aclweb.org/anthology/P/P83/P83-1023.pdf
http://aclweb.org/anthology/P/P83/P83-1023.pdf

8 Appendix: Excerpts from RailCNL Grammar as written in GF

The complete set of files can be downloaded from https://github.com/luteberget/RailCNL.git.

-- Overall grammar, combining modules.
abstract RailCNL = Statement,
Ontology, Graph, Area ** {}

-- Grammar for expressions about
-- railway infrastructure layout.
abstract Layout = Ontology ** {
cat DirectionalObject; GoalObject;

PathCondition; SearchSubject;
fun
-- Convert subjects from Ontology
-- module into search goals.
AnySearchSubject : Subject
-> SearchSubject;

SameDirObject, OppositeDirObject,
AnyDirObject : SearchSubject
-> DirectionalObject;

-- Specify restrictions on distance
-- between sets of objects.
DistanceRestriction : Modality
-> Subject -> GoalObject
-> Restriction -> Statement; }

abstract Area = Graph ** {
cat BaseArea; NamedArea; SingleArea;

AreaConj; Area;
fun
-- Arbitrary area type from string.
MkNamedArea : String -> Area;

(...)
-- Use area as a Subject modifier.
SubjectArea : OpenSubject -> Area
-> Subject;

-- Statement about area containment.
PlacementRestriction : Modality
-> Subject -> AreaConj
-> Statement; }

-- Partial concrete grammar in Norwegian
-- for the Ontology module.
concrete OntologyNor of Ontology = open
SyntaxNor, ParadigmsNor,
(RailLex = RailCNLLexiconNor) in {
lincat (...)

Class = CN; Property = CN;
Subject = CN; Statement = Utt;
Modality = {vv:VV; typ:ModalityType};

(...)
lin
(...)
-- Modalities
Obligation
= {vv = RailLex.must_VV; typ = MPos};

NegativeObligation
= {vv = RailLex.shall_VV; typ = MNeg};

-- Apply restriction to ontology.
OntologyRestriction mod subj cond =
mkUtt (mkS
(case mod.typ of {
MNeg => negativePol;
MPos => positivePol })

(mkCl (forall_CN subj)
(mkVP mod.vv cond))); }

abstract Ontology = Statement ** {
-- Partial grammar in the Railway
-- CNL for expressing classes and
-- properties of classes.
cat BaseClass; Class; Property;
Value; ConsequentCondition;
OpenSubject; Subject; Condition;
Restriction; ClassRestriction;
Modality; PropertyRestriction;
fun
-- Class name from string.
StringClass
: String -> BaseClass;
-- Class prefix string.
StringClassAdjective
: String -> BaseClass -> Class;
-- Class name without prefix.
StringClassNoAdjective
: BaseClass -> Class;
-- Property name from string.
StringProperty
: String -> Property;
Gt, Gte, Lt, Lte, Eq, Neq
: Value -> Restriction;
-- Combine restrictions by ‘and’/‘or’
AndRestr, OrRestr
: Restriction -> Restriction

-> Restriction;
-- Combine property restrictions
AndPropRestr, OrPropRestr
: PropertyRestriction

-> PropertyRestriction
-> PropertyRestriction;

-- Subject from Class and Condition
SubjectCondition
: Class -> Condition -> OpenSubject;
-- Use class/property as condition
ConditionClassAndPropertyRestriction
: Class -> PropertyRestriction

-> Condition;
ConditionRelationRestriction
: RelationMultiplicity -> Class

-> Condition;

-- Modalities: must/should and neg’d
Obligation, NegativeObligation,
Recommendation, NegativeRecommendation
: Modality;

-- Assertion statement about ontology
OntologyAssertion
: Subject -> ConsequentCondition

-> Statement;

-- Restriction statement
OntologyRestriction
: Modality -> Subject

-> ConsequentCondition -> Statement;
}

Fig. 7: Grammar excerpts from RailCNL implementation in Grammatical Framework.

19

Fig. 12: Grammar excerpts from RailCNL implementation in Grammatical Framework.

25

https://github.com/luteberget/RailCNL.git

9 Appendix: Example content from regulations

The following table lists some example excerpts from the regulations along with a translation into English, and a comment
about use cases and relevance.

Original text English translation Comments

Source: Overbygning: 530 Prosjektering, Kap. 8 Helsveist spor, 2.1.

De store krefter som kan
forekomme i et helsveist
spor stiller strenge krav til
sporets konstruksjon.

The large forces that may
occur in a welded track
makes stringent demands on
the track construction.

This sentence is not normative, and
is unlikely to have any use in
automated verification.

Source: Overbygning: 530 Prosjektering, Kap. 8 Helsveist spor, 2.1.3 a)

Ballasten skal på linjen og i
hovedspor på stasjoner være
fullverdig grovpukk (av
størrelse 31.5 – 63 mm)

The ballast on the line and
in the main track at stations
must be purely coarse
crushed stone (size from
31.5 to 63 mm)

This is a specification which is
absolute, and rules out the need for
specifying this as a part of the
design, because it is not part of a
specific station. It can still be
valuable to support this sentence in
a CNL, and in a formal
representation.

Source: Overbygning: 530 Prosjektering, Kap. 8 Helsveist spor, 2.1.2 a)

Minste kurveradius for
helsveist med betongsviller
skal være 250 m.

The lowest allowable radius
of curvature for whole
welded track on concrete
sleepers is 250 m.

This is a typical example of static
infrastructure verification,
expressible in Datalog as:
error(Segment) :- trackSegment(Segment),

trackSegmentRadius(Segment, Radius),

Radius ¡ 250.

Source: Signal: 550 Prosjektering, Kap. 6 Lyssignal, 2.1.2 j)

Et innkjørhovedsignal skal
plasseres ≥ 200 meter foran
innkjørtogveiens første
sentralstilte, motrettede
sporveksel, se Figur 5.

A home main signal shall be
placed at least 200 m in
front of the first controlled,
facing switch in the entry
train path (see Figure 5).

This is the example that we have
been using most frequently for the
RailCons verification tool. Datalog:
error(Sig,Sw) :- firstFacing(Bdry, Sw, Dir),

homeSignalBetween(Sig, Bdry, Sw),

distance(Sig, Sw, Dir, L), L ¡ 200.

Source: Signal: 550 Signal, Kap. 5 Forriglingsutrustning, 2.8.1 Dekningsgivende objekt

Følgende objekt kan være
dekningsgivende:
Hovedsignal, Dvergsignal,
Sporveksel, Sporsperre,
Avsporingstunge, Signal
E35 Stoppskilt. Et
hovedsignal skal vise signal
”Stopp” for å være
dekningsgivende.

The following objects can
provide flank protection:
main signal, shunting
signal, switch, derailer,
derailing tongue, signal E35
stop sign. A main signal
must display ”stop” to
provide flank protection.

This regulation is relevant both for
specifying the control system, and
for verifying the implementation.
The specification chooses which
objects to use for flank protection
(static) and what state they can be
used in, while the implementation
must correctly enforce the
conditions saying which message
the signal displays (dynamic).

26

Original text English translation Comments

Source: Signal: 550 Prosjektering, Kap. 6 Lyssignal, 2.1.2 i)

Et hovedsignal bør ikke
plasseres i tunneler, på
bruer, eller andre steder
hvor en eventuell togstans
og dermed muligheten for
avstigning, vil medføre fare.

A main signal should not be
placed in tunnels, on
bridges, or other places
where halting trains and
thus the possibility of
disembarking, can impose
dangers.

Here we have an example of a
“should” modality, where the static
infrastructure verification could
issue a warning, but not an error.
Also, it could be required to
document the alternatives that were
considered when deciding on the
design.

Source: Signal: 550 Prosjektering, Kap. 5 Forriglingsutrustning, 4.1.1.1 i)

For at en togvei skal kunne
fastlegges, skal et objekt
som gir dekning til togveien
være dekningsgivende.

For a train route to be
deactivated, any object
giving flank protection must
be in a protecting state.

This regulation concerns only the
state of the control system, and as
such relates to the implementation
of the control system and not the
static infrastructure specification.

Source: Overbygning: 530 Prosjektering, Kap. 5 Sporets trasé, 3.1 Dimensjonerende parametre

See table below.

(a) minimum radius, (b)
maximal superelevation, (c)
limit on superelevation
cause by derailment risk at
low speeds, (d) limit for
superelevation rate of
change, (e) limit for
superelevation deficit.

Limiting values are organized in a
table for use in formulas in other
sections.

Source: Overbygning: 530 Prosjektering, Kap. 5 Sporets trasé, 3.7 Sporveksler og sporforbindelser

27

Original text English translation Comments

Avstanden mellom
sporveksel og
overgangskurve,
sirkelkurve, bru eller annen
motstående sporveksel skal
ikke være mindre enn
avstanden M gitt i Kurver
uten overgangskurver, krav
b). M skal imidlertid ikke
være kortere enn 6 m.

The distance between the
switch point and the
transition curve, circle
curve, bridge or other
opposite switch point
should not be less than the
distance M given in section
“curves without transition
curves”, requirements b). M
shall not be shorter than 6
m.

The parameter M is explained by
the figure below. Reference is
given to another section of the
regulations.

Source: Overbygning: 530 Prosjektering, Kap. 5 Sporets trasé, 5 Største hastighet – sporets geometri

Hastigheten i en kurve skal
ikke være større enn:

V = 0, 291·
√
R (h+ Imaks) (5)

Hvis ligning 5 i tilfeller
med falsk overhøyde gir
lavere verdi enn 20 km/h
gjelder V = 20 km/h.

The speed in a curve shall
not exceed:

V = 0, 291·
√
R (h+ Imaks) (5)

If Eq. 5 gives a lower value
than 20 km/h in situations
with false superelevation,
then V = 20 km/h shall be
used.

Use of equations with designed and
given parameters.

Source: Signal: 552 Vedlikehold, Kap. 6 Lyssignal, 3 Lyssignaler

Dersom lyssignal er vridd
eller på annen måte kommet
ut av stilling skal dette
utbedres snarest.

If a signal is twisted or in
other ways are out of
position, this shall be fixed
as soon as possible.

Typical maintenance regulation.
Here, it might be sufficient to
identify this as a checklist item, for
maintenance scheduling and
reporting purposes.

28

10 Appendix: Overview of Norwegian Regulation
Contents

The technical regulations (”Teknisk regelverk”) can be
found at https://trv.jbv.no/ and consists of the fol-
lowing books:

– Common regulations: 501 Common regulations
– Common electrical: 510 Design and construction
– Signs: 515 Placement of signs along the track
– Superstructure (tracks): 530 Design, 531 Construction,

532 Maintenance
– Substructure: 520 Design and construction, 522 Mainte-

nance
– Tunnels: 521 Design and construction, 523 Maintenance
– Bridges: 525 Design and construction, 527 Maintenance
– Overhead line: 540 Design, 541 Construction, 542

Maintenance
– Low voltage and 22 kV: 543 Design, 544 Construction,

545 Maintenance
– Power supply: 546 Design, 547 Construction, 548 Main-

tenance
– Signalling: 550 Design, 551 Construction, 552 Mainte-

nance, 553 Assessment
– Telecommunications: 560 Design and construction, 562

Maintenance

Structure of each book:

– Each book repeats the common regulations as the first
three chapters.

– Following this will typically be a general section con-
taining:
– declaration of the scope of the book,
– references to relevant standards,
– definitions of relevant technical terms,
– qualitative classifications, such as quality classes,

risk classes, etc.
– The main part of a book consists typically of 5 to 10

chapters, each detailing a specific technical topic within
the discipline. The text consists of:
– Scope declarations
– Definitions
– Non-normative statements
– Comments
– Regulations (including tables and figures), with ex-

ceptions
– Examples

The technical regulations contain a lot of generalities
which are not necessarily normative, nor directly useful in
a design setting. Based on the prioritized use case list, the
following parts of the regulations should be considered first
in designing and testing the formalization procedure:

1. Superstructure design (track design / Overbygning: 530
Prosjektering), especially regulations and formulas re-
garding

– track geometry: curvature, gradients, etc.
– switches: types, maximum speeds, naming (number-

ing), etc.
2. Signalling design (*Signal: 550 Prosjektering*), espe-

cially
– signal placement, functions, sighting distance
– train detector placement, classification
– switch motors requirements and control system com-

ponents
– automatic train protection system (ATC) placement

and functions
– interlocking (control system) routes, conflicts, detec-

tion sections, safety classes, flank protection, over-
laps, etc.

29

https://trv.jbv.no/

	Introduction
	Participatory Verification
	Approach to Participatory Verification for Railway Regulations

	Design Methodology for a Verification Front-End Language
	Using the Grammatical Framework to build CNLs
	Design methodology overview
	Abstract Syntax
	Concrete Syntax
	Vocabulary: Static vs. Dynamic
	Translation into the Target Logic Formalism

	RailCNL: a Front-End Language for Railway Verification
	RailCNL Modules and Examples
	Top-Level Statement Types
	Generic Ontology Module
	Layout Module
	Area Module
	Signalling Layout Regulations

	Translating RailCNL into Datalog

	Evaluation of RailCNL Coverage of Norwegian regulations
	Tool Integration
	Traceability Support in RailCNL
	An Overview of CNL Editors and their Features and Properties
	Structural Editing
	Structured Surface Editing
	Surface Editing
	Search-based Editing

	An Editor for RailCNL

	Conclusions
	Related Work
	Future Work

	Appendix: Excerpts from RailCNL Grammar as written in GF
	Appendix: Example content from regulations
	Appendix: Overview of Norwegian Regulation Contents

