
Rule-based Incremental Verification Tools
Applied to Railway Designs and Regulations

Bjørnar Luteberget, Christian Johansen,
Claus Feyling, and Martin Steffen

November 10, 2016

1 / 28



Talk overview

Use case
1. Objective and scope: static infrastructure verification
2. Domain background: railway layout and control system
3. Prototype tool: formalization of regulations and Datalog

solver integrated with CAD tool

Incremental evaluation
4. Efficiency concerns: incremental evaluation
5. Algorithms: known approaches to incremental Datalog
6. Solvers: current state of the art in incremental solvers

2 / 28



Railway verification and formal methods

I Railway systems:
large-scale, safety-critical
infrastructure

I High safety requirements:
SIL 4 for passenger
transport

I Increasingly computerized
components

I Typical use of formal
methods in railways:
model checking of control
systems

3 / 28



Objective

Given a railway signalling and interlocking design,

verify that it complies with regulations.

Secondary objectives:
I Integrate with engineering/design tools

– On-the-fly verification (“lightweight”)

– Usable for engineers who are not formal methods experts

I Find suitable language for expressing regulations

“Formal methods will never have a significant impact until they can be used
by people that don’t understand them.”

— (attributed to) Tom Melham

4 / 28



Railway designs for signalling and interlocking

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1 2

3

4 6

5

Switch X Switch Y

(a) Track and signalling component layout

Route Start End Sw. pos Detection sections Conflicts
AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

(b) Tabular interlocking specification

5 / 28



Technical regulations
I In our case study: Norwegian regulations from

infrastructure manager Jernbaneverket
I Static kind of properties, often related to object properties,

topology and geometry (examples later)

6 / 28



Technical regulations
Example from regulations:
I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Some categories of regulations useful in static
infrastructure design:

– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking properties

7 / 28



Formalization of regulations checking
I Formalize the following information

– The CAD design (extensional information, or facts)

– The regulations (intensional information, or rules)

I Use a solver which:

– Is capable of verifying the rules

– Runs fast enough for on-the-fly verification

8 / 28



Datalog
I Basic Datalog: conjunctive queries with fixed-point

operators (“SQL with recursion”)

– Guaranteed termination

– Polynomial running time (in the number of facts)

I Expressed as logic programs in a Prolog-like syntax:

a(X,Y ) :– b(X,Z), c(Z, Y )

m

∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y))

I We also use:

– Stratified negation (negation-as-failure semantics)

– Arithmetic (which is “unsafe”)

9 / 28



Encoding facts and rules in Datalog
I The process of formalizing the railway data and rules to

Datalog format is divided into three stages:

1. Railway designs (station data) – facts

2. Derived concepts (used in several rules) – rules

3. Technical regulations to be verified – rules

I Now, more details about each stage...

10 / 28



Input documents representation

I Translate the railML XML format into Datalog facts using
the ID attribute as key:

track(a)← elementa is of type track,

signal(a)← elementa is of type signal,

...
pos(a, p)← (elementa.pos = p), a ∈ Atoms, p ∈ R,

...
signalType(a, t)← (elementa.type= t),

t∈{main, distant, shunting, combined} .

11 / 28



Input documents representation

I To encode the hierarchical structure of the railML
document, a separate predicate encoding the parent/child
relationship is added:

belongsTo(a, b)← b is the closest XML ancestor of a
whose element type inherits from
tElementWithIDAndName.

12 / 28



Derived concepts
I Derived concepts are defined through intermediate rules
I Railway concepts defined independently of the design
I Example:

directlyConnected(a, b)← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b)← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

I A library of concepts allows concise expression of
technical regulations

13 / 28



Technical regulations as Datalog rules
I Detecting errors in the design corresponds to finding

objects involved in a regulation violation

I To validate the rules in a given design, we show that there
are no satisfiable instances of the negation of the rule

I Some examples:

– Example 1, home signal placement: topological and
geometrical layout property for placement of a home signal

– Example 2, train detector conditions: relates interlocking to
topology

I These are Jernbaneverket regulations which are relevant
for automatic verification

14 / 28



Rule: example 1
I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.
I Uses arithmetic and negation

200 m

isFirstFacingSwitch(b, s)← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),

example1Violation(b, s)← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x, home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x, home)∧
∧ distance(x, s, d, l) ∧ l < 200).

15 / 28



Rule: example 2
I Each pair of adjacent train detectors defines a track

detection section. For any track detection sections
overlapping the route path, there shall exist a
corresponding condition on the activation of the route.

Section 1 Section 2

Sig. A Sig. B

Tabular interlocking:

Route Start End Sections must be clear
AB A B 1, 2

16 / 28



Rule: example 2

adjacentDetectors(a, b)←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, da, db)← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),

detectionSectionCondition(r, da, db)← detectionSectionCondition(c)∧
belongsTo(c, r) ∧ belongsTo(da, c) ∧ belongsTo(db, c).

ruleViolation(r, da, db)←
detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

17 / 28



Prototype tool implementation
I Prototype using XSB Prolog tabled predicates, front-end is

the RailCOMPLETE tool based on Autodesk AutoCAD
I Rule base in Prolog syntax with structured comments

giving information about rules

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths

18 / 28



Running time
Testing
station

Arna
phase A

Arna
phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog facts 85 8283 9159
Running time (s) 0.1 4.4 9.4

I Running time for verification of a few properties: ≈1 – 10 s
– Acceptable, for now
– More optimization needed for truly on-the-fly verification

I Increase margins for
– Many times larger models (stations)
– 10x — 100x more rules

19 / 28



Efficiency considerations

I Incremental updates

– Changes in the CAD design causes the whole verification to
start over

– More efficient: recompute only the parts that are affected
by the changes

20 / 28



Approaches to incremental Datalog
I Propagate added or deleted sets of base propositions ∆P

through constant set of rules (view maintenance)

Typical incremental Datalog approaches:
I Add extra “book-keeping” to the algorithm, to remember

how derived facts were derived.
– Gets complicated with recursive rules

I Without extra book-keeping:

– Adding items (positively) is straight-forward

– Deleting items (positively) requires search for
alternative support

– Conversely for negated terms
(assuming stratified negation)

21 / 28



The delete and rederive algorithm (DRed)
I Described by Gupta et al., 1993.

I Forward-chaining approach:
– Example:

a(X) :- b(X). (1)
a(X) :- c(X). (2)
b(1). c(1).

– Adding a base fact ∆+ = {b(2)} makes rule (1) fire,
producing a(2).

– Removing a base fact ∆− = {b(1)} from {b(1). c(1). a(1).}
propagates through rule (1), producing a minimum set
{c(1).}. This set is used for forward chaining through rules
again, producing {c(1). a(1).}

I Expressible in Datalog itself (Staudt and Jarke, 1996)
I Negation in body flips addition/removal, OK with

stratification.

22 / 28



Problem: transitive rules
Highly interconnected facts and rules (few strata), such as
transitive rules, can be inefficient with DRed.

I Example: Graph reachability
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

I Edge relation:

I Paths from leftmost vertex:

23 / 28



The Forward/Backward/Forward algorithm (FBF)
I Newer algorithm by Motik et al., 2015

I Combination of forward and backward chaining
– When adding a potential deletion to the overapproximation,

search for alternative support for the conclusion.

I More efficient than DRed on most tests, especially for
highly interconnected strata

24 / 28



Counting and other “bookkeeping” approaches
I Add more information to the result set, for example how

many derivations a fact has.

1

1
2

2

I More complicated in the presence of recursion and other
features → save the support of derived facts.

I Example from Saha and Ramakrishnan, 2003.

25 / 28



Efficiency gains
Using XSB’s incremental facilities in our prototype tool

Testing
station

Arna
phase A

Arna
phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog input facts 85 8283 9159
XSB:

Non-incremental verif.: Running
time: (s) 0.015 2.31 4.59

Memory (MB) 20 104 190
Incremental verif.
baseline:

Running
time (s) 0.016 5.87 12.25

Memory (MB) 21 1110 2195
Incr. single object
update:

Running
time (s) 0.014 0.54 0.61

Memory (MB) 22 1165 2267
Case study size and running times on a standard laptop.

26 / 28



Tools for incremental Datalog
I XSB Prolog

– It works! However, memory usage increases 11x.

I RDFox
– FBF algorithm, lower memory usage.
– Does not support higher-arity relations (only 1 or 2

parameters, corresponding to RDF triples).

I LogicBlox
– Commercially supported implementation.
– Not evaluated by us, yet.

I Dyna
– Statistical AI research language.
– Implementation not mature enough for our use.

27 / 28



Status
I Tool support for incremental evaluation comes close, but

is not fully capable of supporting our use case.
I Collaboration with Boris Motik’s group in the University of

Oxford on further development on RDFox for supporting
our use case.

28 / 28


