Rule-based Incremental Verification Tools
Applied to Railway Designs and Regulations

Bjornar Luteberget, Christian Johansen,
Claus Feyling, and Martin Steffen

November 10, 2016

UiO ¢ University of Oslo

RailCOMPLETE

1/28

Talk overview

Use case
1. Objective and scope: static infrastructure verification
2. Domain background: railway layout and control system

3. Prototype tool: formalization of regulations and Datalog
solver integrated with CAD tool

Incremental evaluation
4. Efficiency concerns: incremental evaluation
5. Algorithms: known approaches to incremental Datalog
6. Solvers: current state of the art in incremental solvers

2/28

Railway verification and formal methods

» Railway systems:
large-scale, safety-critical
infrastructure

» High safety requirements:
SIL 4 for passenger
transport

» Increasingly computerized
components

» Typical use of formal
methods in railways:
model checking of control
systems

3/28

Objective

Given a railway signalling and interlocking design,

verify that it complies with regulations.

Secondary objectives:
» Integrate with engineering/design tools
- On-the-fly verification (“lightweight”)
— Usable for engineers who are not formal methods experts

» Find suitable language for expressing regulations

“Formal methods will never have a significant impact until they can be used
by people that don’t understand them.”

— (attributed to) Tom Melham

4/28

Railway designs for signalling and interlocking

2%

Sig. D

Sig. E
P
; Sig. B

¢ o
Sig. A l Sig. F Sig. C
Switch X Switch Y

(a) Track and signalling component layout

Route | Start | End | Sw. pos | Detection sections | Conflicts
AC A (0] X right 1,2,4 AE, BF
AE A 5 X left 1,2,3 AC, BD
BF B F Y left 4,5,6 AC, BD
BD B D Y right 3,56 AE, BF

(b) Tabular interlocking specification

5/28

Technical regulations

» In our case study: Norwegian regulations from

infrastructure manager Jernbaneverket

» Static kind of properties, often related to object properties,

topology and geometry (examples later)

D &4 | https://tr jov.nowiki/Signal/Prosjektering/Lyssignal E1| & |[Psearch

s 9 ¢ & O

e) Dersom nedvendig stopplengde er lengre enn avstanden mellom to etterfelgende hovedsignal, skal det
benyttes gjennomsignalering ved hjelp av ATC (Signal/Prosjektering/ATC), se Figur 7.

hovedsignalet og det foregdende hovedsignalet er < 2200 meter.

- > nadvendig stopplengde -
L« Avstand mellom hovedsignal ! Avstand melom hovedsignal |
I basert pa togfelgetic H basert pa togfalgetid |
Figur 7: For ing og ing &

f) Etforsignal skal plasseres pa foregdende hovedsignals mast dersom avstanden mellom det tilharende

g) Mellom et forsignal og det tilherende hovedsignalet skal det ikke plasseres andre hoved- eller forsignal.

h) Et forsignal skal plasseres slik at siktavstanden oppfyller kravene til enten “brutt sikt” eller til “ubrutt sikt” i
Tabell 4 &:

Tabell 4: Siktkrav til forsignal

Str h tillatte kjor i [km/h]

sikt 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 =13(
siktavstand [m]

Whewt+ | 70 | 00 | 67 [1a7 0117 108 13z l1aa [akal1as [19e 102 (184 [ana (214 1294 233 [aas | aen

6/28

Technical regulations

Example from regulations:

» A home main signal shall be placed at least 200 m in front
of the first controlled, facing switch in the entry train path.

—

200 m

» Some categories of regulations useful in static
infrastructure design:
— Object properties
— Topological layout properties
— Geometrical layout properties
— Interlocking properties

71/28

Formalization of regulations checking
» Formalize the following information

- The CAD design (extensional information, or facts)

- The regulations (intensional information, or rules)

» Use a solver which:

— |s capable of verifying the rules

- Runs fast enough for on-the-fly verification

8/28

Datalog

» Basic Datalog: conjunctive queries with fixed-point
operators (“SQL with recursion”)

— Guaranteed termination

- Polynomial running time (in the number of facts)
» Expressed as logic programs in a Prolog-like syntax:
a(X,Y) = b(X,2),¢(2,Y)
)
Ve,y: ((3z: (b(z, 2) Ac(z,y))) — a(z,y))
» We also use:

- Stratified negation (negation-as-failure semantics)

- Arithmetic (which is “unsafe”)

9/28

Encoding facts and rules in Datalog

» The process of formalizing the railway data and rules to
Datalog format is divided into three stages:

1. Railway designs (station data) — facts
2. Derived concepts (used in several rules) - rules

3. Technical regulations to be verified - rules

» Now, more details about each stage...

10/28

Input documents representation

» Translate the railML XML format into Datalog facts using
the ID attribute as key:

track(a) < element, is of type track,
signal(a) < element, is of type signal,

pos(a,p) < (element,.pos = p), a € Atoms,p € R,

signalType(a,t) + (element,.type=t),
t €{main, distant, shunting, combined} .

11/28

Input documents representation

» To encode the hierarchical structure of the railML
document, a separate predicate encoding the parent/child
relationship is added:

belongsTo(a,b) + b is the closest XML ancestor of a
whose element type inherits from
tElementWithIDAndName

12/28

Derived concepts

» Derived concepts are defined through intermediate rules
» Railway concepts defined independently of the design
» Example:

directlyConnected(a, b) <— 3t : track(t) A belongsTo(a,t) A belongsTo(b,t),

connected(a, b) < directlyConnected(a, b) V (3c1, c2 : connection(ci, c2)A
directlyConnected(a, c1) A connected(cz,b)).

» A library of concepts allows concise expression of
technical regulations

13/28

Technical regulations as Datalog rules

» Detecting errors in the design corresponds to finding
objects involved in a regulation violation

» To validate the rules in a given design, we show that there
are no satisfiable instances of the negation of the rule

» Some examples:

— Example 1, home signal placement: topological and
geometrical layout property for placement of a home signal

— Example 2, train detector conditions: relates interlocking to
topology

» These are Jernbaneverket regulations which are relevant
for automatic verification

14/ 28

Rule: example 1

» A home main signal shall be placed at least 200 m in front
of the first controlled, facing switch in the entry train path.

» Uses arithmetic and negation

200 m

isFirstFacingSwitch(b, s) < stationBoundary(b) A facingSwitch(s)A
—(3z : facingSwitch(z) A between(b, z, s)),

example1Violation(b, s) < isFirstFacingSwitch(b, s)A
(=(3z : signalFunction(x,home) A between(b, z, s))V
(3, d, 1 : signalFunction(z, home)A
A distance(z, s,d, 1) Al < 200).

15/28

Rule: example 2

» Each pair of adjacent train detectors defines a track
detection section. For any track detection sections
overlapping the route path, there shall exist a
corresponding condition on the activation of the route.

Section 1 Section 2

—C0 —C0
Sig. A Sig. B

Tabular interlocking:

Route Start End Sections must be clear
AB A B 1,2

16/ 28

Rule: example 2

adjacentDetectors(a, b) <trainDetector(a) A trainDetector(b)A
—existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, dq, dy) < trainRoute(r)A
start(r, sq) A end(r, sp)A
adjacentDetectors(da, dy) A overlap(sa, sp, da, dp),

detectionSectionCondition(r, da, dy,) <+ detectionSectionCondition(c)A
belongsTo(c,r) A belongsTo(da, ¢) A belongsTo(dy, c).

ruleViolation(r, da , dp) <+
detectionSectionOverlapsRoute(r, dq , dp) A
—detectionSectionCondition(r, da, dp).

17728

Prototype tool implementation

» Prototype using XSB Prolog tabled predicates, front-end is
the RailCOMPLETE tool based on Autodesk AutoCAD

» Rule base in Prolog syntax with structured comments
giving information about rules

%| rule: Home signal too close to first facing switch.

%| type: technical

%$| severity: error

homeSignalBeforeFacingSwitchError (S, SW)
firstFacingSwitch (B, SW,DIR),
homeSignalBetween (S, B, SW),
distance(S,SW,DIR,L), L < 200.

M 9 K150

Sw. 1

Update
! Category Description

i [sianal No interiocking defined

@ [signal |Home signal toe close to first facing switch.
in detectors must be 21.0 m apart.

Open reference

18/28

Running time

Testing Arna Arna

station phase A phase B
Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog facts 85 8283 9159
Running time (s) 0.1 4.4 9.4

» Running time for verification of a few properties: ~1-10s
— Acceptable, for now
— More optimization needed for truly on-the-fly verification

» Increase margins for

- Many times larger models (stations)
— 10x — 100x more rules

19/28

Efficiency considerations

» Incremental updates

— Changes in the CAD design causes the whole verification to
start over

- More efficient: recompute only the parts that are affected
by the changes

20/28

Approaches to incremental Datalog

» Propagate added or deleted sets of base propositions AP
through constant set of rules (view maintenance)

Typical incremental Datalog approaches:

» Add extra “book-keeping” to the algorithm, to remember
how derived facts were derived.
— Gets complicated with recursive rules

» Without extra book-keeping:

- Adding items (positively) is straight-forward

- Deleting items (positively) requires search for
alternative support

— Conversely for negated terms
(assuming stratified negation)

21/28

The delete and rederive algorithm (DRed)
» Described by Gupta et al., 1993.

» Forward-chaining approach:
— Example:
a(X) - bX). (1)
a(X) - c(X). (2
b(1). c(1).

- Adding a base fact AT = {b(2)} makes rule (1) fire,
producing a(2).

- Removing a base fact A~ = {b(1)} from {b(1).¢(1).a(1).}
propagates through rule (1), producing a minimum set
{c(1).}. This set is used for forward chaining through rules
again, producing {c(1). a(1).}

» Expressible in Datalog itself (Staudt and Jarke, 1996)

» Negation in body flips addition/removal, OK with
stratification.

22/28

Problem: transitive rules

Highly interconnected facts and rules (few strata), such as

transitive rules, can be inefficient with DRed.

» Example: Graph reachability
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

» Edge relation:
°
.///’ *. .
*.///”

» Paths from leftmost vertex:

.,

I

23/28

The Forward/Backward/Forward algorithm (FBF)
» Newer algorithm by Motik et al., 2015

» Combination of forward and backward chaining

— When adding a potential deletion to the overapproximation,
search for alternative support for the conclusion.

» More efficient than DRed on most tests, especially for
highly interconnected strata

24/28

Counting and other “bookkeeping” approaches

» Add more information to the result set, for example how
many derivations a fact has.

2

—— .,

o

» More complicated in the presence of recursion and other
features — save the support of derived facts.

» Example from Saha and Ramakrishnan, 2003.
edge(0,1)

Answer Supports
:g:ggf; reach(0,1)|(1,{edge(0,1)}), (2,{reach(0,1),edge(1,1)})
edge(1:2) reach(0,2)|(1,{edge(0,2)}), (2,{reach(0,1) ,edge(1,2)})
(a) (b)

25/28

Efficiency gains

Using XSB’s incremental facilities in our prototype tool

Testing Arna Arna
station phase A phase B
Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog input facts 85 8283 9159
XSB:
Non-incremental verif.: Et’nner?mg (s) 0.015 2.31 4.59
Memory (MB) 20 104 190
Incremental verif. Running) 0.016 587 1225
baseline: time ‘ ' ' ’
Memory (MB) 21 1110 2195
Incr. single object Running (s) 0014 0.54 0.61
update: time ' ' ’
Memory (MB) 22 1165 2267

Case study size and running times on a standard laptop.

26/ 28

Tools for incremental Datalog

» XSB Prolog
— It works! However, memory usage increases 11x.

» RDFox

— FBF algorithm, lower memory usage.
- Does not support higher-arity relations (only 1 or 2
parameters, corresponding to RDF triples).

» LogicBlox

— Commercially supported implementation.
— Not evaluated by us, yet.

» Dyna
— Statistical Al research language.
- Implementation not mature enough for our use.

27/ 28

Status

» Tool support for incremental evaluation comes close, but
is not fully capable of supporting our use case.
» Collaboration with Boris Motik’s group in the University of

Oxford on further development on RDFox for supporting
our use case.

28/28

