
RailCons Railway Infrastructure Verification

Bjørnar Luteberget / Martin Steffen

TU Darmstadt, Nov. 2017

1 / 20

Background: railway engineering

I Costly projects with high

quality requirements,

complicated regulations.

I Produce a lot of tables,

drawings, 3D models,

specifications,

documentation, etc.

I Evaluation relies on a lot of

manual checking of

regulations compliance.

I Coordination between

disciplines require

constant re-evaluation of

designs.

2 / 20

RailCons project: automated verification

Project objectives:

I Verify that railway signalling and interlocking designs

comply with regulations.

I Provide tools which allow railway engineers to perform
such verification as part of their daily routine (“lightweight
verification”).

– Earlier detection of errors avoid costly re-evaluations later.

“Formal methods will never have a significant

impact until they can be used by people that don’t

understand them.”

— (attributed to) Tom Melham

3 / 20

Models: railway signalling and interlocking designs

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1
2

3

4 6

5

Switch X Switch Y

(a) Track and signalling component layout

Route Start End Sw. pos Detection sections Conflicts

AC A C X right 1, 2, 4 AE, BF

AE A E X left 1, 2, 3 AC, BD

BF B F Y left 4, 5, 6 AC, BD

BD B D Y right 3, 5, 6 AE, BF

(b) Tabular interlocking specification

4 / 20

Properties: technical regulations

I In our case study: Norwegian regulations from national

railways (Bane NOR)

I Static kind of properties, often related to object properties,

topology and geometry (example on next slide)

5 / 20

Properties: technical regulations

Example from regulations:

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

6 / 20

Datalog

I Basic Datalog: conjunctive queries with fixed-point
operators (“SQL with recursion”)

– Guaranteed termination

– Polynomial running time (in the number of facts)

I Expressed as logic programs in a Prolog-like syntax:

a(X,Y) :– b(X,Z), c(Z, Y)

m

∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y))

I We also use:

– Stratified negation (negation-as-failure semantics)

– Arithmetic (which is “unsafe”)

7 / 20

Encoding facts and rules in Datalog

I The process of formalizing the railway data and rules to
Datalog format is divided into three stages:

1. Railway designs (station data) – facts

2. Derived concepts (used in several rules) – rules

3. Technical regulations to be verified – rules

8 / 20

Technical regulations as Datalog rules

I Detecting errors in the design corresponds to finding

objects involved in a regulation violation

I To validate the rules in a given design, we show that there

are no satisfiable instances of the negation of the rule

I Some examples:

– Example 1, home signal placement: topological and
geometrical layout property for placement of a home signal

– Example 2, train detector conditions: relates interlocking to
topology

I These are Norwegian regulations which are relevant for

automatic verification

9 / 20

Rule: example 1

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.
I Uses arithmetic and negation

200 m

isFirstFacingSwitch(b, s)← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),

ruleViolation(b, s)← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x, home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x, home)∧
∧ distance(x, s, d, l) ∧ l < 200).

10 / 20

Datalog verification tool

I Prototype using XSB Prolog tabled predicates, front-end is

the RailCOMPLETE tool based on Autodesk AutoCAD
I Rule base in Prolog syntax with structured comments

giving information about rules

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths

11 / 20

Challenge: participatory verification

Challenge: Users (railway engineers) are not experts in

verification techniques, so how can they

I build models of the systems to be verified?

I write properties in the verifier’s input language?

I interpret the output of the verifier when violated properties

are found?

Input to verification:

I Models: CAD extended with structured railway data

(familiar to engineers, user-friendly)

I Properties: Datalog (unfamiliar to engineers, not

user-friendly enough)

... consider another verification property input language?

12 / 20

CNL: Overview of approach

I Define a Controlled Natural Language as a high-level

domain-specific language to write properties.

I Represent properties as rephrasing of natural language

specifications (adds tracability of requirements)

CNL editor

Proper ties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation
of infrastructure

Datalog
reasoner

Issues presentation
(warnings, errors)

Or iginal text
(w/marked-up
sentences)

Side by side tracing through
CNL to original text.

13 / 20

RailCNL language design: graph module

For writing statements about the topology and geometry of

objects’ placement wrt. to railway tracks.

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST:

Statements: assertion,
obligation, recommendation

Ontology language

Graph language:
paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Interlocking
regulations

Generic
Domain-specific

Module
Dependency

Fig. 3: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

Top-Level Statement Types Most normative sentences in railway regulations are clas-
sified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These sen-
tences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD model is
checked for compliance, and violations are presented as errors to the user.

– Recommendation: design heuristics for railway infrastructure. The CAD model is
checked for compliance, but violations are presented as warnings or for information
only, and can be dismissed from the view.

We give here an example of a restriction which is an obligation on a property of a
segment of railway tracks.

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST: OntologyRestriction Obligation

(SubjectClass (StringClassAdjective "vertical"
(StringClass "segment")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "length")
(Gt (MkValue (StringTerm "20.0m")))))

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

6

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

– Properties and values: can be arbitrary string tokens. These can be joined by “and”
or “or” both on the level of values and of properties.

– Restrictions: Equality is a common case of restriction for which we simply choose
the wording “to be”. Other restriction types such as greater than, less than, etc.,
are worded more verbosely. Example: A main signal should have height which is
greater than 1.5m and less than 5.0m.

– Relations: the basic ontology module contains multiplicity restrictions on relations.
In the layout module presented below, we will see how relations are used when
writing statements which are concerned with more than one object simultaneously.
Example: A distant signal should have one or more associated signals.

Layout Module For writing statements about the topology of the railway track, e.g.
about paths as illustrated in Fig. 5c, we use the following language constructs:

– Goal object: modifies the Subject type defined in the ontology module to add
conditions which make sense in a railway graph search, such as the object’s ori-
entation (same direction or opposite direction) the search’s direction (forwards or
backwards) or the termination properties of the search.

– Path condition: argument to the search constructors which specifies what restric-
tions are placed on the paths from source to goal object.

– Path restrictions: the combination of the source object, goal object and path con-
ditions. Example: All paths from a station border to the first facing switch must
pass an entry signal. (See Fig. 5a)

– Distance restrictions: See Fig. 5b and Example 2.

Example 2 (Parse tree for a railway layout statement.)

CNL: Distance from an entry signal to first facing switch must be greater than 200.0 m.
AST:

Station
boundary

Entry
signal

Facing
switch

(a) Every path from a station boundary to the
first facing switch must pass an entry signal.

200 m

Entry
signal

Facing
switch

(b) The distance from the entry signal to the first
facing switch must be at least 200m.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can mean either a planar
region or an interval defined on a track.

Fig. 4

Example 3 (Parse tree for a railway layout statement.)

CNL: The distance from an entry signal to the first facing switch must be greater
than 200.0 m.
AST: DistanceRestriction Obligation

(SubjectClass (StringClassAdjective "entry"
(StringClass "signal")))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm "200.0m")))

Area Module The area modules modifies subjects to express whether they are inside
a planar area, such as a station areas, tunnels or bridges, or belongs to a linear segment
of a track, such as being located in a curve or on an incline.

– Subject constructor: the Subject is extended to add a prepositional phrase con-
taining area information, such as being inside of a tunnel or on a bridge.

– Placement restriction: extends OntologyRestriction to allow restrictions
on object being inside areas. Example: A signal should not be placed in tunnel or
bridge. (See Figure 4d)

3.2 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, we transform the CNL AST into Dat-
alog rules. Each top-level constructor in the CNL definition has a translation function
into the Datalog AST.

8

7

14 / 20

Tooling

I The quality of the tool support influences the success of a

domain-specific language for non-IT-experts. Textual input

is a part of the overall user interface design.

Tool support for RailCNL:

I Paraphrasing view – present originals and CNL

paraphrases side-by-side.

I Issues view – present verification errors in the CAD tool

with links to the paraphrasing view.

I Editor – Text editor with support for writing (correct) CNL

phrases.

15 / 20

Side-by-side CNL/original (paraphrasing view)

I Requirements tracing

16 / 20

Issues view

I Backwards tracing – explanation of non-compliance

CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringC
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValu

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End,

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.

17 / 20

Text editor CNL support

I Rule authoring tool – syntax checks, predictive parsing,

chunked parsing, language exploration

18 / 20

Advantages

RailCNL as a front-end for property input for verification:

I RailCNL is domain-specific: tailored to Datalog logic and

regulations terminology. Gives readability and

maintainability.

I Resembles natural language – improves readability and

engineer participation.

I Separate textual explanation (such as comments used in

programming) are typically not needed.

I RailCNL statements are linked the original text. so that

reading them side by side reveals to domain experts

whether the CNL paraphrasing of the natural text is valid. If

not, they can edit the CNL text.

19 / 20

Univ. Oslo / TU Darmstadt

Some common general interests:

I railways,

I regulations compliance,

I design tradeoffs,

I techniques similar to (static/dynamic) program analysis.

Specific goal: documented compliance

20 / 20

Further challenges and future work

Participatory verification:

I RailCNL is a common language shared between

programmers and railway engineers for verification work.

I CNLs are not a magical solution to end-user programming.

I DSLs evolve along-side the application.

Language:

I Structures in regulations that span several phrases/rules

(scopes, exceptions) – represent on textual or GUI level?

I Macros – can users extend the language within the scope

of their texts?

Tool support:

I Can railway engineers from other disciplines create their

properties themselves, from scratch, with editor support?

I Is example-based and editor-supported language learning

good enough?

21 / 20

Coverage

Classification for coverage analysis:

I Not relevant for verification, examples:

Non-normative: the technical qualities of the track

construction ensure safe and efficient traffic, with the least

possible environmental impact.

Non-checkable: the tracks’ construction must take into

account the topography, soil, hydrology, climate, etc. of the

location.

I Out of scope for static analysis, examples:

Construction: Signs must have their original wrapping

during transportation.

Operation: A signal which cannot signal ”stop” because

of fault must be unlit.

22 / 20

Coverage

I Not covered:

– exceptions (awkward to write out all premises)
– linguistically complex: The safety zone (overlap) can be

reduced to 200 m if the speed control system is designed
such that the velocity at balise group (x) is not higher than 40
km/h when the signal (y) shows a ”stop” aspect, and rolling
stock will stop before the fouling point even when speed
control communcation has failed in both the balise group
and in the main signal.

I Covered:

– ontology, graph, areas, interlocking (targets), ...

23 / 20

Coverage statistics

Eng. discipline Chapter title Phrases Normative Relevant Covered Coverage
Track Planning: general technical 140 74 74 70 95%
Track Planning: geometry 278 157 152 119 78%
Signalling Planning: detectors 144 106 35 21 60%
Signalling Planning: interlocking 376 265 130 81 62%
Total 938 602 391 291 74%

Table 1: Coverage evaluation for a subset of Norwegian regulations. Phrases of the
original text which could be classified as normative (i.e. applying some restriction on
design) were evaluated for relevance to static infrastructure verification. The coverage
is the percentage of relevant phrases expressible in RailCNL.

used to map the contract language CL [15] into a CNL. Statement modalities, such as
obligation, permission and prohibition, are applied to complex actions. The structure of
the CNL is modelled after the CL language. Camilleri et al. [4] take a CNL approach
to manipulating contract-oriented diagrams using a visual diagram editor, a CNL with
text editor support, and a spreadsheet representation as interfaces to a common model,
which can be translated into timed automata for reasoning about system properties.

Other efforts to define domain specific languages for railway verification have typ-
ically focused on the implementation of control systems, such as Vu et al. [21], while
also considering the verification to be an activity which is separate from design and
implementation. James et al. [6] show how to integrate UML modelling of the rail-
way domain with graphical modelling and specification and verification languages, also
keeping the focus on verifying the control system implementation of a fixed design.

Future Work In working with railway engineers, we discovered language features
which could be added to increase the coverage of RailCNL:

1. A notion of scopes and exceptions, so that more complex conditional restrictions
can be expressed more naturally.

2. Mathematical formulas as a sub-language.
3. Vague or soft requirements represented not for direct use in verification, but for

requiring manual checks at some points.

A formal CNL with well-chosen linearizations can be very natural, and often per-
fectly readable for a non-programmer with the required domain knowledge. However,
writing in a formal CNL can potentially be as difficult as writing in a programming
language. A solution to this problem is the use of special-purpose editors which guide
the user towards structuring their text according to the underlying formal grammar. Dif-
ferent approaches to CNL editors have been explored (see e.g. [4,10,14]). We plan to
investigate these further and integrate one such editor for RailCNL in the RailCOM-
PLETE CAD environment, and carry out a usability study on its efficacy.

We are continuing our collaboration with Norwegian railway engineers to evaluate
the usability of our prototype tools, increase the text coverage and extend the language
to handle other railway engineering disciplines such as catenary lines and ground works.

14

24 / 20

Participatory verification: experience from meetings

between programmers and railway engineers

Positive:

I invites engineers to splitting hairs

– discuss semantics of natural language
– leads to discussion of interpretation of regulations

I example-based learning

– explain and explore language with the editor
– change names and values / copy-paste coding

Negative:

I total understanding of language is infeasible

– extend language: ask for examples, not grammar

25 / 20

Datalog verification

I Datalog with negation (n.-as-failure) and arithmetic,

implemented in e.g. XSB Prolog, RDFox, Soufflé.

I Prefer very fast (< 100 msec) re-evaluation integrated into

CAD tool.

I Incremental Datalog approaches can exploit locality.

26 / 20

Railway construction process

1. Politicians allocate funds for new railways, upgrades or

maintenance.

2. National railway administration define high level

requirements, such as passenger/freight capacities, travel

times, maintainability, etc.

3. Engineering companies work out the detailed plans and

specifications of the upcoming construction project.

4. Construction/implementation companies build the railway

and implement control systems.

5. Finally, train companies can transport passengers and

goods.

27 / 20

CAD programs in railway signalling

I Overview of a station, typically showing tracks and

signalling system components (signals, signs, balises)

28 / 20

Datalog

I Basic Datalog: conjunctive queries with fixed-point
operators (“SQL with recursion”)

– Guaranteed termination

– Polynomial running time (in the number of facts)

I Expressed as logic programs in a Prolog-like syntax:

a(X,Y) :– b(X,Z), c(Z, Y)

m

∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y))

I We also use:

– Stratified negation (negation-as-failure semantics)

– Arithmetic (which is “unsafe”)

29 / 20

The railML XML standard data exchange format

I Thoroughly modelled infrastructure schema
I XML schema development by international standard

committee

30 / 20

Technical regulations

I In our case study: Norwegian regulations from

infrastructure manager Jernbaneverket

I Static kind of properties, often related to object properties,

topology and geometry (examples later)

31 / 20

Technical regulations

Example from regulations:

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Can be classified as follows:

– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking properties

32 / 20

Formalization of rule checking

I Formalize the following information

– The CAD design (extensional information, or facts)

– The regulations (intensional information, or rules)

I Use a solver which:

– Is capable of verifying the rules

– Runs fast enough for on-the-fly verification

33 / 20

Input documents representation

I Translate the railML XML format into Datalog facts using

the ID attribute as key:

track(a)← elementa is of type track,

signal(a)← elementa is of type signal,

...

pos(a, p)← (elementa.pos = p), a ∈ Atoms, p ∈ R,
...

signalType(a, t)← (elementa.type= t),

t∈{main, distant, shunting, combined} .

34 / 20

Derived concepts

I Derived concepts are defined through intermediate rules

I Railway concepts defined independently of the design

I Example:

directlyConnected(a, b)← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b)← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

I A library of concepts allows concise expression of

technical regulations

35 / 20

Rule: example 2

I Each pair of adjacent train detectors defines a track

detection section. For any track detection sections

overlapping the route path, there shall exist a

corresponding condition on the activation of the route.

Section 1 Section 2

Sig. A Sig. B

Tabular interlocking:

Route Start End Sections must be clear

AB A B 1, 2

36 / 20

Rule: example 2

adjacentDetectors(a, b)←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, da, db)← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),

detectionSectionCondition(r, da, db)← detectionSectionCondition(c)∧
belongsTo(c, r) ∧ belongsTo(da, c) ∧ belongsTo(db, c).

ruleViolation(r, da, db)←
detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

37 / 20

Prototype tool implementation

I Prototype using XSB Prolog tabled predicates, front-end is

the RailCOMPLETE tool based on Autodesk AutoCAD
I Rule base in Prolog syntax with structured comments

giving information about rules

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths

38 / 20

REMU project – Chalmers/GU Gothenburg

REMU project: Reliable Multilingual Digital Communication –

I Goals (among others): grammar development, testing,

analysis.

I Tools: Grammatical Framework – Programming language

for multilingual grammar applications.

I Controlled natural language

Controlled natural languages (CNLs) are subsets of natural

languages that are obtained by restricting the grammar

and vocabulary in order to reduce or eliminate ambiguity

and complexity.

39 / 20

Grammatical Framework

Define domain model in an abstract syntax, define one or more

mappings to text in a concrete syntax.

Abstract syntax:

I Domain-specific tree data structure for representing the

desired content.

abstract ToyRailway = {
cat Subject; Length; Restriction; Statement;
fun Signal, Switch, Detector : Subject;

LengthMeters : Int -> Length;
GreaterThan, LessThan : Length -> Restriction;
ObjectSpacing : Subject -> Subject -> Restriction

-> Statement; }

I Example phrase in abstract syntax:

ObjectSpacing Signal Switch (GreaterThan (LengthMeters 20))

40 / 20

Grammatical Framework

Concrete syntax:

I A mapping from the abstract syntax to text.

I Invertible, so a GF concrete syntax gives you a parser and a

linearization (generator).

concrete ToyRailwayEng of ToyRailway = {
lincat Subject = Str; Length = Str; (...)
lin Signal = "signal"; (...)

LengthMeters i = i ++ "m"
GreaterThan l = "more than" ++ l
ObjectSpacing o1 o2 r =

"a" ++ o1 ++ "must be" ++ r
++ "from a" ++ o2; }

I Parse: “a signal must be more than 20 m from a switch”
ObjectSpacing Signal Switch (GreaterThan (LengthMeters 20))

I Complexity and constraints of natural language quickly
becomes infeasible to handle when the language grows...

41 / 20

Grammatical Framework’s Resource Grammars

Comprehensive linguistic

model of natural languages

with a unified API for forming

sentences.

I Parse/generate in 31

languages using a unified

API.

I Ensures grammatical

correctness of phrases

using the type system.

API usage example:
OrientationAngleTo vec =

mkCN (mkCN angle_N)
(mkAdv to_Prep (mkNP the_Det vec));

42 / 20

Related work

Domain-specific languages for railway verification:

I Verification of implementation of railway control systems

(Vu, Haxthausen, Peleska, 2014). Concise verification

properties.

I Verification of railway layouts (James, Roggenbach, 2014).

Focus on integrating domain modeling (UML) with

verification, focus on control systems and fixed designs.

Controlled natural languages – formally defined restricted

subsets of natural language – used for:

I Object Constraint Langauge, KeY reasoning about Java

programs (Johannisson, 2007).

I Contract language CL (Prisacariu, Schneider, 2012)

mapped into natural language and also diagrams

(Camilleri, Paganelli, Schneider, 2014).

I Database queries for tax fraud detection (Calafato,

Colombo, Pace, 2016).

43 / 20

RailCNL: Language design

Top-level statements:

I Constraint: logical constraints, typically used by a Datalog

reasoner to infer new facts.
I Obligation: design requirement, CAD model is checked for

compliance.
I Recommendation: design heuristics, CAD model checked,

but violations are shown as warnings, can be dismissed.

Modules:

〈Statement〉 ::= 〈OntologyAssertion〉
| 〈OntologyRestriction〉
| 〈DistanceRestriction〉
| 〈PathRestriction〉
| 〈PlacementRestriction〉
| (...) // Partial grammar
〈OntologyAssertion〉 ::= 〈Subject〉

〈Condition〉
〈OntologyRestriction〉 ::= 〈Subject〉

〈Modality〉 〈Condition〉
〈DistanceRestriction〉 ::=

‘the distance from’ 〈Subject〉 ‘to’
〈GoalObject〉 〈Modality〉 〈Restriction〉

〈PathRestriction〉 ::= 〈PathQuantifier〉
‘from’ 〈Subject〉 ‘to’ 〈GoalObject〉
〈Modality〉 〈PathCondition〉

〈PlacementRestriction〉 ::= 〈Subject〉
〈Modality〉 ‘be placed in’ 〈Area〉

〈Modality〉 ::= ‘must’ | ‘shall not’
| ‘should’ | ‘should not’
〈PathQuantifier〉 ::= ‘all paths’
| ‘no paths’ | (...)
〈PathCondition〉 ::= ‘pass’

〈DirectionalObject〉
〈GoalObject〉 ::= 〈DirectionalObject〉
| ‘the first’ 〈DirectionalObject〉
〈DirectionalObject〉 ::= 〈SearchSubject〉
| ‘a facing switch’
| ‘a trailing switch’
| 〈SearchSubject〉 〈RelativeDirection〉

〈RelativeDirection〉 ::= ‘same dir.’
| ‘opposite dir.’
〈SearchSubject〉 ::= ‘a’ 〈Subject〉
| ‘another’
〈Area〉 ::= 〈BaseArea〉
| 〈BaseArea〉 ‘which has’
〈PropertyRestriction〉

| 〈Area〉 ‘or’ 〈Area〉
| 〈Area〉 ‘and’ 〈Area〉
〈BaseArea〉 ::= ‘tunnel’ | ‘bridge’
| ‘local release area’ | 〈Identifier〉
〈Subject〉 ::= ‘a’ 〈Class〉
| ‘a’ 〈Class〉 ‘which’ 〈Condition〉
〈Condition〉 ::= ‘is a’ 〈ClassRestriction〉
| ‘has’ 〈PropertyRestriction〉
| ‘is a’ 〈ClassRestriction〉 ‘which has’
〈PropertyRestriction〉

〈PropertyRestriction〉 ::= 〈Property〉
〈ValueRestriction〉

| (...) // and/or
〈ClassRestriction〉 ::= 〈Class〉
| (...) // and/or
〈ValueRestriction〉 ::= 〈Value〉
| ‘not equal to’ 〈Value〉
| ‘less than’ 〈Value〉
| (...) // ≤, >, ≥
| (...) // and/or
〈Value〉 ::= 〈Identifier〉 | 〈Number〉 〈Unit〉
〈Property〉 ::= 〈Identifier〉
〈Class〉 ::= 〈Identifier〉

Fig. 3: English version of RailCNL’s core grammar in BNF. Some linguistic complexity
such as subject-verb agreement is ignored here; the actual grammar is fully specified as
GF code, which is ideally suited for handling such cases.

Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Generic
Domain-specific

Module
Dependency

Fig. 4: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

6

44 / 20

RailCNL language design: ontology module

Statements about classes of objects and their properties and

relations form a basis for for knowledge representation.

I Class names: “signal”, “switch”, ...

I Properties and values: “color”, “red”, “200.0m”, ...

I Restrictions: Equality: “A signal must have height 4.5m”.

I Relations name and multiplicity. “A distant signal should

have one or more associated signals.”

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST:

Statements: assertion,
obligation, recommendation

Ontology language

Graph language:
paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Interlocking
regulations

Generic
Domain-specific

Module
Dependency

Fig. 3: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

Top-Level Statement Types Most normative sentences in railway regulations are clas-
sified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These sen-
tences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD model is
checked for compliance, and violations are presented as errors to the user.

– Recommendation: design heuristics for railway infrastructure. The CAD model is
checked for compliance, but violations are presented as warnings or for information
only, and can be dismissed from the view.

We give here an example of a restriction which is an obligation on a property of a
segment of railway tracks.

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST: OntologyRestriction Obligation

(SubjectClass (StringClassAdjective "vertical"
(StringClass "segment")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "length")
(Gt (MkValue (StringTerm "20.0m")))))

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

6

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

– Properties and values: can be arbitrary string tokens. These can be joined by “and”
or “or” both on the level of values and of properties.

– Restrictions: Equality is a common case of restriction for which we simply choose
the wording “to be”. Other restriction types such as greater than, less than, etc.,
are worded more verbosely. Example: A main signal should have height which is
greater than 1.5m and less than 5.0m.

– Relations: the basic ontology module contains multiplicity restrictions on relations.
In the layout module presented below, we will see how relations are used when
writing statements which are concerned with more than one object simultaneously.
Example: A distant signal should have one or more associated signals.

Layout Module For writing statements about the topology of the railway track, e.g.
about paths as illustrated in Fig. 5c, we use the following language constructs:

– Goal object: modifies the Subject type defined in the ontology module to add
conditions which make sense in a railway graph search, such as the object’s ori-
entation (same direction or opposite direction) the search’s direction (forwards or
backwards) or the termination properties of the search.

– Path condition: argument to the search constructors which specifies what restric-
tions are placed on the paths from source to goal object.

– Path restrictions: the combination of the source object, goal object and path con-
ditions. Example: All paths from a station border to the first facing switch must
pass an entry signal. (See Fig. 5a)

– Distance restrictions: See Fig. 5b and Example 2.

Example 2 (Parse tree for a railway layout statement.)

CNL: Distance from an entry signal to first facing switch must be greater than 200.0 m.
AST:

Station
boundary

Entry
signal

Facing
switch

(a) Every path from a station boundary to the
first facing switch must pass an entry signal.

200 m

Entry
signal

Facing
switch

(b) The distance from the entry signal to the first
facing switch must be at least 200m.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can mean either a planar
region or an interval defined on a track.

Fig. 4

Example 3 (Parse tree for a railway layout statement.)

CNL: The distance from an entry signal to the first facing switch must be greater
than 200.0 m.
AST: DistanceRestriction Obligation

(SubjectClass (StringClassAdjective "entry"
(StringClass "signal")))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm "200.0m")))

Area Module The area modules modifies subjects to express whether they are inside
a planar area, such as a station areas, tunnels or bridges, or belongs to a linear segment
of a track, such as being located in a curve or on an incline.

– Subject constructor: the Subject is extended to add a prepositional phrase con-
taining area information, such as being inside of a tunnel or on a bridge.

– Placement restriction: extends OntologyRestriction to allow restrictions
on object being inside areas. Example: A signal should not be placed in tunnel or
bridge. (See Figure 4d)

3.2 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, we transform the CNL AST into Dat-
alog rules. Each top-level constructor in the CNL definition has a translation function
into the Datalog AST.

8

7

45 / 20

	Appendix
	Appendix

