
Design of railway signalling

using SAT-based planning

Bjørnar Luteberget

Koen Claessen

Christian Johansen

NWPT, Oct, 2018

Overview

1. Railway control system design and its challenges.

2. Specification language for design capacity.

3. Implementation of a tool for checking capacity.

Railway control systems

4000 m

Constructing a new railway line starts with a track plan:

Railway control systems

4000 m

Constructing a new railway line starts with a track plan:

Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to

the train:

Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to

the train:

Railway control systems

4000 m

Now, other trains can occupy different sections.

Railway control systems

4000 m

We add signals to indicate to drivers when they can proceed.

Railway control systems

4000 m

This situation is in principle safe, but is it a good design?

Requirements

Will my station design handle the

actual traffic?

Two methods used in practice:

1. Whole-network time table analysis: a whole discipline in

itself – complicated theory and software

2. Manual, ad-hoc analysis: varying quality, little

documentation, low repeatability.

Design-implementation-operation

Design

Implementation

Operation

?

Formal methods for verifying

correctness (safety) [3, 2].

Railway optimization for

network-wide timetables [1, 4].

[1] M. Abril, F. Barber, L. Ingolotti, M.A. Salido, P. Tormos, and A. Lova. An
assessment of railway capacity. Transportation Research, 44(5):774 – 806, 2008.

[2] Arne Borälv and Gunnar Stålmarck. Formal verification in railways. In
Industrial-Strength Formal Methods in Practice, pages 329–350. Springer, 1999.

[3] A. Fantechi, W. Fokkink, and A. Morzenti. Some trends in formal methods
applications to railway signalling. In Formal Methods for Industrial Crit Sys., 2012.

[4] Alex Landex. Methods to est. railway cap. and passenger delays. PhD thesis,
2008.

Design-implementation-operation

Design

Implementation

Operation

Agile, fast verification methods with

suitable, small specifications.

Formal methods for verifying

correctness (safety).

Railway optimization for

network-wide timetables.

Specification capture

Railway engineers gave us examples of performance properties

that governed their designs.

Typical categories:

1. Running time (get from A to B)

– Similar to a simulation test, but smaller specification.

2. Frequency (several consecutive trains)

– Route trains into alternate tracks.

3. Overtaking

4. Crossing

– Let one train wait on a side track while another train passes.

Capacity specifications

Local requirements suitable for construction projects.

I Operational scenario S = (V,M,C):

I Vehicle types V = {(li, vmax
i , ai, bi)}, defined by length, max

velocity, max accel, max braking.

I MovementsM = {(vi, 〈qi〉)}, defined by vehicle type v and
ordered sequence of visits 〈qi〉.

I Each visit qi = ({li} , td) is a set of alternative

locations li and an optional dwelling time td.

I Timing constraints C = {(qa, qb, tc)} which orders two

visits and sets a maximum time from the first to the

second tqa < tqb < tqa + tc. The maximum time constraint

can be omitted (tc = ∞).

Constraints

Verification of these specifications would involve finding

satisfying train trajectories and control system state:

∃p : spec(p)

Also, constrained by:

I 1 - Physical infrastructure

I 2 - Allocation of resources (collision safety)

I 3 - Limited communication

I 4 - Laws of motion

Constraints (2) Allocation of resources

An elementary route is a set of resources allocated together.

Signal A Signal C

Routes are conflicting if they use any of the same resources.

Signal A Signal C

Constraints (3) Limited communication

Signal information only carries across two signals

(”pre-signalling”).

Velocity

Known movement authority

Auth.

Constraints (4) Laws of motion

Trains move within the limits of given maximum acceleration

and braking power. Train drivers need to plan ahead for braking

so that the train respects its given movement authority and

speed restrictions at all times.

v − v0 ≤ a∆t, v2 − v2i ≤ 2bsi.

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Automated verification

Design-time capacity verification amounts to planning in a

mixed discrete/continuous space.

Some suggestions:

I PDDL+, planning domain description language for mixed

discrete-continuous planning domains [1].

I SMT with non-linear real arithmetic [2, 4].

I dReal: δ-complete decision proc. for FOL with reals [3].

Using these tools/techinques and straight-forward modeling

did not make our problem manageable on relevant scales.

[1] M. Fox and D. Long. Modelling mixed discrete-continuous domains for planning.
J. Artif. Intell. Res., 27:235–297, 2006.

[2] M. Franzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
J. SAT, 1:209–236, 2007.

[3] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories
over the reals. CADE-24 vol. 7898 of LNCS, pages 208–214. Springer, 2013.

[4] D. Jovanovic and L. de Moura. Solving non-linear arithmetic. ACM Comm.
Computer Algebra, 46(3/4):104–105, 2012.

Dispatch vs. driver

Split the planning work into two separate points of view:

Dispatcher Train driver

Dispatch vs. driver

Split the planning work into two separate points of view:

Dispatcher Train driver

Dispatch vs. driver

Split the planning work into two separate points of view:

Dispatcher

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Elementary routes and their

conflicts

Train driver

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

SAT encoding of dispatch planning

General idea: represent which train occupies which elementary

route in each of a sequence of steps.

↓

t1 t1

t2

t2

SAT encoding

Planning as bounded model checking (BMC). Build planning

steps as needed using incremental SAT solver interface.

Movement correctness:

I Conflicting routes are not active simultaneously

conflict(r1, r2) ⇒ oir1 = Free ∨ oir2 = Free.

I Elementary route allocation is consistent with train

movement: (oir 6= t ∧ oi+1
t = t) ⇒∨{

oi+1
rx = t | route(rx), entry(r) = exit(rx)

}
Satisfy specification:

I Visits happen in order (timing requirement is measured on

simulation).

Freeing

A B C

D E

200 m 100 m 400 m

If A holds a train t of length 200.0m, freeing A is constrained by:

Ai ⇒
(
Ai+1 ∨ (Bi ∧ Ci) ∨ (Di ∧ Ei)

)
.

Eliminate equivalent solutions

I Can free⇒must free

I Can allocate⇒must allocate

I Exception to allocation: deferred progress

a train may waiting for a conflict to be resolved, even if the

conflict starts in the future.

Crossing example: exactly two solutions:

Design-Time Railway Capacity Verification using
SAT modulo Discrete Event Simulation

Bjørnar Luteberget
Railcomplete AS

Sandvika, Norway
Email: bjornar.luteberget@railcomplete.no

Koen Claessen
Chalmers University of Technology

Gothenburg, Sweden
Email: koen@chalmers.se

Christian Johansen
University of Oslo

Oslo, Norway
Email: cristi@ifi.uio.no

Abstract—Railway capacity is complex to define and analyze,
and existing tools and methods used in practice require com-
prehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-based methods of ca-
pacity analysis are available to them. Designs have subtle capacity
pitfalls which are discovered too late, only when network-wide
timetables are made – there is a mismatch between the scope
of construction projects and the scope of capacity analysis, as
currently practiced.

We suggest a language for capacity specifications suited for
construction projects, expressing properties such as running
time, train frequency, overtaking and crossing. Verifying these
properties amounts to solving a planning problem constrained by
discrete control system logic, network topology, laws of motion,
and sparse communication. To describe train dynamics one uses
second-order linear differential equations which when solved
analytically give rise to non-linear equations over real variables.

We argue that reasoning over the whole discrete/continuous
solution space is not efficient with current state-of-the-art solvers.
Instead, we have solved the problem by building a special-purpose
solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and continuous-domain dynamics and timing
constraints evaluated using discrete event simulation. The two
components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). We show that our method is fast
enough at relevant scales to provide agile verification in a design
setting, and we present case studies based on data from existing
infrastructure and ongoing construction projects.

I. INTRODUCTION

This paper addresses a central problem that occurs when
designing the layout and control systems for railway stations:
Does the station infrastructure have the capacity to handle the
amount of trains and the desired traveling times to provide
adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on
a railway station. Fig. 1 shows two sequences of movements
which result in such a crossing. There are a number of details
of the railway design which can cause this scenario to become
infeasible (or take an unacceptably long time), such as signal
placement, detector placement, correct allocation and freeing
of resources, track lengths, train lengths, etc.

Systematic capacity analysis for railways is typically per-
formed on the scale of national railway networks, using
comprehensive input on infrastructure and timetables, and
only after the complete design is finished. Moreover, the
widely used methods and tools for capacity analysis are

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two
trains on a two-track station. The green areas show track
segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

heavy-duty methods, consisting of complicated simulations,
and require specialized knowledge, thus not being suitable
for agile design-time verification of railway stations. As a
consequence, railway construction projects usually rely on
informal, vague, or even non-existent capacity specifications,
and engineers need to make ad-hoc/manual analyses of how
the control system can provide this capacity.

Our goal is to develop a verification technique and tool
to help engineers specify capacity properties at design time
and to check these automatically. To be agile, the tool needs
to (1) have reasonable running times so that the verification
can be run on the fly as the design is being updated by an
engineer working in a drafting CAD application, and (2) keep
the required input to the minimum of information needed
to verify relevant properties. This style of verification gives
engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

The problem: We consider the low-level railway infras-
tructure capacity verification problem, which we define as
follows:

Given a railway station track plan including signal-
ing components, rolling stock dynamic characteris-
tics, and a performance/capacity specification, verify
whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:
• Low-level running time analysis – verify the time re-

quired for getting from point A to point B.

I Overlaps. Partial release.

I Loops in the infrastructure / loops in the dispatch.

Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

Discrete event simulation

Initialize a world, and let processes mutate the world

coordinated by a global scheduler.

I Scheduler: priority queue of events, ranked by time.

I enum PState { Finished, Wait([EventId]) }
trait Process<T> {
fn resume(&mut self, s:&mut Sim<T>) -> PState; }

I Observable values fire events when changed.

Railway simulation uses the following processes:

I Elementary route activation (subproc.: turn switch)

I Resource release (observe detectors)

I Train driver (observe signals, choose accel/brake).

Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

New design process

A

B

3 Running time

7 Crossing on A

New design process

A

B

3 Running time

7 Crossing on A

New design process

A

B

3 Running time

3 Crossing on A

New design process

A

B

3 Running time

7 Crossing on A

Case studies
Fig. 8: Stations Kolbotn, Eidsvoll, and Asker from Bane
NOR’s model of the Norwegian national network [31].

Infrastructure Property Result nDES tSAT tDES ttotal
Simple
(3 elem.)

Run.time Sat. 1 0.00 0.00 0.00
Crossing Unsat. 0 0.00 0.00 0.00

Two track
(14 elem.)

Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01

Kolbotn (BN)
(56 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06

Eidsvoll (BN)
(64 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21

Asker (BN)
(170 elem.)

Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77

Arna (CAD)
(258 elem.)

Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74

Gen. 3x3
(74 elem.)

High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19

Gen. 4x4
(196 elem.)

High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34

Gen. 5x5
(437 elem.)

High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

TABLE I: Verification performance on test cases, including
Bane NOR (BN) and RailCOMPLETE (CAD) infrastructure
models. The number of elementary routes (elem.) is shown
for each infrastructure to indicate the model’s size. nDES is
the number simulator runs, tSAT the time in seconds spent in
SAT solver, tDES the time in seconds spent in DES, and ttotal
the total calculation time in seconds.

visual representation of these models, i.e., the stations Kolbotn,
Eidsvoll, and Asker were converted from the railML models.

We have also tested against an infrastructure model from the
Arna construction project that uses the RailCOMPLETE CAD
design software, a realistic use case for agile verification.

Finally, to test the limitations of scalability in our method,
we construct a set of examples where m stations each with n
parallel tracks each are serially connected by a single track.
In this case, when a timing bound is slightly too small to be
satisfiable, the planner will have to come up with nm plans
for timing evaluation. This scenario is outside the intended use
case for our method: path selection can on this scale instead
be based on static speed profiles. Capacity over many stations
is better suited for the established timetabling tooling.

We attempted an alternative implementation using the
PDDL+ solver SMTPlan+, but found that even for greatly
simplified models, the required number of steps and numerical
constraints put all our case studies out of reach for sub-second
verification times.

V. RELATED WORK

Railway timetabling and capacity analysis has often been
posed as a planning problem and solved using mixed integer
programming and similar approaches. Zwaneveld et al. [32]
use integer programming on a problem closely related to our
low-level railway infrastructure capacity verification problem.
Isobe et al. [33] formulate a similar model in timed CSP,
representing train locations, velocities, and control logic. Our
definition of the problem in this paper includes non-linear
constraints on train dynamics (acceleration/braking power) and
communication constraints (trains must slow down if they have
not been informed of movement authority), which are relevant
in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in
railway dynamic analysis, see e.g. [34], [35], [36].

In the planning literature, the PDDL+ language [4] has
been introduced to capture mixed discrete/continuous planning
problems such as the one studied in this paper. General-
purpose solvers have recently been developed, using time
domain discretization (DiNo [37]) or the SMT theory of non-
linear real arithmetic (SMTPlan+ [38]).

VI. CONCLUSIONS AND FURTHER WORK

The goal of our suggested tool chain for railway engineering
is (1) to allow fully automated performance verification and (2)
use minimal input documentation for the verification. Both of
these aspects encourage bringing in performance verification
into frequently changing early-stage design projects, avoiding
the costly and time-consuming backtracking required when
later-stage analysis reveals unacceptable performance.

As future work we plan to integrate the current prototype
in the RailCOMPLETE tool and test the usability with the
engineers using this tool in their design work.

Acknowledgments: We thank the engineers at Railcomplete
AS, especially senior engineer Claus Feyling, for guidance on
railway operations and design methodology.

Future work

I Improved abstraction refinement? Would need more

difficult cases to solve.

I Support for turning trains and loops in the infrastructure.

I Interface to more comprehensive simulation software?

I Depends on feedback from engineers.

Future work

I Improved abstraction refinement? Would need more

difficult cases to solve.

I Support for turning trains and loops in the infrastructure.

I Interface to more comprehensive simulation software?

I Depends on feedback from engineers.

I Fast and fully automatic verification could be a basis for

design synthesis.

Thanks for listening!

Design synthesis

Create signal and detector placement for a given track plan.

I Schedulability: is the dispatch possible (add more signals

and detectors)
I Timing: running time can become worse with more

signals. Signal information only carries across two signals

(”pre-signalling”).

Velocity

Known movement authority

Auth.

Idea for approach to synthesis/optimization

1. Maximal schedulability design.

Guard every branch

2. Run dispatch planner to see which signals are not needed

(optimization).

3. Add/remove signals on non-branching sections to improve

timing.

4. Move signals locally to improve timing (local search).

Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

RailCons project: automated verification

Project objectives:

I Verify that railway signalling and interlocking designs

comply with regulations.

I Provide tools which allow railway engineers to perform

such verification as part of their daily routine (“lightweight

verification”).

“Formal methods will never have a significant

impact until they can be used by people that don’t

understand them.”

— (attributed to) Tom Melham

Models: railway signalling and interlocking designs

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1
2

3

4 6

5

Switch X Switch Y

(a) Track and signalling component layout

Route Start End Sw. pos Detection sections Conflicts

AC A C X right 1, 2, 4 AE, BF

AE A E X left 1, 2, 3 AC, BD

BF B F Y left 4, 5, 6 AC, BD

BD B D Y right 3, 5, 6 AE, BF

(b) Tabular interlocking specification

Properties: technical regulations

I In our case study: Norwegian regulations from national

railways (Bane NOR)

I Static kind of properties, often related to object properties,

topology and geometry (example on next slide)

Properties: technical regulations

Example from regulations:

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Can be classified as follows:

– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking properties

Datalog verification tool

I Prototype using XSB Prolog tabled predicates, front-end is

the RailCOMPLETE tool based on Autodesk AutoCAD

I Rule base in Prolog syntax with structured comments

giving information about rules

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths

Challenge: participatory verification

Challenge: Users (railway engineers) are not experts in

verification techniques, so how can they

I build models of the systems to be verified?

I write properties in the verifier’s input language?

I interpret the output of the verifier when violated properties

are found?

Input to verification:

I Models: CAD extended with structured railway data

(familiar to engineers, user-friendly)

I Properties: Datalog (unfamiliar to engineers, not

user-friendly enough)

... consider another verification property input language?

REMU project – Chalmers/GU Gothenburg

REMU project: Reliable Multilingual Digital Communication –

I Goals (among others): grammar development, testing,

analysis.

I Tools: Grammatical Framework – Programming language

for multilingual grammar applications.

I Controlled natural language

Controlled natural languages (CNLs) are subsets of natural

languages that are obtained by restricting the grammar

and vocabulary in order to reduce or eliminate ambiguity

and complexity.

Grammatical Framework

Define domain model in an abstract syntax, define one or more

mappings to text in a concrete syntax.

Abstract syntax:

I Domain-specific tree data structure for representing the

desired content.

abstract ToyRailway = {
cat Subject; Length; Restriction; Statement;
fun Signal, Switch, Detector : Subject;

LengthMeters : Int -> Length;
GreaterThan, LessThan : Length -> Restriction;
ObjectSpacing : Subject -> Subject -> Restriction

-> Statement; }

I Example phrase in abstract syntax:

ObjectSpacing Signal Switch (GreaterThan (LengthMeters 20))

Grammatical Framework

Concrete syntax:

I A mapping from the abstract syntax to text.

I Invertible, so a GF concrete syntax gives you a parser and a

linearization (generator).

concrete ToyRailwayEng of ToyRailway = {
lincat Subject = Str; Length = Str; (...)
lin Signal = "signal"; (...)

LengthMeters i = i ++ "m"
GreaterThan l = "more than" ++ l
ObjectSpacing o1 o2 r =

"a" ++ o1 ++ "must be" ++ r
++ "from a" ++ o2; }

I Parse: “a signal must be more than 20 m from a switch”
ObjectSpacing Signal Switch (GreaterThan (LengthMeters 20))

I Complexity and constraints of natural language quickly
becomes infeasible to handle when the language grows...

Grammatical Framework’s Resource Grammars

Comprehensive linguistic

model of natural languages

with a unified API for forming

sentences.

I Parse/generate in 31

languages using a unified

API.

I Ensures grammatical

correctness of phrases

using the type system.

API usage example:
OrientationAngleTo vec =

mkCN (mkCN angle_N)
(mkAdv to_Prep (mkNP the_Det vec));

Related work

Domain-specific languages for railway verification:

I Verification of implementation of railway control systems

(Vu, Haxthausen, Peleska, 2014). Concise verification

properties.

I Verification of railway layouts (James, Roggenbach, 2014).

Focus on integrating domain modeling (UML) with

verification, focus on control systems and fixed designs.

Controlled natural languages – formally defined restricted

subsets of natural language – used for:

I Object Constraint Langauge, KeY reasoning about Java

programs (Johannisson, 2007).

I Contract language CL (Prisacariu, Schneider, 2012)

mapped into natural language and also diagrams

(Camilleri, Paganelli, Schneider, 2014).

I Database queries for tax fraud detection (Calafato,

Colombo, Pace, 2016).

Overview of approach

I Define a Controlled Natural Language as a high-level

domain-specific language to write properties.

I Represent properties as rephrasing of natural language

specifications (adds tracability of requirements)

CNL editor

Proper ties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation
of infrastructure

Datalog
reasoner

Issues presentation
(warnings, errors)

Or iginal text
(w/marked-up
sentences)

Side by side tracing through
CNL to original text.

RailCNL: Language design

Top-level statements:

I Constraint: logical constraints, typically used by a Datalog

reasoner to infer new facts.

I Obligation: design requirement, CAD model is checked for

compliance.

I Recommendation: design heuristics, CAD model checked,

but violations are shown as warnings, can be dismissed.

Modules:

〈Statement〉 ::= 〈OntologyAssertion〉
| 〈OntologyRestriction〉
| 〈DistanceRestriction〉
| 〈PathRestriction〉
| 〈PlacementRestriction〉
| (...) // Partial grammar
〈OntologyAssertion〉 ::= 〈Subject〉

〈Condition〉
〈OntologyRestriction〉 ::= 〈Subject〉

〈Modality〉 〈Condition〉
〈DistanceRestriction〉 ::=

‘the distance from’ 〈Subject〉 ‘to’
〈GoalObject〉 〈Modality〉 〈Restriction〉

〈PathRestriction〉 ::= 〈PathQuantifier〉
‘from’ 〈Subject〉 ‘to’ 〈GoalObject〉
〈Modality〉 〈PathCondition〉

〈PlacementRestriction〉 ::= 〈Subject〉
〈Modality〉 ‘be placed in’ 〈Area〉

〈Modality〉 ::= ‘must’ | ‘shall not’
| ‘should’ | ‘should not’
〈PathQuantifier〉 ::= ‘all paths’
| ‘no paths’ | (...)
〈PathCondition〉 ::= ‘pass’

〈DirectionalObject〉
〈GoalObject〉 ::= 〈DirectionalObject〉
| ‘the first’ 〈DirectionalObject〉
〈DirectionalObject〉 ::= 〈SearchSubject〉
| ‘a facing switch’
| ‘a trailing switch’
| 〈SearchSubject〉 〈RelativeDirection〉

〈RelativeDirection〉 ::= ‘same dir.’
| ‘opposite dir.’
〈SearchSubject〉 ::= ‘a’ 〈Subject〉
| ‘another’
〈Area〉 ::= 〈BaseArea〉
| 〈BaseArea〉 ‘which has’
〈PropertyRestriction〉

| 〈Area〉 ‘or’ 〈Area〉
| 〈Area〉 ‘and’ 〈Area〉
〈BaseArea〉 ::= ‘tunnel’ | ‘bridge’
| ‘local release area’ | 〈Identifier〉
〈Subject〉 ::= ‘a’ 〈Class〉
| ‘a’ 〈Class〉 ‘which’ 〈Condition〉
〈Condition〉 ::= ‘is a’ 〈ClassRestriction〉
| ‘has’ 〈PropertyRestriction〉
| ‘is a’ 〈ClassRestriction〉 ‘which has’
〈PropertyRestriction〉

〈PropertyRestriction〉 ::= 〈Property〉
〈ValueRestriction〉

| (...) // and/or
〈ClassRestriction〉 ::= 〈Class〉
| (...) // and/or
〈ValueRestriction〉 ::= 〈Value〉
| ‘not equal to’ 〈Value〉
| ‘less than’ 〈Value〉
| (...) // ≤, >, ≥
| (...) // and/or
〈Value〉 ::= 〈Identifier〉 | 〈Number〉 〈Unit〉
〈Property〉 ::= 〈Identifier〉
〈Class〉 ::= 〈Identifier〉

Fig. 3: English version of RailCNL’s core grammar in BNF. Some linguistic complexity
such as subject-verb agreement is ignored here; the actual grammar is fully specified as
GF code, which is ideally suited for handling such cases.

Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Generic
Domain-specific

Module
Dependency

Fig. 4: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

6

RailCNL language design: ontology module

Statements about classes of objects and their properties and

relations form a basis for for knowledge representation.

I Class names: “signal”, “switch”, ...

I Properties and values: “color”, “red”, “200.0m”, ...

I Restrictions: Equality: “A signal must have height 4.5m”.

I Relations name and multiplicity. “A distant signal should

have one or more associated signals.”

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST:

Statements: assertion,
obligation, recommendation

Ontology language

Graph language:
paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Interlocking
regulations

Generic
Domain-specific

Module
Dependency

Fig. 3: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

Top-Level Statement Types Most normative sentences in railway regulations are clas-
sified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These sen-
tences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD model is
checked for compliance, and violations are presented as errors to the user.

– Recommendation: design heuristics for railway infrastructure. The CAD model is
checked for compliance, but violations are presented as warnings or for information
only, and can be dismissed from the view.

We give here an example of a restriction which is an obligation on a property of a
segment of railway tracks.

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST: OntologyRestriction Obligation

(SubjectClass (StringClassAdjective "vertical"
(StringClass "segment")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "length")
(Gt (MkValue (StringTerm "20.0m")))))

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

6

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

– Properties and values: can be arbitrary string tokens. These can be joined by “and”
or “or” both on the level of values and of properties.

– Restrictions: Equality is a common case of restriction for which we simply choose
the wording “to be”. Other restriction types such as greater than, less than, etc.,
are worded more verbosely. Example: A main signal should have height which is
greater than 1.5m and less than 5.0m.

– Relations: the basic ontology module contains multiplicity restrictions on relations.
In the layout module presented below, we will see how relations are used when
writing statements which are concerned with more than one object simultaneously.
Example: A distant signal should have one or more associated signals.

Layout Module For writing statements about the topology of the railway track, e.g.
about paths as illustrated in Fig. 5c, we use the following language constructs:

– Goal object: modifies the Subject type defined in the ontology module to add
conditions which make sense in a railway graph search, such as the object’s ori-
entation (same direction or opposite direction) the search’s direction (forwards or
backwards) or the termination properties of the search.

– Path condition: argument to the search constructors which specifies what restric-
tions are placed on the paths from source to goal object.

– Path restrictions: the combination of the source object, goal object and path con-
ditions. Example: All paths from a station border to the first facing switch must
pass an entry signal. (See Fig. 5a)

– Distance restrictions: See Fig. 5b and Example 2.

Example 2 (Parse tree for a railway layout statement.)

CNL: Distance from an entry signal to first facing switch must be greater than 200.0 m.
AST:

Station
boundary

Entry
signal

Facing
switch

(a) Every path from a station boundary to the
first facing switch must pass an entry signal.

200 m

Entry
signal

Facing
switch

(b) The distance from the entry signal to the first
facing switch must be at least 200m.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can mean either a planar
region or an interval defined on a track.

Fig. 4

Example 3 (Parse tree for a railway layout statement.)

CNL: The distance from an entry signal to the first facing switch must be greater
than 200.0 m.
AST: DistanceRestriction Obligation

(SubjectClass (StringClassAdjective "entry"
(StringClass "signal")))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm "200.0m")))

Area Module The area modules modifies subjects to express whether they are inside
a planar area, such as a station areas, tunnels or bridges, or belongs to a linear segment
of a track, such as being located in a curve or on an incline.

– Subject constructor: the Subject is extended to add a prepositional phrase con-
taining area information, such as being inside of a tunnel or on a bridge.

– Placement restriction: extends OntologyRestriction to allow restrictions
on object being inside areas. Example: A signal should not be placed in tunnel or
bridge. (See Figure 4d)

3.2 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, we transform the CNL AST into Dat-
alog rules. Each top-level constructor in the CNL definition has a translation function
into the Datalog AST.

8

7

RailCNL language design: graph module

For writing statements about the topology and geometry of

objects’ placement wrt. to railway tracks.

I Goal object: modifies a subject to optionally add

orientation, direction, etc.

I Path restriction: combine subject, goal, and path condition.

“All paths from a station border to the first facing switch

must pass an entry signal”.

I Distance restriction, see example:

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST:

Statements: assertion,
obligation, recommendation

Ontology language

Graph language:
paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Interlocking
regulations

Generic
Domain-specific

Module
Dependency

Fig. 3: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

Top-Level Statement Types Most normative sentences in railway regulations are clas-
sified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These sen-
tences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD model is
checked for compliance, and violations are presented as errors to the user.

– Recommendation: design heuristics for railway infrastructure. The CAD model is
checked for compliance, but violations are presented as warnings or for information
only, and can be dismissed from the view.

We give here an example of a restriction which is an obligation on a property of a
segment of railway tracks.

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST: OntologyRestriction Obligation

(SubjectClass (StringClassAdjective "vertical"
(StringClass "segment")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "length")
(Gt (MkValue (StringTerm "20.0m")))))

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

6

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

– Properties and values: can be arbitrary string tokens. These can be joined by “and”
or “or” both on the level of values and of properties.

– Restrictions: Equality is a common case of restriction for which we simply choose
the wording “to be”. Other restriction types such as greater than, less than, etc.,
are worded more verbosely. Example: A main signal should have height which is
greater than 1.5m and less than 5.0m.

– Relations: the basic ontology module contains multiplicity restrictions on relations.
In the layout module presented below, we will see how relations are used when
writing statements which are concerned with more than one object simultaneously.
Example: A distant signal should have one or more associated signals.

Layout Module For writing statements about the topology of the railway track, e.g.
about paths as illustrated in Fig. 5c, we use the following language constructs:

– Goal object: modifies the Subject type defined in the ontology module to add
conditions which make sense in a railway graph search, such as the object’s ori-
entation (same direction or opposite direction) the search’s direction (forwards or
backwards) or the termination properties of the search.

– Path condition: argument to the search constructors which specifies what restric-
tions are placed on the paths from source to goal object.

– Path restrictions: the combination of the source object, goal object and path con-
ditions. Example: All paths from a station border to the first facing switch must
pass an entry signal. (See Fig. 5a)

– Distance restrictions: See Fig. 5b and Example 2.

Example 2 (Parse tree for a railway layout statement.)

CNL: Distance from an entry signal to first facing switch must be greater than 200.0 m.
AST:

Station
boundary

Entry
signal

Facing
switch

(a) Every path from a station boundary to the
first facing switch must pass an entry signal.

200 m

Entry
signal

Facing
switch

(b) The distance from the entry signal to the first
facing switch must be at least 200m.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can mean either a planar
region or an interval defined on a track.

Fig. 4

Example 3 (Parse tree for a railway layout statement.)

CNL: The distance from an entry signal to the first facing switch must be greater
than 200.0 m.
AST: DistanceRestriction Obligation

(SubjectClass (StringClassAdjective "entry"
(StringClass "signal")))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm "200.0m")))

Area Module The area modules modifies subjects to express whether they are inside
a planar area, such as a station areas, tunnels or bridges, or belongs to a linear segment
of a track, such as being located in a curve or on an incline.

– Subject constructor: the Subject is extended to add a prepositional phrase con-
taining area information, such as being inside of a tunnel or on a bridge.

– Placement restriction: extends OntologyRestriction to allow restrictions
on object being inside areas. Example: A signal should not be placed in tunnel or
bridge. (See Figure 4d)

3.2 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, we transform the CNL AST into Dat-
alog rules. Each top-level constructor in the CNL definition has a translation function
into the Datalog AST.

8

7

Tooling

I The quality of the tool support influences the success of a

domain-specific language for non-IT-experts. Textual input

is a part of the overall user interface design.

Tool support for RailCNL:

I Paraphrasing view – present originals and CNL

paraphrases side-by-side.

I Issues view – present verification errors in the CAD tool

with links to the paraphrasing view.

I Editor – Text editor with support for writing (correct) CNL

phrases.

Side-by-side CNL/original (paraphrasing view)

I Requirements tracing

Issues view

I Backwards tracing – explanation of non-compliance

CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringC
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValu

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End,

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.

Text editor CNL support

I Rule authoring tool – syntax checks, predictive parsing,

chunked parsing, language exploration

Advantages

RailCNL as a front-end for property input for verification:

I RailCNL is domain-specific: tailored to Datalog logic and

regulations terminology. Gives readability and

maintainability.

I Resembles natural language – improves readability and

engineer participation.

I Separate textual explanation (such as comments used in

programming) are typically not needed.

I RailCNL statements are linked the original text. so that

reading them side by side reveals to domain experts

whether the CNL paraphrasing of the natural text is valid. If

not, they can edit the CNL text.

Further challenges and future work

Participatory verification:

I RailCNL is a common language shared between

programmers and railway engineers for verification work.

I CNLs are not a magical solution to end-user programming.

I DSLs evolve along-side the application.

Language:

I Structures in regulations that span several phrases/rules

(scopes, exceptions) – represent on textual or GUI level?

I Macros – can users extend the language within the scope

of their texts?

Tool support:

I Can railway engineers from other disciplines create their

properties themselves, from scratch, with editor support?

I Is example-based and editor-supported language learning

good enough?

Coverage

Classification for coverage analysis:

I Not relevant for verification, examples:

Non-normative: the technical qualities of the track

construction ensure safe and efficient traffic, with the least

possible environmental impact.

Non-checkable: the tracks’ construction must take into

account the topography, soil, hydrology, climate, etc. of the

location.

I Out of scope for static analysis, examples:

Construction: Signs must have their original wrapping

during transportation.

Operation: A signal which cannot signal ”stop” because

of fault must be unlit.

Coverage

I Not covered:

– exceptions (awkward to write out all premises)
– linguistically complex: The safety zone (overlap) can be

reduced to 200 m if the speed control system is designed
such that the velocity at balise group (x) is not higher than 40
km/h when the signal (y) shows a ”stop” aspect, and rolling
stock will stop before the fouling point even when speed
control communcation has failed in both the balise group
and in the main signal.

I Covered:

– ontology, graph, areas, interlocking (targets), ...

Coverage statistics

Eng. discipline Chapter title Phrases Normative Relevant Covered Coverage
Track Planning: general technical 140 74 74 70 95%
Track Planning: geometry 278 157 152 119 78%
Signalling Planning: detectors 144 106 35 21 60%
Signalling Planning: interlocking 376 265 130 81 62%
Total 938 602 391 291 74%

Table 1: Coverage evaluation for a subset of Norwegian regulations. Phrases of the
original text which could be classified as normative (i.e. applying some restriction on
design) were evaluated for relevance to static infrastructure verification. The coverage
is the percentage of relevant phrases expressible in RailCNL.

used to map the contract language CL [15] into a CNL. Statement modalities, such as
obligation, permission and prohibition, are applied to complex actions. The structure of
the CNL is modelled after the CL language. Camilleri et al. [4] take a CNL approach
to manipulating contract-oriented diagrams using a visual diagram editor, a CNL with
text editor support, and a spreadsheet representation as interfaces to a common model,
which can be translated into timed automata for reasoning about system properties.

Other efforts to define domain specific languages for railway verification have typ-
ically focused on the implementation of control systems, such as Vu et al. [21], while
also considering the verification to be an activity which is separate from design and
implementation. James et al. [6] show how to integrate UML modelling of the rail-
way domain with graphical modelling and specification and verification languages, also
keeping the focus on verifying the control system implementation of a fixed design.

Future Work In working with railway engineers, we discovered language features
which could be added to increase the coverage of RailCNL:

1. A notion of scopes and exceptions, so that more complex conditional restrictions
can be expressed more naturally.

2. Mathematical formulas as a sub-language.
3. Vague or soft requirements represented not for direct use in verification, but for

requiring manual checks at some points.

A formal CNL with well-chosen linearizations can be very natural, and often per-
fectly readable for a non-programmer with the required domain knowledge. However,
writing in a formal CNL can potentially be as difficult as writing in a programming
language. A solution to this problem is the use of special-purpose editors which guide
the user towards structuring their text according to the underlying formal grammar. Dif-
ferent approaches to CNL editors have been explored (see e.g. [4,10,14]). We plan to
investigate these further and integrate one such editor for RailCNL in the RailCOM-
PLETE CAD environment, and carry out a usability study on its efficacy.

We are continuing our collaboration with Norwegian railway engineers to evaluate
the usability of our prototype tools, increase the text coverage and extend the language
to handle other railway engineering disciplines such as catenary lines and ground works.

14

Participatory verification: experience from meetings

between programmers and railway engineers

Positive:

I invites engineers to splitting hairs

– discuss semantics of natural language
– leads to discussion of interpretation of regulations

I example-based learning

– explain and explore language with the editor
– change names and values / copy-paste coding

Negative:

I total understanding of language is infeasible

– extend language: ask for examples, not grammar

Datalog verification

I Datalog with negation (n.-as-failure) and arithmetic,

implemented in e.g. XSB Prolog, RDFox, Soufflé.

I Prefer very fast (< 100 msec) re-evaluation integrated into

CAD tool.

I Incremental Datalog approaches can exploit locality.

Railway construction process

1. Politicians allocate funds for new railways, upgrades or

maintenance.

2. National railway administration define high level

requirements, such as passenger/freight capacities, travel

times, maintainability, etc.

3. Engineering companies work out the detailed plans and

specifications of the upcoming construction project.

4. Construction/implementation companies build the railway

and implement control systems.

5. Finally, train companies can transport passengers and

goods.

CAD programs in railway signalling

I Overview of a station, typically showing tracks and

signalling system components (signals, signs, balises)

The railML XML standard data exchange format

I Thoroughly modelled infrastructure schema
I XML schema development by international standard

committee

Datalog

I Basic Datalog: conjunctive queries with fixed-point
operators (“SQL with recursion”)

– Guaranteed termination

– Polynomial running time (in the number of facts)

I Expressed as logic programs in a Prolog-like syntax:

a(X,Y) :– b(X,Z), c(Z, Y)

m

∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y))

I We also use:

– Stratified negation (negation-as-failure semantics)

– Arithmetic (which is “unsafe”)

	Appendix

