
Optimization and synthesis

of railway signalling layout

from local capacity specifications

Bjørnar Luteberget

Christian Johansen

Martin Steffen

FM, 9 Oct 2019

Overview

1. Railway control system design and its challenges.

2. Specifying and verifying capacity within limited scope.

3. Synthesizing control system design from scratch.

4. Optimizing control system design interactively.

Railway control systems

4000 m

Constructing a new railway line starts with a track plan:

Railway control systems

4000 m

Constructing a new railway line starts with a track plan:

Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to

the train:

Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to

the train:

Railway control systems

4000 m

Now, other trains can occupy different sections.

Railway control systems

4000 m

We add signals to indicate to drivers when they can proceed.

Railway control systems

4000 m

This situation is in principle safe, but is it a good design?

Two views on capacity: schematic track plan

The schematic track plan is a map of tracks and components,

such as signals, detectors, etc.

Distance margins determine allowable simultaneous

movements.
4 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

Signal spacing ls = 800 m

Effective track length lt = 250 m

Safety distance lo = 150 m

Alternative safety dist.

Fig. 2: A schematic track plan, a key artifact in designing the signalling system in a
route-based interlocking system. The plan is annotated with signalling components and
distances between locations relevant for interlocking safety requirements.

detectors together in an electronic interlocking system which prevents one train
from entering a blocking section before it has been cleared by the previous train.

The block section principle directly impacts the maximum frequency of trains,
and consequently the capacity of the railway, through the interplay between train
parameters (length, acceleration, and braking power), track layout (how many
tracks are available at which stations), and the location of signalling equipment.
The topic of this paper is how to design this infrastructure, specifically how to
choose the number and locations of signals and detectors to optimize capacity.

There are two main design methods for deciding signal and detector locations,
which have different application areas. The first method is the blocking time
diagram where a single track on a railway line, or a single path through a railway
station, is presented on the horizontal axis, and consecutive trains traveling the
same path are plotted with the blocking time of each section shown as rectangles
stretching out on the vertical time axis (see Fig. 1).

The second design method is to use a schematic track plan showing the
topology of tracks and the locations of signals, detectors, and other signalling
system components. The schematic plan is not geographically accurate (for the
sake of readability) but is annotated with traveling lengths between relevant
locations, such as from one signal to the next signal or detector. This plan is
used in the design of route-based interlocking systems to make assessments of the
effective lengths of station tracks, safety distances from a signal to other tracks
(so-called overlaps), and more (see Fig. 2).

Observe how the blocking time diagram and the schematic plan provide views
in different dimensions: the blocking time diagram provides continuous time and
a single spatial dimension but does not treat different choices of path, while the
schematic track plan shows all paths at once, but does not directly show how a
train would travel in time. The latter concerns schedulability, while the former
concerns timing. For detailed signalling design, the decisions that impact the
interaction between these two analysis domains are a complex task where an
engineer balances a number of diverse concerns.

Two views on capacity: blocking diagram

A single path, or related paths mapped to a linear axis.
Synthesis of Railway Signaling Layout from Local Capacity Specifications 3

T
im

e

Station

Line Line

Block

section

Entry route Station
track Overlap

Exit route Block
section

Train 1

Block

section

Entry route Station
track Overlap

Exit route Block
section

Train 2

Critical
headway
section

Fig. 1: Blocking time diagram showing two (non-stopping) trains traveling from a line
blocking section into a station and back onto a line blocking section. Dashed lines
indicate train locations and velocity, and gray boxes indicate the lengths and times of
sections exclusively allocated to the trains. Figure adapted from [27].

how the changes influence the infrastructure and operational scenarios. Thus,
our method can consider some signals fixed, i.e., part of the design, while there
rest are amenable to optimization.

These methods are a step towards a railway signaling engineering method-
ology based on explicit specifications, and using analysis and verification tools
every step along the way, which we believe can improve decision-making.

The main contributions of this paper thus are: (1) defining and demonstrating
a novel specification-based design methodology for automating the layout of
railway signaling components, (2) extending existing planning and simulation
methods to make changes in the designs which improve their quality with respect
to given specifications, and (3) showing how incremental optimization and partial
synthesis can be used in specification-based design through an interactive tool.

2 Background

The basic safety principles used in most railways around the world are based
on dividing railway lines into fixed blocking sections, and use signals and train

Specification capture

Railway engineers gave us examples of performance properties

that governed their designs.

Typical categories:

1. Running time (get from A to B)

– Similar to a simulation test, but smaller specification.

2. Frequency (several consecutive trains)

– Route trains into alternate tracks.

3. Overtaking

4. Crossing

– Let one train wait on a side track while another train passes.

Capacity specifications

Local requirements suitable for construction projects.

I Operational scenario S = (V,M,C):

I Vehicle types V = {(li, vmax
i , ai, bi)}, defined by length, max

velocity, max accel, max braking.

I MovementsM = {(vi, 〈qi〉)}, defined by vehicle type v and
ordered sequence of visits 〈qi〉.

I Each visit qi = ({li} , td) is a set of alternative
locations li and an optional dwelling time td.

I Timing constraints C = {(qa, qb, tc)} which orders two

visits and sets a maximum time from the first to the

second tqa < tqb < tqa + tc. The maximum time constraint

can be omitted (tc = ∞).

Advantages of capacity specification

Can be specified for a single construction project, not

dependent on whole-network timetables.

This can give us:

I Improved communication about specifications between

contractual parties.

I Automated analysis

– Early-stage, lower-effort capacity verification
– Regression testing after changes in design
– Unifies ad-hoc methods in use today

I Better understanding and communication between

construction engineers and timetable planners.

Verification of local capacity specifications

Verification of these specifications would involve finding

satisfying train trajectories and control system state:

∃p : spec(p)

Also, constrained by:

I 1 - Physical infrastructure

I 2 - Allocation of resources (collision safety)

I 3 - Limited communication

I 4 - Laws of motion

Constraints (2) Allocation of resources

An elementary route is a set of resources allocated together.

Signal A Signal C

Routes are conflicting if they use any of the same resources.

Signal A Signal C

Constraints (3) Limited communication

Signal information only carries across two signals

(”pre-signalling”).

Velocity

Known movement authority

Auth.

Constraints (4) Laws of motion

Trains move within the limits of given maximum acceleration

and braking power. Train drivers need to plan ahead for braking

so that the train respects its given movement authority and

speed restrictions at all times.

v − v0 ≤ a∆t, v2 − v2i ≤ 2bsi.

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Dispatch vs. driver

Split the planning work into two separate points of view:

Dispatcher

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Elementary routes and their

conflicts

Train driver

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Verification architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

SAT encoding of dispatch planning

General idea: represent which train occupies which elementary

route in each of a sequence of steps.

↓

t1 t1

t2

t2

SAT encoding

Planning as bounded model checking (BMC). Build planning

steps as needed using incremental SAT solver interface.

Movement correctness:

I Conflicting routes are not active simultaneously

conflict(r1, r2) ⇒ oir1 = Free ∨ oir2 = Free.

I Elementary route allocation is consistent with train

movement: (oir 6= t ∧ oi+1
t = t) ⇒∨{

oi+1
rx = t | route(rx), entry(r) = exit(rx)

}
Satisfy specification:

I Visits happen in order (timing requirement is measured on

simulation).

From verification to synthesis

Can we use verification techniques

to synthesize signaling designs?

Initial design

I Adding a single component somewhere

does not give any good information.

I Let’s turn synthesis into optimization by

over-approximating required components.

Start with an initial design:

I Include signals at fixed distances from merging paths.

I The distances correspond to choices of overlap distance.
Synthesis of Railway Signaling Layout from Local Capacity Specifications 9

Guard every branch

Fig. 7: Initial design: put signals in
place before every trailing switch, i.e.
where tracks join together.

Elementary route

Partial 1 Par
tia

l 2

Partial 3

Fig. 8: The planning abstraction of the
train dispatch allocates a set of partial
routes to each train. Elementary routes
are sets of partial routes which must
always be allocated together.

the design to allow dispatching to happen, we start the synthesis procedure by
heuristically over-approximating the components required to perform dispatch.
We insert a signal and a detector in front of every trailing switch, and at a set of
specified lengths corresponding to the choices of length of safety zone. We also
insert a detector in front of every facing switch. See Figure 7. If more than one
train is required on the same track for overtaking or crossing, we can also choose
to insert signals at multiples of the trains’ lengths. When there are several paths
of the specified length leading to a trailing switch, we put signals and detectors
at all the relevant locations. This design aims to allow all possible dispatches
and we rely on the next stage of the synthesis to remove redundant equipment.

3.3 SAT-based dispatch planning

The operational scenarios of the local capacity specifications describe train move-
ments only declaratively, so the first step to analyzing concrete states of the
system is to solve a planning problem which gives us a set of dispatch plans, i.e.,
determining sequences of trains and elementary routes which make the trains
end up visiting locations according to the movements specification.

Instead of using a constraint solver system (e.g. SMT solvers) to solve for
route dispatching and train dynamics simultaneously, we have chosen to sep-
arate the abstracted planning problem (i.e. selecting elementary routes to dis-
patch) from the physical constraints of train dynamics. This choice was made
for performance and extensibility reasons (see [21, Sec.III] for details).

We use the encoding from [21, Sec.III(B)] of an instance of the abstracted
planning problem into an instance of the Boolean satisfiability problem (SAT,
see [4] for an overview of SAT techniques). We consider the problem as a model
checking problem, and use the technique of bounded model checking (BMC) [3]
to unroll the transition relation of the system for a number of steps k, expressing
states and transitions using propositional logic. We thus assert the existence of
a plan, so that when the corresponding SAT instance is satisfiable, it proves the
fulfillment of the performance requirements and gives an example plan for it.
When unsatisfiable, we are ensured that there is no plan within the number of k
steps. Interlocking features such as elementary routes, partial route release, flank

Minimize number of signals

I Instead of verifying each property separately,

on a known model ...

I ... we have unknowns in the model, and

need to satisfy all properties simultaneously.10 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

.

.

.

P
la

n
n

in
g

st
ep

s

Scenarios

S1,1

S1,2

S2,1

S2,2

Fig. 9: The planning matrix consists of the occupation status of a set of partial routes
for each state required for dispatch planning, and for each scenario in the local capacity
requirements. The top left cells show an example dispatch of a crossing movement where
green areas show track segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which are currently occupied
by a train going from right to left.

protection, overlaps, overlap timeouts, and swinging overlaps, can be converted
into our representation for solving the abstract planning problem.

To find a subset of the signaling components from the initial design that is
sufficient to successfully plan all the dispatches, we extend the planning approach
described above by adding a set of signal usage Booleans u indicating whether
the signal is needed. The set of occupancy status Booleans oir (for route r in state
i, taking values either Free or a train t) is repeated once for each operational
scenario, resulting in a SAT instance with parallel execution of each scenario on
copies of the same infrastructure (see Fig. 9). We link the signal usage status
u to each copy of the state so that the signal is marked as needed if it is used
independently of other signals:

∀i ∈ State : ∀s ∈ Signal : ∀t ∈ Train : ¬us ⇒∨{(
oir 6= t ∧ oi+1

r = t
)
| exit(r) = s

}
⇒∨{(

oir 6= t ∧ oi+1
r = t

)
| entry(r) = s

}
.

Similar approaches are taken for other signaling component types.
Now we find the smallest set of signaling equipment which is sufficient to

allow dispatching all scenarios. We minimize the number of signals by: taking
the sum of u variables as a unary-encoded number (see [5]) and then solving
SAT incrementally with a binary search on the upper bound of the sum.

3.4 Numerical optimization

When we have a design where dispatching is possible, we have fulfilled the dis-
crete part of the dispatch plan. Timing constraints, however might not yet be

Minimize number of signals

I Then, we can add a signal used indicator boolean to the

SAT problem, linking the usage of a signal across all

planning steps and all scenarions.

∀i ∈ State : ∀s ∈ Signal : ∀t ∈ Train : ¬us ⇒∨{(
oir 6= t ∧ oi+1

r = t
)
| exit(r) = s

}
⇒∨{(

oir 6= t ∧ oi+1
r = t

)
| entry(r) = s

}
.

I Solve MaxSAT maximising unused signals.

Numerical optimization of component locations

Signal minimization gives a set of signals and a set of

corresponding dispatches which fulfil the given specifications.

I Adjusting positions of components may improve timing

results in simulator.

I Discontinuous, non-linear, multivariate real-valued

optimization problem.

x

The function to be optimized

The function to be optimized is a weighted sum of dispatch

timing measures.

fb(~x) =
∑
s

ws

(
1

ns

∑
d

tb+~x(d)

)
,

where

I ~x represents the location of each signal and detector,

I s indexes capacity specifications,

I ws is the weight assigned to specification s,

I d indexes dispatch plans for each operational scenario, and

I tb+~x(d) is the simulation timing result.

(Trading performance and cost is performed by the user)

Powell’s method

We fix the set of components, fix the tracks that they belong to,

and fix their order within the track.

Powell’s method (1964):

I Given domainD ⊂ Rn, initial point ~x0 ∈ D, and cost

function f : D → R.
I Iterate through search vectors ~vi ∈ V and do a line search

for α ∈ Rminimizing ~xi+1 = f(~xi + α~vi).

I Remove the ~vi which yielded the highest |α|, and replace it

with ~xi+1 − ~xi normalized. Repeat until ‖~xi+1 − ~xi‖ < ε.

Brent’s method (1973):

I A reliable method for root-finding or minimization for

non-differentiable functions.

I For well-behaved functions: inverse quadratic

interpolation, or linear interpolation.

I For not-so-well-behaved functions: bisection / golden

section.

Mapping locations to the unit cube

I Preserve which tracks components are located at, and

their order to ensure planned dispatches are still

meaningful. Minimum distance d between components.

I Map the component location space to the unit cube [0, 1]n

(n-tuples in [0, 1]) so that the whole of the unit cube is a

valid point in the component location space.

Encode: scan(0.0, λ s, x → linstep(replace(s, x) + d, l − d, x)).
Decode: scan(0.0, λ s, x → replace(s, lerp(s+ d, l − d, x))).

x0 = 0.45
x1 = 0.30

Synthesis algorithm overview

Synthesis of Railway Signaling Layout from Local Capacity Specifications 7

Track
plan

Capacity
specs.

Initial
design

Planning
SAT-based

dispatch plan-
ning with min.
no. of signals

Numerical
Powell/Brent nu-
merical method

optimizing signal
and detector

locations

Simulation
Discrete event
simulation as
optimization
cost function

Output
Signalling layout
and simulations
demonstrating

specs. fulfillment

Add new
signals/
detectors

Dispatch
plans

Fig. 6: Synthesis process overview. Track plan and capacity specifications are given as
input, and together with an initial design based on a heuristic algorithm they are given
to the SAT-based planner for simultaneous dispatch planning of all usage scenarios. A
numerical method takes the dispatch plans and adjusts the locations and number of
signals and detectors until no better result from simulation is achieved.

and crossings, and are read from the railML format3. We use our method
from [21] for local capacity specifications in SAT, summarized in Section 3.1.

2. Initial design: We propose in Section 3.2 a heuristic algorithm to over-
approximate the signaling components required to plan the set of all possible
movements on the given track plan. This forms our initial maximal design.

3. Planning optimization: Ignoring all timing aspects, we calculate the small-
est set of signals and detectors that are able to dispatch all of the scenarios
described in the local capacity specifications. This is done by solving a plan-
ning problem where all scenarios are planned simultaneously. An incremental
SAT solver derives the plans and optimizes the number of signals that are
used. This extends our work from [21], and is detailed in Section 3.3.

4. Numerical optimization: A measure for the performance of the design is
calculated by dispatching all of the planned ways to realize the performance
specifications and measuring the difference between the required time and
the simulated time. This measure is used as a goal function for a meta-
heuristic numerical optimization algorithm for moving the signals around,
and when this algorithm converges, each track is tested using Discrete Event
Simulation for how much improvement would be obtained by adding signals
to it and repeating the optimization process. See Section 3.4 below.

5. Output: After the process is done, the user is left with a design and a set
of dispatch plans and simulated train movements which describe how the
capacity requirements are fulfilled by this design.

3 See https://railml.org/

Local optimization steps

I Synthesis from scratch not always suitable.

I Instead, search for a single step of the synthesis algorithm

that gives the most effect on the current design.

1. Redundant component: removing a single object while still

satisfying specifications.

2. Local move of component: moving a single object or a set

of nearby objects may improve the overall capacity

measure.

3. Adding component: adding a single component (and

performing local moves) which improves overall capacity

measure.

Each of these can be suggested to the user.

Related work

I Formal methods is all about safe implementations of

control systems.

I Operations research is all about time tabling on large-scale

networks.

I Mao, B. et al.: Signalling layout for fixed-block railway lines

with real-coded genetic algorithms, Hong Kong Institute of

Engineers, Transactions (2006).

I Weits, E. et al.: Generating optimal signal positions,
Computers in Railways XII (2010).

– Does not deal with schedulability.
– Analytical performance models.

I Dillmann, S. and Hähnle, R.: Automated planning of ETCS
tracks, RSSRAIL 2019.

– Heuristic algorithm.

Conclusions and future work

I Not a complete method:

1. initial design does may not have maximum schedulability
2. simultaneous planning may not be the best starting points.
3. the cost function may have multiple local optima.

I Scalability concerns:

1. specification language unsuited for large terminals.
2. algorithm for adding new signals is naive.

I Assumes fixed block design principles. ERTMS Level 3 with

moving block may require different planning algorithm.

I Imperative simulation at the core allows extending timing

calculations to be more sophisicated.

I Fast results for small infrastructures.

