
Algorithmic Game Theory

Bjørnar Luteberget

PhD Trial Lecture
18 Oct 2019

Algorithms vs. games

Controllable system → design algorithms.

Algorithms vs. games

Individual choices →
design incentives, constraints.

Algorithms vs. games

Individual choices →
design incentives, constraints.

Algorithms vs. Games

• And once the rules are in place, predict what
will happen…

Game theory

What is a game?

▶ Players
▶ Actions
▶ Scores

Rock, paper, scissors

Player 2
Player 1

(0,0) (-1,1) (1,-1)

(1,-1) (0,0) (-1,1)

(-1,1) (1,-1) (0,0)

This game is
▶ two-player,
▶ one-shot /

simultaneous,
▶ zero-sum.

Game theory
▶ Game theory: the study of strategic interactions between

rational decision-makers.

▶ Each player selects an action hoping to maximize their score.
▶ Can we predict which choices they make?

Game theory
A main concept in game theory:

▶ Nash equilibrium is a set of strategies, one for each player,
such that no player has incentive to deviate given what the
others are doing.

▶ Pure strategy: player selects one of the actions.
▶ Mixed strategy: player selects a probability distribution over

actions.
▶ Nash’s Existence Theorem: every game with a finite number

of players and a finite number of actions has at least one
mixed strategy Nash equilibrium (Nash, 1951).

Battle of the sexes

Friend
You Cinema Theatre

Cinema (5,6) (1,1)
Theatre (2,2) (6,5)

▶ You like theatre, your friend
likes cinema.

▶ But you both prefer going
together over getting your
will.

This game is
▶ two-player,
▶ one-shot /

simultaneous,
▶ non-zero-sum.

It has two pure
equilibria.

Prisoner’s dilemma

Other
You Silent Betray

Silent (-1,-1) (-3,0)
Betray (0,-3) (-2,-2)

▶ Two players face prison time
convictions on weak
evidence.

▶ If you betray the other
player, you go free while
they get a harsher sentence.

▶ If you both betray each
other, both get a harsher
sentence than staying silent.

This game is
▶ two-player,
▶ one-shot /

simultaneous,
▶ non-zero-sum.

It has one pure
equilibrium.

Algorithmic game theory
Algorithmic game theory: the intersection of game theory and
computer science: understanding and designing algorithms in
strategic environments.

Overview:
▶ Part I: Computing equilibria
▶ Part II: Selfish behaviour and optimal systems
▶ Part III: Mechanism design

Based on material from:
▶ Tim Roughgarden: Algorithmic Game Theory lecture notes,

Stanford University.
▶ Aaron Roth: Algorithmic Game Theory lecture notes,

University of Pennsylvania.
▶ Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game

Theory, Cambridge, 2007.

Computing equilibria

Part I:
Computing equilibria

Computing equilibria
How do strategic players reach an equilibrium? Do they at all?

▶ Nash’s Existence Theorem: every game with a finite number
of players and a finite number of actions has at least one
mixed strategy Nash equilibrium (Nash, 1951).

▶ For two-player zero-sum games we can use linear
programming.

Solving two-player zero-sum games
▶ Two-player zero-sum games: the sum of payoffs is zero for any

choice of strategies.
▶ So, we need the score for only one of the players.
▶ Rock, paper, scissors:

A =

 0 −1 1
1 0 −1
−1 1 0


▶ Player 1 (row player) chooses a strategy p:

p =
[
1 0 0

]
, pA =

[
0 −1 1

]
▶ Player 2 (column player) chooses strategy q:

q =
[
0 1 0

]T
, pAq = −1

Linear programming
Linear programming standard form:

▶ A linear function to be optimized:

f(x1, x2, . . .) = c1x1 + c2x2 + . . .

▶ Linear problem constraints:

a11x1 + a12x2 + . . . ≤ b1
a21x1 + a22x2 + . . . ≤ b2
a31x1 + a32x2 + . . . ≤ b3

· · ·

▶ Non-negative variables: x1 ≥ 0, x2 ≥ 0, . . .

▶ Is solvable in polynomial time (Khachiyan 1979).
▶ In practice, often solved using the Simplex algorithm (Dantzig

1947) worst-case exponential but usually efficient.

Solving two-player zero-sum games
▶ Consider p∗, q∗, a distribution for the row and column players

that is a mixed-strategy Nash equilibrium with value v∗.
▶ Consider an unknown strategy p for the row player.
▶ If we know p, we would like to find q that minimizes the

column’s players loss.
▶ The best strategy for choosing this publicly known p is then

to maximize this minimum value.
▶ This corresponds to the following linear program:

maximize vr

∀i : pi ≥ 0,
∑

i
pi = 1, ∀j : (pA)j ≥ vr

▶ Now, choosing p, the row player is guaranteed the score vr.

Solving two-player zero-sum games
▶ We see that vr ≤ v∗, since the row player can guarantee to

win vr, so this is a minimum value for any equilibrium.
▶ Also, an equilibrium is stable even if known by the opponent,

so the column player must be selecting the columns with
minimum value p∗A. Therefore v∗ ≤ vr, and we have vr = v∗.

Correspondingly, for the column player:

minimize vc

∀i : qi ≥ 0,
∑

j
qj = 1, ∀j : (Aq)j ≤ vc

Comparing: the row player’s LP:

maximize vr

∀i : pi ≥ 0,
∑

i
pi = 1, ∀j : (pA)j ≥ vr

... and the column player’s LP:

minimize vc

∀i : qi ≥ 0,
∑

j
qj = 1, ∀j : (Aq)j ≤ vc

These two linear programs are duals of each other. Linear
programming theory already gives us vr = vc in the special case of
zero-sum two-player games.

Linear programming solution
from pulp import *
problem = LpProblem("rock-paper-scissors", LpMaximize)

Variables: Strategy vector and the row player's valuation.
rock = LpVariable("rock", 0.0, 1.0)
paper = LpVariable("paper", 0.0, 1.0)
scissors = LpVariable("scissors", 0.0, 1.0)
value = LpVariable("value")

Objective: Value of solution for row player
problem += value

Constraint: Strategy vector is a distribution over actions
problem += rock + paper + scissors == 1.0

Constraint: Each column of pA is greater than the player's value
problem += 0.0*rock + 1.0*paper + (-1.0)*scissors >= value
problem += (-1.0)*rock + 0.0*paper + 1.0*scissors >= value
problem += 1.0*rock + (-1.0)*paper + 0.0*scissors >= value

problem.solve()

print("value:",value.varValue)
print("strategy:",(rock.varValue, paper.varValue, scissors.varValue))

Linear programming solution
OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.0 Mb (39701 bytes)
('value:', 0.0)
('strategy:', (0.333333, 0.333333, 0.333333))

Non-zero-sum games
▶ Solving non-zero-sum games can be done with the

Lemke-Howson algorithm, which takes worst-case exponential
time.

▶ Like the Simplex algorithm, it pivots between vertices in
polytopes. Uses two polytopes instead of one.

Non-zero-sum games
▶ There is no known polynomial-time algorithm for computing a

Nash equilibrium in general.
▶ If all parties act rationally, equilibria could predict their

behaviour, but only if these are reasonably easy to calculate.
▶ A complexity class named Polynomial Parity Arguments on

Directed Graphs (PPAD) (Papadimitriou 1994) was
introduced to characterize finding mixed-strategy Nash
equilibria.

▶ Finding Nash equilibria is PPAD-complete, and cannot be
NP-complete because the solution is known to exist.

▶ Many related problems, for example deciding whether there
are two or more equilibria, are NP-complete.

Further topics in computing equlibria
▶ Learning, regret minimization and equilibria
▶ Combinatorial algorithms for market equilibria
▶ Computation of market equilibria by convex programming
▶ Graphical games
▶ Cryptography

Selfish behaviour and optimal systems

Part II:
Selfish behaviour and optimal

systems

Selfish behaviour and optimal systems
Example:

▶ A number of cars travel simultaneously from suburb to city
using one of two roads. Each road takes time 1 + x,
depending on the fraction of cars x that choose that road.

▶ If a fraction u of cars take the upper path, the total travel
time is: u(1 + u) + (1− u)(1 + (1− u)) = 2u2 − 2u + 2.

▶ Minimum total travel time at u = 1
2 .

Suburb City

c(x)
= 1

c(x) = x c(x)
= 1

c(x) = x

Selfish behaviour and optimal systems

Suburb City

c(x)
= 1

c(x) = x c(x)
= 1

c(x) = x

c(
x)

=
0

Braess’ paradox (1968).
▶ Optimal traffic results in t = 1.5 for all cars.
▶ Selfish traffic results in t = 2.0 for all cars.
▶ ”Price of anarchy” is 2.0/1.5.

Selfish behaviour and optimal systems
▶ Game equilibria are inefficient in general.
▶ But when is the price of anarchy low (ratio ≈ 1)?
▶ Applications in

– network routing
– scheduling
– resource allocation
– auction design

Plan:
▶ An upper bound on the price of anarchy can be found by

considering just one example network!
▶ Use this upper bound in an analysis of communication

networks.

Pigou’s example
▶ An even simpler network (Pigou, 1920) shows the same

phenomenon as Braess’ paradox.
▶ Every driver’s dominant strategy is to take the lower link even

when fully congested.
▶ (Dominant: the strategy is better no matter what the

opponents do)
▶ Any other solution is better overall!

a b

c(x) = 1

c(x) = x

Non-linear Pigou’s example
▶ The price of anarchy is 4

3 in both Braess’ and Pigou’s
examples.

▶ Now, change the cost function to c(x) = xp.

1.0
x

c(x)

x1
x2

x5
x10

Non-linear Pigou’s example
With c(x) = xp:

▶ Same dominant strategy, same equilibrium travel time.
▶ Let (1− ϵ) traffic on the bottom link.
▶ As p → ∞, the travel time tends to 0 on average.
▶ Price of anarchy is unbounded.

a b

c(x) = 1

c(x) = xp

Pigou’s example is the worst case for the price of anarchy
Generalize Pigou’s example to other non-negative, continuous,
non-decreasing functions.

a b

c(r)

c(·)

▶ Assume we know the set of possible cost functions c ∈ C.
▶ Define the Pigou bound:

α(C) := sup
c∈C

sup
r≥0

sup
x≥0

{
r · c(r)

x · c(x) + (r − x) · c(r)

}

▶ Theorem: of all networks with cost functions from C, Pigou’s
example has the highest price of anarchy.
(Roughgarden, 2003)

Pigou is worst-case – proof sketch
▶ A flow {fp}p∈P is the distribution of traffic over all paths

p ∈ P from a to b. ∑
p∈P

fp = r

a

c

d

b

25%

25%

50%

Pigou is worst-case – proof sketch
▶ A flow is an equilibrium iff traffic travels only on the shortest

paths from a to b.
▶ Note that shortest is defined with respect to the c induced by

the flow.
▶ The cost of the flow (by paths) is C(f) =

∑
p∈P fpcp(f).

▶ First part: if edge costs are frozen at equilibrium costs ce(fe),
then f is optimal.

▶ Intuition: an equilibrium flow f routes all traffic on shortest
paths, so no other flow f∗ can be better if we keep the same
edge costs. ∑

e∈E
(f∗e − fe)ce(fe) ≥ 0

Pigou is worst-case – proof sketch
▶ Second part: how can the optimal flow f∗ be better than f?
▶ Intuition: edge by edge, the gap in costs between f and f∗ is

no worse that the Pigou bound.

▶ Use the Pigou bound:

α(C) := sup
c∈C

sup
r≥0

sup
x≥0

{
r · c(r)

x · c(x) + (r − x) · c(r)

}
▶ Insert c → ce, r → fe, x → f∗e .

α(C) ≥ fe · ce(fe)
f∗e · ce(f∗e) + (fe − f∗e) · ce(fe)

▶ Rearrange to:

f∗e · ce(f∗e) ≥
1

α(C)
· fe · ce(fe) + (fce − fe)ce(fe)

▶ Take the sum over all edges e ∈ E:

C(f∗) ≥ 1

α(C)
· C(f) +

∑
e∈E

(f∗e − fe)ce(fe)

▶ Finally,
C(f)
C(f∗) ≤ α(C)

An application in network provisioning
▶ The selfish routing model can give insight into network for

transportation, communication, and electrical networks.
▶ We will see how Pigou’s bound explains internet service

provider’s strategy for over-provisioning.

▶ In communication networks, it is often relatively cheap to add
additional capacity to the network.

▶ Communication networks are over-provisioned to anticipate
future increase in demand, and because networks perform
better when capacity is not saturated.

An application in network provisioning
▶ Consider a queue where jobs arrive according to a Poisson

process with rate x.
▶ Jobs are processed with independent exponential distributed

time with mean 1
u .

▶ Known as an M/M/1 queue.

M/M/1 queue length and
computer network simulation
(Fund 2016)

Empirical railway capacity vs.
punctuality (Landex 2008)

An application in network provisioning
▶ A selfish routing network of M/M/1 queues is

β-over-provisioned if fe ≤ (1− β)ue for every edge e, where fe
is an equilibrium flow.

▶ At equilibrium, the maximum link utilization in the network is
(1− β).

▶ With cost function c(x) = 1/(u − x), the worst-case price of
anarchy is

cselfish
coptimal

=
1

2

(
1 +

√
1

β

)

An application in network provisioning

cselfish
coptimal

=
1

2

(
1 +

√
1

β

)
▶ β → 1: infinite capacity means there is no price of selfishness.
▶ β → 0: no spare capacity means that the price of selfishness

can be arbitrarily high (in the worst case, Pigou’s example).
▶ β = 0.1 gives

cselfish
coptimal

≈ 2.1

▶ A little over-provisioning allows selfish routing to be close
enough to optimal.

▶ Explains empirical knowledge from internet service providers.

Further topics in quatifying the inefficiency of equilibria
▶ Routing games (selfish routing)
▶ Network formation games
▶ Selfish load balancing
▶ Design of scalable resource allocation mechanisms

Mechanism design

Part III:
Mechanism design

Mechanism design
▶ Mechanism design: sub-field of economic theory with an

engineering perspective.
▶ ”Reverse game theory”.

Application areas:
▶ Elections
▶ Markets
▶ Auctions
▶ Government policy

Especially with computerized and internet-scale choice systems
(e.g. high-frequency trading), the pure mathematical properties
become more directly relevant.

Sealed-bid auction
▶ A single item for sale, each player i values the item vi.
▶ One player is awarded the item and pays a price p.
▶ The player’s utility is vi − p.

First-price auction:
▶ Award the item to the player i with the highest bid bi, and set

the price p = bi.

... this makes it hard to predict the player’s actions, but we can
under some assumptions:

▶ Use assumed distribution of other player’s valuations.
▶ If two bidders a and b have valuations uniformly distributed in

[0, 1], they bid ba = va/2 and bb = vb/2.

Second-price auction (Vickrey)
Second-price auction (Vickrey):

▶ Award the item to the highest bidder, but set the price at the
next-highest bid.

▶ Every bidder’s dominant strategy is to bid their valuation
bi = vi.

▶ (Dominant: the strategy is better no matter what the
opponents do)

Proof:
▶ Fix an arbitrary player i, their valuation vi, and the bids of

other players b⃗−i. Let B = maxj̸=i bj be the highest bid that
any of the other players gave.

▶ May select bi < B: gives utility 0.
▶ May select bi >= B: gives utility vi − B.
▶ If vi < B, the maximum utility is max{0, vi − B}= 0.
▶ If vi >= B, the maximum utility is max{0, vi − B}= vi − B.
▶ Both cases are optimal when choosing bi = vi.

Second-price auction (Vickrey)
▶ Also, bi = vi guarantees non-negative utility.

Vickrey auctions have the following good properties:
▶ Each player has an optimal strategy which does not depend

on the other players’ strategies, and which reveals their true
valuation.

▶ The item is awarded to the player who values it the most
(social welfare maximization).

▶ Computationally trivial.

More generally: mechanisms with pricing
We want to collectively decide on an action a ∈ A.

The preference of each player i is a function vi : A → (Vi ⊆ R).

A mechanism (direct revelation mechanism) is:
▶ a social choice function

f : V1 × · · · × Vn → A

▶ a vector of payment functions p1, . . . , pn where

pi : V1 × · · · × Vn → R

is the price that player i pays.

Incentive compatible mechanisms
A mechanism (f, p1, . . . , pn) is incentive compatible if

▶ for every player i,
▶ for every actual valuation v1 ∈ V1, . . ., vn ∈ Vn
▶ for every v′i ∈ Vi,

let a = f(vi, v−i) and a′ = f(v′i, v−i), then
▶ vi(a)− pi(vi, v−i) ≥ vi(a′)− pi(v′i, v−i).

Intuitively, this means that player i whose valuation is vi would
prefer telling the truth vi to the mechanism rather than any
possible lie v′i since this gives them higher utility.

Vickrey-Clarke-Groves mechanism
A mechanism (f, p1, . . . , pn) is a Vickrey-Clarke-Groves (VCG)
mechanism if:

▶ f maximizes the social welfare:

f(v1, . . . , vn) ∈ argmax
a∈A

∑
i

vi(a)

▶ for some h1, . . . , hn where hi : V−i → R,
▶ for all v1 ∈ V1, . . . , vn ∈ Vn :

▶ pi(v1, . . . , vn) = hi(v−i)−
∑

j ̸=i vj(f(v1, . . . , vn)).
The price function adds some amount depending on the choice of
the other players, and subtracts some amount corresponding to the
valuations of other players.

VCG mechanisms are incentive-compatible.
Vickrey-Clarke-Groves mechanisms are incentive-compatible.

Proof:
▶ Fix i, v−i, vi and v′i.
▶ Let a = f(vi, v−i) and a′ = f(v′i, v−i).
▶ The utility of i when declaring vi is

vi(a)− (hi(v−i)−
∑
j̸=i

vj(a))

▶ when declaring v′i:

vi(a′)− (hi(v−i)−
∑
j̸=i

vj(a′))

▶ Since a maximizes social welfare:

vi(a) +
∑
j̸=i

vj(a) ≥ vi(a′) +
∑
j̸=i

vj(a′)

Clarke pivot rule
Which hi functions do we want?

▶ A mechanism is ex-post individually rational if players always
get non-negative utility.

∀v1, . . . , vn : vi(f(v1, . . . , vn))− pi(v1, . . . , vn) ≥ 0

▶ Has no positive transfers if no player is ever paid money.
∀v1, . . . , vn : ∀i : pi(v1, . . . , vn) ≥ 0

▶ The Clarke pivot payment has these properties:

hi(v−i) = max
b∈A

∑
j ̸=i

vj(b)

▶ Under this rule the payment of player i is:

pi(v1, . . . , vn) = max
b

∑
j̸=i

vj(b)−
∑
j ̸=i

vj(a)

Intuitively, player i pays for the damage done to the other players.
What value would they have gained with vs. without me?

Example: buying a path in a network.
Example: buying a path in a network.

▶ In a directed graph G = (V,E), consider each edge e ∈ E as a
player who has a cost ce ≥ 0 if the edge is used.

▶ We want to buy a path s → t, and the players (edges) have
(actual) valuation of 0 if they are not part of the path and
−ce if they are.

▶ Maximizing social welfare corresponds to finding the shortest
path p,

∑
e∈p ce.

▶ VCG: for each edge e0 in p, pay∑
e∈p′

ce −
∑

e∈p\{e0}
ce

where p is the shortest path and p′ is the shortest path not
containing e0.

More on mechanism design
Other topics in mechanism design:

▶ Mechanisms with or without money
▶ Combinatorial auctions
▶ Computationally efficient approximation mechanisms
▶ Profit maximization in mechanism design
▶ Distributed algorithmic mechanism design
▶ Cost sharing
▶ Online mechanisms

Further reading
▶ Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game

Theory, Cambridge, 2007.
▶ Tim Roughgarden: Twenty Lectures on Algorithmic Game

Theory, Cambridge University Press, 2016.

