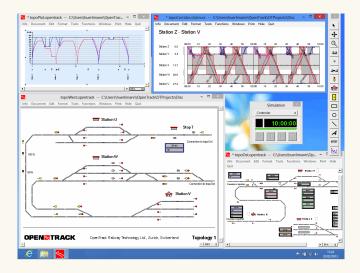
Algorithmic Game Theory

Bjørnar Luteberget

PhD Trial Lecture 18 Oct 2019

Algorithms vs. games

Controllable system \rightarrow design algorithms.



Algorithms vs. games

Individual choices \rightarrow design incentives, constraints.

Algorithms vs. games

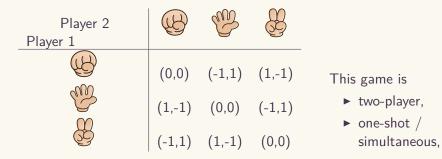
Individual choices \rightarrow design incentives, constraints.

Game theory

What is a game?

- ► Players
- Actions
- Scores

Rock, paper, scissors



zero-sum.

Game theory

- ► Game theory: the study of strategic interactions between rational decision-makers.
- ► Each player selects an action hoping to maximize their score.
- Can we predict which choices they make?

Game theory

A main concept in game theory:

- Nash equilibrium is a set of strategies, one for each player, such that no player has incentive to deviate given what the others are doing.
- ▶ Pure strategy: player selects one of the actions.
- Mixed strategy: player selects a probability distribution over actions.
- Nash's Existence Theorem: every game with a finite number of players and a finite number of actions has at least one mixed strategy Nash equilibrium (Nash, 1951).

Battle of the sexes

Friend
YouCinemaTheatreCinema(5,6)(1,1)Theatre(2,2)(6,5)

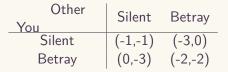
- You like theatre, your friend likes cinema.
- But you both prefer going together over getting your will.

This game is

- ► two-player,
- one-shot / simultaneous,
- non-zero-sum.

It has two pure equilibria.

Prisoner's dilemma



- Two players face prison time convictions on weak evidence.
- If you betray the other player, you go free while they get a harsher sentence.
- If you both betray each other, both get a harsher sentence than staying silent.

This game is

- ► two-player,
- one-shot / simultaneous,
- non-zero-sum.

It has one pure equilibrium.

Algorithmic game theory

Algorithmic game theory: the intersection of game theory and computer science: understanding and designing algorithms in strategic environments.

Overview:

- Part I: Computing equilibria
- Part II: Selfish behaviour and optimal systems
- Part III: Mechanism design

Based on material from:

- ► Tim Roughgarden: *Algorithmic Game Theory lecture notes*, Stanford University.
- ► Aaron Roth: *Algorithmic Game Theory lecture notes*, University of Pennsylvania.
- Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game Theory, Cambridge, 2007.

Computing equilibria

Part I: Computing <mark>equilibria</mark>

Computing equilibria

How do strategic players reach an equilibrium? Do they at all?

- Nash's Existence Theorem: every game with a finite number of players and a finite number of actions has at least one mixed strategy Nash equilibrium (Nash, 1951).
- For two-player zero-sum games we can use linear programming.

Solving two-player zero-sum games

- Two-player zero-sum games: the sum of payoffs is zero for any choice of strategies.
- ► So, we need the score for only one of the players.
- Rock, paper, scissors:

$$A = \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 & -1\\ -1 & 1 & 0 \end{bmatrix}$$

▶ Player 1 (row player) chooses a strategy *p*: $p = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad pA = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$

► Player 2 (column player) chooses strategy *q*: $q = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$, pAq = -1

Linear programming

Linear programming standard form:

• A linear function to be optimized:

$$f(x_1, x_2, \ldots) = c_1 x_1 + c_2 x_2 + \ldots$$

Linear problem constraints:

$$a_{11}x_1 + a_{12}x_2 + \ldots \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots \le b_2$$

$$a_{31}x_1 + a_{32}x_2 + \ldots \le b_3$$

- Non-negative variables: $x_1 \ge 0, x_2 \ge 0, \ldots$
- ► Is solvable in polynomial time (Khachiyan 1979).
- In practice, often solved using the Simplex algorithm (Dantzig 1947) worst-case exponential but usually efficient.

Solving two-player zero-sum games

- ► Consider p^{*}, q^{*}, a distribution for the row and column players that is a mixed-strategy Nash equilibrium with value v^{*}.
- Consider an unknown strategy *p* for the row player.
- If we know p, we would like to find q that minimizes the column's players loss.
- The best strategy for choosing this publicly known p is then to maximize this minimum value.
- ► This corresponds to the following linear program:

maximize v_r

$$\forall i : p_i \ge 0, \quad \sum_i p_i = 1, \quad \forall j : (pA)_j \ge v_r$$

▶ Now, choosing p, the row player is guaranteed the score v_r .

Solving two-player zero-sum games

- We see that v_r ≤ v^{*}, since the row player can guarantee to win v_r, so this is a minimum value for any equilibrium.
- ► Also, an equilibrium is stable even if known by the opponent, so the column player must be selecting the columns with minimum value p^{*}A. Therefore v^{*} ≤ v_r, and we have v_r = v^{*}.

Correspondingly, for the column player:

minimize vc

$$\forall i: q_i \ge 0, \quad \sum_j q_j = 1, \quad \forall j: (Aq)_j \le v_c$$

Comparing: the row player's LP:

maximize v_r

$$\forall i : p_i \ge 0, \quad \sum_i p_i = 1, \quad \forall j : (pA)_j \ge v_r$$

... and the column player's LP:

$$\begin{aligned} & \text{minimize } v_c \\ \forall i: q_i \geq 0, \quad \sum_j q_j = 1, \quad \forall j: (Aq)_j \leq v_c \end{aligned}$$

These two linear programs are duals of each other. Linear programming theory already gives us $v_r = v_c$ in the special case of zero-sum two-player games.

Linear programming solution

```
from pulp import *
problem = LpProblem("rock-paper-scissors", LpMaximize)
# Variables: Strategy vector and the row player's valuation.
rock = LpVariable("rock", 0.0, 1.0)
paper = LpVariable("paper", 0.0, 1.0)
scissors = LpVariable("scissors", 0.0, 1.0)
value = LpVariable("value")
# Objective: Value of solution for row player
problem += value
# Constraint: Strategy vector is a distribution over actions
problem += rock + paper + scissors == 1.0
# Constraint: Each column of pA is greater than the player's value
problem += 0.0*rock + 1.0*paper + (-1.0)*scissors >= value
problem += (-1.0)*rock + 0.0*paper + 1.0*scissors >= value
problem += 1.0*rock + (-1.0)*paper + 0.0*scissors >= value
problem.solve()
```

print("value:",value.varValue)
print("strategy:",(rock.varValue, paper.varValue, scissors.varValue))

Linear programming solution

```
OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.0 Mb (39701 bytes)
('value:', 0.0)
('strategy:', (0.333333, 0.333333, 0.333333))
```

Non-zero-sum games

- Solving non-zero-sum games can be done with the Lemke-Howson algorithm, which takes worst-case exponential time.
- Like the Simplex algorithm, it *pivots* between vertices in polytopes. Uses two polytopes instead of one.

Non-zero-sum games

- There is no known polynomial-time algorithm for computing a Nash equilibrium in general.
- If all parties act rationally, equilibria could predict their behaviour, but only if these are reasonably easy to calculate.
- A complexity class named Polynomial Parity Arguments on Directed Graphs (PPAD) (Papadimitriou 1994) was introduced to characterize finding mixed-strategy Nash equilibria.
- Finding Nash equilibria is PPAD-complete, and cannot be NP-complete because the solution is known to exist.
- Many related problems, for example deciding whether there are two or more equilibria, are NP-complete.

Further topics in computing equlibria

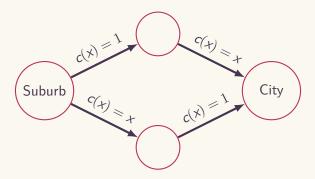
- ► Learning, regret minimization and equilibria
- Combinatorial algorithms for market equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Cryptography

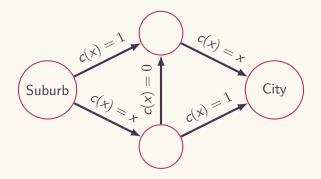
Part II: Selfish behaviour and optimal systems

Example:

- ► A number of cars travel simultaneously from suburb to city using one of two roads. Each road takes time 1 + x, depending on the fraction of cars x that choose that road.
- ► If a fraction u of cars take the upper path, the total travel time is: $u(1 + u) + (1 u)(1 + (1 u)) = 2u^2 2u + 2$.

• Minimum total travel time at $u = \frac{1}{2}$.





Braess' paradox (1968).

- Optimal traffic results in t = 1.5 for all cars.
- Selfish traffic results in t = 2.0 for all cars.
- "Price of anarchy" is 2.0/1.5.

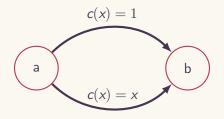
- ► Game equilibria are inefficient in general.
- But when is the price of anarchy low (ratio ≈ 1)?
- Applications in
 - network routing
 - scheduling
 - resource allocation
 - auction design

Plan:

- An upper bound on the price of anarchy can be found by considering just one example network!
- Use this upper bound in an analysis of communication networks.

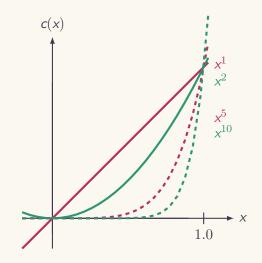
Pigou's example

- ► An even simpler network (Pigou, 1920) shows the same phenomenon as Braess' paradox.
- Every driver's dominant strategy is to take the lower link even when fully congested.
- (Dominant: the strategy is better no matter what the opponents do)
- Any other solution is better overall!



Non-linear Pigou's example

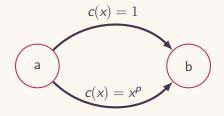
- ► The price of anarchy is ⁴/₃ in both Braess' and Pigou's examples.
- Now, change the cost function to $c(x) = x^p$.



Non-linear Pigou's example

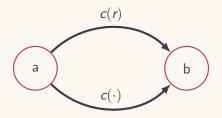
With $c(x) = x^p$:

- ► Same dominant strategy, same equilibrium travel time.
- Let (1ϵ) traffic on the bottom link.
- As $p \to \infty$, the travel time tends to 0 on average.
- Price of anarchy is unbounded.



Pigou's example is the worst case for the price of anarchy

Generalize Pigou's example to other non-negative, continuous, non-decreasing functions.



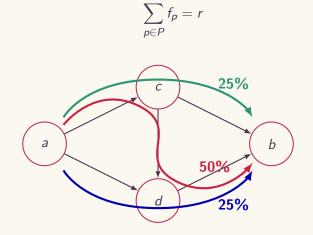
- Assume we know the set of possible cost functions $c \in C$.
- ► Define the Pigou bound:

$$\alpha(\mathcal{C}) := \sup_{\mathbf{c} \in \mathcal{C}} \sup_{\mathbf{r} \geq 0} \sup_{\mathbf{x} \geq 0} \left\{ \frac{\mathbf{r} \cdot \mathbf{c}(\mathbf{r})}{\mathbf{x} \cdot \mathbf{c}(\mathbf{x}) + (\mathbf{r} - \mathbf{x}) \cdot \mathbf{c}(\mathbf{r})} \right\}$$

 Theorem: of all networks with cost functions from C, Pigou's example has the highest price of anarchy. (Roughgarden, 2003)

Pigou is worst-case – proof sketch

A flow {f_p}_{p∈P} is the distribution of traffic over all paths p ∈ P from a to b.



Pigou is worst-case – proof sketch

- ► A flow is an equilibrium iff traffic travels only on the shortest paths from *a* to *b*.
- Note that shortest is defined with respect to the *c* induced by the flow.
- The cost of the flow (by paths) is $C(f) = \sum_{p \in P} f_p c_p(f)$.
- ► First part: if edge costs are frozen at equilibrium costs c_e(f_e), then f is optimal.
- ► Intuition: an equilibrium flow f routes all traffic on shortest paths, so no other flow f* can be better if we keep the same edge costs.

$$\sum_{e \in E} (f_e^* - f_e) c_e(f_e) \ge 0$$

Pigou is worst-case - proof sketch

- ► Second part: how can the optimal flow *f** be better than *f*?
- Intuition: edge by edge, the gap in costs between f and f* is no worse that the Pigou bound.
- Use the Pigou bound:

$$\alpha(\mathcal{C}) := \sup_{c \in \mathcal{C}} \sup_{r \ge 0} \sup_{x \ge 0} \left\{ \frac{r \cdot c(r)}{x \cdot c(x) + (r - x) \cdot c(r)} \right\}$$

• Insert $c \to c_e$, $r \to f_e$, $x \to f_e^*$.

$$\alpha(\mathcal{C}) \geq \frac{f_e \cdot c_e(f_e)}{f_e^* \cdot c_e(f_e^*) + (f_e - f_e^*) \cdot c_e(f_e)}$$

$$f_e^* \cdot c_e(f_e^*) \ge \frac{1}{\alpha(\mathcal{C})} \cdot f_e \cdot c_e(f_e) + (f_e^c - f_e)c_e(f_e)$$

• Take the sum over all edges $e \in E$:

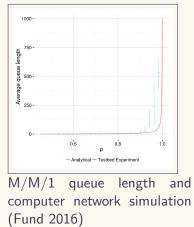
$$C(f^*) \geq \frac{1}{\alpha(\mathcal{C})} \cdot C(f) + \sum_{e \in E} (f^*_e - f_e) c_e(f_e)$$

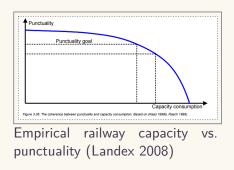
► Finally,

$$\frac{C(f)}{C(f^*)} \le \alpha(\mathcal{C})$$

- The selfish routing model can give insight into network for transportation, communication, and electrical networks.
- We will see how Pigou's bound explains internet service provider's strategy for over-provisioning.
- In communication networks, it is often relatively cheap to add additional capacity to the network.
- Communication networks are over-provisioned to anticipate future increase in demand, and because networks perform better when capacity is not saturated.

- Consider a queue where jobs arrive according to a Poisson process with rate x.
- ► Jobs are processed with independent exponential distributed time with mean ¹/_u.
- Known as an M/M/1 queue.





- A selfish routing network of M/M/1 queues is β-over-provisioned if f_e ≤ (1 − β)u_e for every edge e, where f_e is an equilibrium flow.
- At equilibrium, the maximum link utilization in the network is (1β) .
- With cost function c(x) = 1/(u − x), the worst-case price of anarchy is

$$\frac{c_{\text{selfish}}}{c_{\text{optimal}}} = \frac{1}{2} \left(1 + \sqrt{\frac{1}{\beta}} \right)$$

$$\frac{c_{\text{selfish}}}{c_{\text{optimal}}} = \frac{1}{2} \left(1 + \sqrt{\frac{1}{\beta}} \right)$$

- $\blacktriangleright \ \beta \rightarrow 1:$ infinite capacity means there is no price of selfishness.
- β → 0: no spare capacity means that the price of selfishness can be arbitrarily high (*in the worst case*, Pigou's example).
- $\beta = 0.1$ gives

$$\frac{\textit{C}_{\text{selfish}}}{\textit{C}_{\text{optimal}}} \approx 2.1$$

- A little over-provisioning allows selfish routing to be close enough to optimal.
- ► Explains empirical knowledge from internet service providers.

Further topics in quatifying the inefficiency of equilibria

- Routing games (selfish routing)
- Network formation games
- Selfish load balancing
- Design of scalable resource allocation mechanisms

Mechanism design

Part III: Mechanism design

Mechanism design

- Mechanism design: sub-field of economic theory with an engineering perspective.
- "Reverse game theory".

Application areas:

- Elections
- Markets
- Auctions
- Government policy

Especially with computerized and internet-scale choice systems (e.g. high-frequency trading), the pure mathematical properties become more directly relevant.

Sealed-bid auction

- A single item for sale, each player *i* values the item v_i .
- One player is awarded the item and pays a price *p*.
- The player's utility is $v_i p$.

First-price auction:

► Award the item to the player *i* with the highest bid b_i, and set the price p = b_i.

... this makes it hard to predict the player's actions, but we can under some assumptions:

- ► Use assumed distribution of other player's valuations.
- If two bidders a and b have valuations uniformly distributed in [0, 1], they bid b_a = v_a/2 and b_b = v_b/2.

Second-price auction (Vickrey)

Second-price auction (Vickrey):

- Award the item to the highest bidder, but set the price at the next-highest bid.
- Every bidder's dominant strategy is to bid their valuation b_i = v_i.
- (Dominant: the strategy is better no matter what the opponents do)

Proof:

- Fix an arbitrary player *i*, their valuation v_i, and the bids of other players *b*_{−i}. Let B = max_{j≠i} b_j be the highest bid that any of the other players gave.
- May select $b_i < B$: gives utility 0.
- May select $b_i >= B$: gives utility $v_i B$.
- If $v_i < B$, the maximum utility is max $\{0, v_i B\} = 0$.
- If $v_i >= B$, the maximum utility is $\max\{0, v_i B\} = v_i B$.
- Both cases are optimal when choosing $b_i = v_i$.

Second-price auction (Vickrey)

• Also, $b_i = v_i$ guarantees non-negative utility.

Vickrey auctions have the following good properties:

- Each player has an optimal strategy which does not depend on the other players' strategies, and which reveals their true valuation.
- The item is awarded to the player who values it the most (social welfare maximization).
- Computationally trivial.

More generally: mechanisms with pricing

We want to collectively decide on an action $a \in A$.

The preference of each player *i* is a function $v_i : A \to (V_i \subseteq \mathbb{R})$.

A mechanism (direct revelation mechanism) is:

► a social choice function

 $f: V_1 \times \cdots \times V_n \to A$

• a vector of payment functions p_1, \ldots, p_n where

$$p_i: V_1 \times \cdots \times V_n \to \mathbb{R}$$

is the price that player *i* pays.

Incentive compatible mechanisms

A mechanism (f, p_1, \ldots, p_n) is incentive compatible if

- ► for every player *i*,
- ▶ for every actual valuation $v_1 \in V_1$, ..., $v_n \in V_n$
- for every $v'_i \in V_i$,

let $a = f(v_i, v_{-i})$ and $a' = f(v'_i, v_{-i})$, then

►
$$v_i(a) - p_i(v_i, v_{-i}) \ge v_i(a') - p_i(v'_i, v_{-i}).$$

Intuitively, this means that player *i* whose valuation is v_i would prefer telling the truth v_i to the mechanism rather than any possible lie v'_i since this gives them higher utility.

Vickrey-Clarke-Groves mechanism

A mechanism $(f, p_1, ..., p_n)$ is a Vickrey-Clarke-Groves (VCG) mechanism if:

► *f* maximizes the social welfare:

$$f(v_1, \ldots, v_n) \in \operatorname*{argmax}_{a \in A} \sum_i v_i(a)$$

▶ for some h_1, \ldots, h_n where $h_i : V_{-i} \to \mathbb{R}$,

• for all
$$v_1 \in V_1, \ldots, v_n \in V_n$$
:

►
$$p_i(v_1,...,v_n) = h_i(v_{-i}) - \sum_{j \neq i} v_j(f(v_1,...,v_n)).$$

The price function adds some amount depending on the choice of the other players, and subtracts some amount corresponding to the valuations of other players.

VCG mechanisms are incentive-compatible.

Vickrey-Clarke-Groves mechanisms are incentive-compatible.

Proof:

- Fix *i*, v_{-i} , v_i and v'_i .
- Let $a = f(v_i, v_{-i})$ and $a' = f(v'_i, v_{-i})$.
- The utility of *i* when declaring v_i is

$$v_i(a) - (h_i(v_{-i}) - \sum_{j \neq i} v_j(a))$$

• when declaring v_i :

$$v_i(a') - (h_i(v_{-i}) - \sum_{j \neq i} v_j(a'))$$

Since a maximizes social welfare:

$$v_i(a) + \sum_{j
eq i} v_j(a) \geq v_i(a') + \sum_{j
eq i} v_j(a')$$

Clarke pivot rule

Which h_i functions do we want?

 A mechanism is ex-post individually rational if players always get non-negative utility.

$$\forall v_1,\ldots,v_n:v_i(f(v_1,\ldots,v_n))-p_i(v_1,\ldots,v_n)\geq 0$$

► Has no positive transfers if no player is ever paid money.

$$\forall v_1,\ldots,v_n:\forall i:p_i(v_1,\ldots,v_n)\geq 0$$

► The Clarke pivot payment has these properties:

$$h_i(v_{-i}) = \max_{b \in A} \sum_{j \neq i} v_j(b)$$

▶ Under this rule the payment of player *i* is:

$$p_i(v_1,\ldots,v_n) = \max_b \sum_{j\neq i} v_j(b) - \sum_{j\neq i} v_j(a)$$

Intuitively, player *i* pays for the damage done to the other players. What value would they have gained with vs. without me?

Example: buying a path in a network.

Example: buying a path in a network.

- In a directed graph G = (V, E), consider each edge e ∈ E as a player who has a cost c_e ≥ 0 if the edge is used.
- We want to buy a path s → t, and the players (edges) have (actual) valuation of 0 if they are not part of the path and -c_e if they are.
- ► Maximizing social welfare corresponds to finding the shortest path p, ∑_{e∈p} c_e.
- VCG: for each edge e_0 in p, pay

$$\sum_{e\in p'} c_e - \sum_{e\in p\setminus\{e_0\}} c_e$$

where p is the shortest path and p' is the shortest path not containing e_0 .

More on mechanism design

Other topics in mechanism design:

- Mechanisms with or without money
- Combinatorial auctions
- Computationally efficient approximation mechanisms
- Profit maximization in mechanism design
- Distributed algorithmic mechanism design
- Cost sharing
- Online mechanisms

Further reading

- Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game Theory, Cambridge, 2007.
- Tim Roughgarden: Twenty Lectures on Algorithmic Game Theory, Cambridge University Press, 2016.