Algorithmic Game Theory

Bjgrnar Luteberget

PhD Trial Lecture
18 Oct 2019

Algorithms vs. games

Controllable system — design algorithms.

& topoPlotopentrack — CAUsers\hwerimanriOperiTrac.. ~ = S =]
o Document Edt Fomst Took Functons Windons Pont bide Que | [l o Documem Edt Fomat Too Funcions Windows Pint Hide 5
1 +
; . |E P
G °
B on Al
0 >d
i i :
] o =
= B
Ino_Document =
[e]
N\
) A
Ly o
{ == 1 !
i — ™
LI - Sionw & * topoOstopentrack - CAUsers\hwerimann\Op.. = © —
o o Document Gt Fomat Took Functions Windows Pt Hide
Qi
oo adl > 9 o o = = Al
- = e =
Ly Staionv
OPENISTRAGK Opentec vy Tecolgy L, Zueh Swizerand Topology 1)
m o

Algorithms vs. games

Individual choices — _
design incentives, constraints.

Algorithms vs. games

Individual choices — _
design incentives, constraints.

Game theory

What is a game?

» Players
» Actions

» Scores

Rock, paper, scissors

Player 2
Player 1

@ © &

@©
@
&

(00) (-1.1) (1-1) This game is

(1-1) (00) (-11) > two-player,
» one-shot /
simultaneous,

(-1,1) (1-1) (0,0)

» zero-sum.

Game theory

» Game theory: the study of strategic interactions between
rational decision-makers.

» Each player selects an action hoping to maximize their score.

» Can we predict which choices they make?

Game theory

A main concept in game theory:
» Nash equilibrium is a set of strategies, one for each player,
such that no player has incentive to deviate given what the
others are doing.

» Pure strategy: player selects one of the actions.
» Mixed strategy: player selects a probability distribution over
actions.

» Nash's Existence Theorem: every game with a finite number
of players and a finite number of actions has at least one
mixed strategy Nash equilibrium (Nash, 1951).

Battle of the sexes

Friend ‘ Cinema Theatre
You Thi .
Cinema (5,6) (1,1) B gews =
Theatre (2,2) (6,5) » two-player,
» one-shot /
» You like theatre, your friend simultaneous,
likes cinema.

> non-zero-sum.
» But you both prefer going
together over getting your It has two pure
will. equilibria.

Prisoner’s dilemma

Ol ‘ Silent Betray
You This game i
Silent (-1-1) (-3,0) game 1s
Betray (0,-3) (-2,-2) » two-player,
» one-shot /

» Two players face prison time simultaneous,
convictions on weak > NON-zero-sum.
evidence.

» If you betray the other It has one pure
player, you go free while equilibrium.

they get a harsher sentence.

> If you both betray each
other, both get a harsher
sentence than staying silent.

Algorithmic game theory

Algorithmic game theory: the intersection of game theory and
computer science: understanding and designing algorithms in
strategic environments.

Overview:
» Part |: Computing equilibria
» Part Il: Selfish behaviour and optimal systems
» Part Ill: Mechanism design

Based on material from:

» Tim Roughgarden: Algorithmic Game Theory lecture notes,
Stanford University.

» Aaron Roth: Algorithmic Game Theory lecture notes,
University of Pennsylvania.

» Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game
Theory, Cambridge, 2007.

Computing equilibria

Part |
Computing equilibria

Computing equilibria
How do strategic players reach an equilibrium? Do they at all?

» Nash's Existence Theorem: every game with a finite number
of players and a finite number of actions has at least one
mixed strategy Nash equilibrium (Nash, 1951).

» For two-player zero-sum games we can use linear
programming.

Solving two-player zero-sum games

» Two-player zero-sum games: the sum of payoffs is zero for any
choice of strategies.

» So, we need the score for only one of the players.

» Rock, paper, scissors:

» Player 1 (row player) chooses a strategy p:
p=[1 0 0], pA=[0 -1 1]

» Player 2 (column player) chooses strategy g¢:

g=1[0 1 0", pAg=—1

Linear programming

Linear programming standard form:

> A linear function to be optimized:

f(Xl,XQ, ..) = C1X1 + CaXo + ...

v

Linear problem constraints:

aiixi +aexe + ... < by
agix1 +agxo + ... < by

agixy +agaxg + ... < b3

» Non-negative variables: x; > 0, x0 > 0, ...

v

Is solvable in polynomial time (Khachiyan 1979).

v

In practice, often solved using the Simplex algorithm (Dantzig
1947) worst-case exponential but usually efficient.

Solving two-player zero-sum games

» Consider p*, g*, a distribution for the row and column players
that is a mixed-strategy Nash equilibrium with value v*.

» Consider an unknown strategy p for the row player.

> If we know p, we would like to find g that minimizes the
column'’s players loss.

» The best strategy for choosing this publicly known p is then
to maximize this minimum value.

» This corresponds to the following linear program:

maximize v,
i:pi=>0, Zpl_l (PA) >V

» Now, choosing p, the row player is guaranteed the score v,.

Solving two-player zero-sum games

» We see that v, < v*, since the row player can guarantee to
win Vv, so this is a minimum value for any equilibrium.

» Also, an equilibrium is stable even if known by the opponent,
so the column player must be selecting the columns with
minimum value p*A. Therefore v* < v,, and we have v, = v*.

Correspondingly, for the column player:
minimize v,

qIZO qu—l (Aq) < v

Comparing: the row player's LP:
maximize v,
itp;i>0, Zpl—l ji: (PA); > vr
. and the column player's LP:

minimize v,
i qi > 0, qu_l j: (Ag)j < ve
These two linear programs are duals of each other. Linear

programming theory already gives us v, = v, in the special case of
zero-sum two-player games.

Linear programming solution

from pulp import *
problem = LpProblem("rock-paper-scissors", LpMaximize)

Variables: Strategy vector and the row player's wvaluation.
rock = LpVariable("rock", 0.0, 1.0)

paper = LpVariable("paper", 0.0, 1.0)

scissors = LpVariable("scissors", 0.0, 1.0)

value = LpVariable("value")

Objective: Value of solution for rTow player
problem += value

Constraint: Strategy vector is a distribution over actions
problem += rock + paper + scissors == 1.0

Constraint: Each column of pA is greater than the player's wvalue

problem += 0.0*rock + 1.0*paper + (-1.0)*scissors >= value
problem += (-1.0)*rock + 0.0xpaper + 1.0*scissors >= value
problem += 1.0xrock + (-1.0)*paper + 0.0*scissors >= value

problem.solve ()

print("value:",value.varValue)
print ("strategy:", (rock.varValue, paper.varValue, scissors.varValue))

Linear programming solution

OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs

Memory used: 0.0 Mb (39701 bytes)
('value:', 0.0)

('strategy:', (0.333333, 0.333333, 0.333333))

Non-zero-sum games

» Solving non-zero-sum games can be done with the

Lemke-Howson algorithm, which takes worst-case exponential
time.

> Like the Simplex algorithm, it pivots between vertices in
polytopes. Uses two polytopes instead of one.

Non-zero-sum games

» There is no known polynomial-time algorithm for computing a
Nash equilibrium in general.

» If all parties act rationally, equilibria could predict their
behaviour, but only if these are reasonably easy to calculate.

» A complexity class named Polynomial Parity Arguments on
Directed Graphs (PPAD) (Papadimitriou 1994) was
introduced to characterize finding mixed-strategy Nash
equilibria.

» Finding Nash equilibria is PPAD-complete, and cannot be
NP-complete because the solution is known to exist.

» Many related problems, for example deciding whether there
are two or more equilibria, are NP-complete.

Further topics in computing equlibria

> Learning, regret minimization and equilibria

v

Combinatorial algorithms for market equilibria

» Computation of market equilibria by convex programming

v

Graphical games

v

Cryptography

Selfish behaviour and optimal systems

Part |l:

Selfish behaviour and optimal
systems

Selfish behaviour and optimal systems

Example:
» A number of cars travel simultaneously from suburb to city
using one of two roads. Each road takes time 1 + x,
depending on the fraction of cars x that choose that road.

» If a fraction u of cars take the upper path, the total travel

time is: u(1+u) + (1 — u)(1+ (1 — v)) = 20> — 2u + 2.
1

» Minimum total travel time at u = 5

Selfish behaviour and optimal systems

Braess' paradox (1968).
» Optimal traffic results in t = 1.5 for all cars.
> Selfish traffic results in t = 2.0 for all cars.
» "Price of anarchy” is 2.0/1.5.

Selfish behaviour and optimal systems

» Game equilibria are inefficient in general.

» But when is the price of anarchy low (ratio ~ 1)?
» Applications in

— network routing

— scheduling

— resource allocation

— auction design

Plan:

» An upper bound on the price of anarchy can be found by
considering just one example network!

» Use this upper bound in an analysis of communication
networks.

Pigou's example

» An even simpler network (Pigou, 1920) shows the same
phenomenon as Braess’ paradox.

» Every driver's dominant strategy is to take the lower link even
when fully congested.

» (Dominant: the strategy is better no matter what the
opponents do)

» Any other solution is better overall!

Non-linear Pigou's example
» The price of anarchy is % in both Braess' and Pigou's

examples.
» Now, change the cost function to ¢(x) = x”

()

UR TN

Non-linear Pigou's example
With ¢(x) = x:
» Same dominant strategy, same equilibrium travel time.
» Let (1 — ¢) traffic on the bottom link.

> As p — o0, the travel time tends to 0 on average.

» Price of anarchy is unbounded.

Pigou's example is the worst case for the price of anarchy

Generalize Pigou's example to other non-negative, continuous,
non-decreasing functions.

» Assume we know the set of possible cost functions ¢ € C.

» Define the Pigou bound:

a(C) = SUPSUPSUP{X.C(X) o~ }

ceC r>0 x>0 + (r—x) - c(n

» Theorem: of all networks with cost functions from C, Pigou's
example has the highest price of anarchy.
(Roughgarden, 2003)

Pigou is worst-case — proof sketch

> A flow {fp} p is the distribution of traffic over all paths
p € P from ato b.

Pigou is worst-case — proof sketch

> A flow is an equilibrium iff traffic travels only on the shortest
paths from a to b.

» Note that shortest is defined with respect to the c induced by
the flow.

> The cost of the flow (by paths) is C(f) = >_ ,cp focp(f).

» First part: if edge costs are frozen at equilibrium costs ce(fe),
then fis optimal.

» Intuition: an equilibrium flow f routes all traffic on shortest
paths, so no other flow can be better if we keep the same
edge costs.

Pigou is worst-case — proof sketch

» Second part: how can the optimal flow f* be better than f?

» Intuition: edge by edge, the gap in costs between fand f* is
no worse that the Pigou bound.

> Use the Pigou bound:

a(C) = SUPSUPSUP{X.C(X) - }

ceC r>0 x>0 + (r* X) : C(r)

> Insert ¢ — co, r— fo, x — f5.

e Ce(fe)
e S (AR (T AR (A

» Rearrange to:

foclf) > —

> @ fer el + (= fce(f)

> Take the sum over all edges e € E:

» Finally,

An application in network provisioning

> The selfish routing model can give insight into network for
transportation, communication, and electrical networks.

» We will see how Pigou’s bound explains internet service
provider's strategy for over-provisioning.

» In communication networks, it is often relatively cheap to add
additional capacity to the network.

» Communication networks are over-provisioned to anticipate
future increase in demand, and because networks perform
better when capacity is not saturated.

An application in network provisioning

» Consider a queue where jobs arrive according to a Poisson
process with rate x.

» Jobs are processed with independent exponential distributed
time with mean 711

» Known as an M/M/1 queue.

1000~

o
3
g

4 Punctuaiity

Punctuality goal,

Average queue length
@
8

N
R
g

. y“

056 o8 10 Figure 236
P

Capacity consumption
o capacy Basedon (Kaas 1998, Rascn 1998

~ Analytical — Testbed Experiment

Empirical railway capacity vs.
M/M/1 queue length and punctuality (Landex 2008)
computer network simulation

(Fund 2016)

An application in network provisioning

» A selfish routing network of M/M/1 queues is
B-over-provisioned if fo < (1 —)u, for every edge e, where f.
is an equilibrium flow.

» At equilibrium, the maximum link utilization in the network is
(1-8).

» With cost function ¢(x) = 1/(u — x), the worst-case price of

anarchy is
Cselfish _ 1 (1 + 1>
Coptimal 2 ﬁ

An application in network provisioning

Cselfish _ 1 <]_+ \/T>
Coptimal 2 5

B — 1: infinite capacity means there is no price of selfishness.

v

v

B8 — 0: no spare capacity means that the price of selfishness
can be arbitrarily high (in the worst case, Pigou's example).

» 5 =0.1 gives
Coute
selfish ~ 91
Coptimal
> A little over-provisioning allows selfish routing to be close

enough to optimal.

v

Explains empirical knowledge from internet service providers.

Further topics in quatifying the inefficiency of equilibria

v

Routing games (selfish routing)

v

Network formation games

v

Selfish load balancing

v

Design of scalable resource allocation mechanisms

Mechanism design

Part |11

Mechanism design

Mechanism design

» Mechanism design: sub-field of economic theory with an
engineering perspective.

» "Reverse game theory”.

Application areas:
> Elections
> Markets
> Auctions
» Government policy

Especially with computerized and internet-scale choice systems
(e.g. high-frequency trading), the pure mathematical properties
become more directly relevant.

Sealed-bid auction

> A single item for sale, each player i values the item v;.
» One player is awarded the item and pays a price p.

» The player's utility is v; — p.

First-price auction:

» Award the item to the player i with the highest bid b;, and set
the price p = b;.

... this makes it hard to predict the player’s actions, but we can
under some assumptions:

> Use assumed distribution of other player’'s valuations.

» If two bidders a and b have valuations uniformly distributed in
[0, 1], they bid b, = v,/2 and by = vp/2.

Second-price auction (Vickrey)

Second-price auction (Vickrey):
» Award the item to the highest bidder, but set the price at the
next-highest bid.
» Every bidder's dominant strategy is to bid their valuation
b,' = V.
» (Dominant: the strategy is better no matter what the
opponents do)

Proof:

» Fix an arbitrary player i, their valuation v;, and the bids of
other players b_;. Let B= max;.; b; be the highest bid that
any of the other players gave.

May select b; < B: gives utility 0.

May select b; >= B: gives utility v; — B.

If vi < B, the maximum utility is max{0, v; — B}= 0.

If v >= B, the maximum utility is max{0, v; — B}=v; — B.
Both cases are optimal when choosing b; = vi;.

vV Vv VY

Second-price auction (Vickrey)

» Also, b; = v; guarantees non-negative utility.

Vickrey auctions have the following good properties:

» Each player has an optimal strategy which does not depend
on the other players’ strategies, and which reveals their true
valuation.

» The item is awarded to the player who values it the most
(social welfare maximization).

» Computationally trivial.

More generally: mechanisms with pricing

We want to collectively decide on an action a € A.
The preference of each player i is a function v;: A — (V; C R).

A mechanism (direct revelation mechanism) is:

» a social choice function
f:Vix---xV,— A

> a vector of payment functions p1, ..., p, where
pi:Vix---xV, =R

is the price that player i pays.

Incentive compatible mechanisms

A mechanism (f, p1,..., pn) is incentive compatible if
» for every player i,
» for every actual valuation vi € V4, ..., v, € V,
» for every V. € V;,
let a = fvi,v_;) and & = f(V},v_;), then
> vi(a) — pi(vi, v—i) = vi(d) — pi(V;, v—i).
Intuitively, this means that player i whose valuation is v; would

prefer telling the truth v; to the mechanism rather than any
possible lie V. since this gives them higher utility.

Vickrey-Clarke-Groves mechanism

A mechanism (f, p1, ..., pn) is a Vickrey-Clarke-Groves (VCG)
mechanism if:

» f maximizes the social welfare:

flvi,...,vp) € argmax » vj(a)
acA ;
» for some hy,..., h, where h;: V_; — R,
» forallvi e Vq,...,v, € V,:

> pi(vi,...,vn) = hi(v_j) — Z#i Vi(Avi, ..., va)).
The price function adds some amount depending on the choice of
the other players, and subtracts some amount corresponding to the
valuations of other players.

VCG mechanisms are incentive-compatible.

Vickrey-Clarke-Groves mechanisms are incentive-compatible.

Proof:
» Fix i, v_;, vj and V..
» Let a=flv;,v_;) and & = AV, v_;).
» The utility of /i when declaring v; is

» when declaring V:
vi(d) = (hi(v—1) = >_ vi(d))

» Since a maximizes social welfare:

—I—Zvj > vi(a +Zvj(a’)

J#i J#i

Clarke pivot rule

Which h; functions do we want?
» A mechanism is ex-post individually rational if players always

get non-negative utility.
Yviy ooy Vs Vi(fva, ooy vn)) — pilviy .oy vp) >0
» Has no positive transfers if no player is ever paid money.
Vi, ooy Vp i Vi pi(ve, ..oy ve) >0
» The Clarke pivot payment has these properties:
hi(v_;) = Teajz vj(b)
S
» Under this rule the payment of player i is:
pi(Viy ..., vp) = ml?xz vj(b) — Z vj(a)
J#i J#i
Intuitively, player i pays for the damage done to the other players.
What value would they have gained with vs. without me?

Example: buying a path in a network.

Example: buying a path in a network.

» In a directed graph G = (V, E), consider each edge e € E as a
player who has a cost c. > 0 if the edge is used.

» We want to buy a path s — t, and the players (edges) have
(actual) valuation of 0 if they are not part of the path and
—ce if they are.

» Maximizing social welfare corresponds to finding the shortest
path p, > ., Ce-

» VCG: for each edge ¢ in p, pay

D=) <
ecp/ eep\{eo}

where p is the shortest path and p’ is the shortest path not
containing eg.

More on mechanism design

Other topics in mechanism design:

>

>

>

Mechanisms with or without money

Combinatorial auctions

Computationally efficient approximation mechanisms
Profit maximization in mechanism design
Distributed algorithmic mechanism design

Cost sharing

Online mechanisms

Further reading

» Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game
Theory, Cambridge, 2007.

» Tim Roughgarden: Twenty Lectures on Algorithmic Game
Theory, Cambridge University Press, 2016.

