
Automated Reasoning
for Planning Railway Infrastructure

Bjørnar Luteberget

PhD Defence

18 Oct 2019



Background: railway engineering

I Costly projects with high
quality requirements,
complicated regulations.

I Produce a lot of tables,
drawings, 3D models,
specifications,
documentation, etc.

I Evaluation relies on a lot of
manual checking of
regulations compliance.

I Coordination between
disciplines require
constant re-evaluation of
designs.



Railcomplete, RailCons, IFI – project background

I Claus Feyling launched Railcomplete AS:
Bringing BIM to your railway projects.

I Also launched RailCons, industry Ph.D. project funded by
Norwegian Research Council and Railcomplete AS. In
collaboration with IFI (Christian Johansen, Martin Steffen).



RailCons goals
I Basis: the RailCOMPLETE editor for railway modeling
I RailCOMPLETE has special-purpose analysis features.

I RailCons: develop expressive analysis frameworks for
correctness and goodness.

I The goal is to verify design properties, optimize and
synthesize designs.

I Combine the strengths of IFI/PSY/Formal methods with
Railcomplete’s vision for construction projects.



Presentation overview

1. Local capacity verification (SAT and simulation)

2. Static properties from regulations (Datalog)
3. Controlled natural language as a front-end for

specifications (Grammatical Framework)
4. Drawing schematic views (SAT and numerical)



Railway control systems

4000 m

Constructing a new railway line starts with a track plan:



Railway control systems

4000 m

Constructing a new railway line starts with a track plan:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to
the train:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to
the train:



Railway control systems

4000 m

Now, other trains can occupy different sections.



Railway control systems

4000 m

We add signals to indicate to drivers when they can proceed.



Railway control systems

4000 m

This situation is in principle safe, but is it a good design?



Requirements

Will my station design handle the
actual traffic?

Two methods used in practice:
1. Whole-network time table analysis: a whole discipline in

itself – complicated theory and software
2. Manual, ad-hoc analysis: varying quality, little

documentation, low repeatability.



Design-implementation-operation

Design

Implementation

Operation

?

Formal methods for verifying
correctness (safety) [3, 2].

Railway optimization for
network-wide timetables [1, 4].

[1] M. Abril, F. Barber, L. Ingolotti, M.A. Salido, P. Tormos, and A. Lova. An
assessment of railway capacity. Transportation Research, 44(5):774 – 806, 2008.

[2] Arne Borälv and Gunnar Stålmarck. Formal verification in railways. In
Industrial-Strength Formal Methods in Practice, pages 329–350. Springer, 1999.

[3] A. Fantechi, W. Fokkink, and A. Morzenti. Some trends in formal methods
applications to railway signalling. In Formal Methods for Industrial Crit Sys., 2012.

[4] Alex Landex. Methods to est. railway cap. and passenger delays. PhD thesis,
2008.



Design-implementation-operation

Design

Implementation

Operation

Agile, fast verification methods with
suitable, small specifications.

Formal methods for verifying
correctness (safety).

Railway optimization for
network-wide timetables.



Specification capture
Railway engineers gave us examples of performance properties
that governed their designs.

Typical categories:

1. Running time (get from A to B)
– Similar to a simulation test, but smaller specification.

2. Frequency (several consecutive trains)
– Route trains into alternate tracks.

3. Overtaking
4. Crossing

– Let one train wait on a side track while another train passes.



Capacity specifications
Local requirements suitable for construction projects.
I Operational scenario S = (V,M,C):
I Vehicle types V = {(li, vmax

i , ai, bi)}, defined by length, max
velocity, max accel, max braking.

I Movements M = {(vi, 〈qi〉)}, defined by vehicle type v and
ordered sequence of visits 〈qi〉.
I Each visit qi = ({li} , td) is a set of alternative

locations li and an optional dwelling time td.

I Timing constraints C = {(qa, qb, tc)} which orders two
visits and sets a maximum time from the first to the
second tqa < tqb < tqa + tc. The maximum time constraint
can be omitted (tc = ∞).



Constraints

Verification of these specifications would involve finding
satisfying train trajectories and control system state:

∃p : spec(p)

Also, constrained by:
I 1 - Physical infrastructure
I 2 - Allocation of resources (collision safety)
I 3 - Limited communication
I 4 - Laws of motion



Constraints (2) Allocation of resources

An elementary route is a set of resources allocated together.

Signal A Signal C

Routes are conflicting if they use any of the same resources.

Signal A Signal C



Constraints (3) Limited communication
Signal information only carries across two signals
(”pre-signalling”).

Velocity

Known movement authority

Auth.



Constraints (4) Laws of motion
Trains move within the limits of given maximum acceleration
and braking power. Train drivers need to plan ahead for braking
so that the train respects its given movement authority and
speed restrictions at all times.

v − v0 ≤ a∆t, v2 − v2i ≤ 2bsi.

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Automated verification
Design-time capacity verification amounts to planning in a
mixed discrete/continuous space.

Some suggestions:
I PDDL+, planning domain description language for mixed

discrete-continuous planning domains [1].
I SMT with non-linear real arithmetic [2, 4].
I dReal: δ-complete decision proc. for FOL with reals [3].

Using these tools/techinques and straight-forward modeling
did not make our problem manageable on relevant scales.

[1] M. Fox and D. Long. Modelling mixed discrete-continuous domains for planning.
J. Artif. Intell. Res., 27:235–297, 2006.

[2] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
J. SAT, 1:209–236, 2007.

[3] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories
over the reals. CADE-24 vol. 7898 of LNCS, pages 208–214. Springer, 2013.

[4] D. Jovanovic and L. de Moura. Solving non-linear arithmetic. ACM Comm.
Computer Algebra, 46(3/4):104–105, 2012.



Dispatch vs. driver
Split the planning work into two separate points of view:

Dispatcher

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Elementary routes and their
conflicts

Train driver

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Local Capacity Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):



SAT encoding of dispatch planning
General idea: represent which train occupies which elementary
route in each of a sequence of steps.

↓

t1 t1

t2

t2



SAT encoding
Planning as bounded model checking (BMC [1,2]). Build
planning steps as needed using incremental SAT solver
interface.

Movement correctness:
I Conflicting routes are not active simultaneously

conflict(r1, r2) ⇒ oir1 = Free ∨ oir2 = Free.
I Elementary route allocation is consistent with train

movement: (oir 6= t ∧ oi+1
t = t) ⇒∨{

oi+1
rx = t | route(rx), entry(r) = exit(rx)

}
Satisfy specification:
I Visits happen in order (timing requirement is measured on

simulation).
[1] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. Formal Methods in System Design, 19:7–34, 2001.
[2] J. F. Groote, S. F. M. van Vlijmen, and J. W. C. Koorn. The safety guaranteeing

system at station Hoorn-Kersenboogerd. COMPASS ’95, p. 57–68. IEEE, 1995.



Freeing

A B C

D E

200 m 100 m 400 m

If A holds a train t of length 200.0m, freeing A is constrained by:

Ai ⇒
(
Ai+1 ∨ (Bi ∧ Ci) ∨ (Di ∧ Ei)

)
.



Eliminate equivalent solutions
I Can free⇒must free
I Can allocate⇒must allocate

I Exception to allocation: deferred progress
a train may be waiting for a conflict to be resolved, even if
the conflict starts in the future.

Crossing example: exactly two solutions:

Design-Time Railway Capacity Verification using
SAT modulo Discrete Event Simulation

Bjørnar Luteberget
Railcomplete AS

Sandvika, Norway
Email: bjornar.luteberget@railcomplete.no

Koen Claessen
Chalmers University of Technology

Gothenburg, Sweden
Email: koen@chalmers.se

Christian Johansen
University of Oslo

Oslo, Norway
Email: cristi@ifi.uio.no

Abstract—Railway capacity is complex to define and analyze,
and existing tools and methods used in practice require com-
prehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-based methods of ca-
pacity analysis are available to them. Designs have subtle capacity
pitfalls which are discovered too late, only when network-wide
timetables are made – there is a mismatch between the scope
of construction projects and the scope of capacity analysis, as
currently practiced.

We suggest a language for capacity specifications suited for
construction projects, expressing properties such as running
time, train frequency, overtaking and crossing. Verifying these
properties amounts to solving a planning problem constrained by
discrete control system logic, network topology, laws of motion,
and sparse communication. To describe train dynamics one uses
second-order linear differential equations which when solved
analytically give rise to non-linear equations over real variables.

We argue that reasoning over the whole discrete/continuous
solution space is not efficient with current state-of-the-art solvers.
Instead, we have solved the problem by building a special-purpose
solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and continuous-domain dynamics and timing
constraints evaluated using discrete event simulation. The two
components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). We show that our method is fast
enough at relevant scales to provide agile verification in a design
setting, and we present case studies based on data from existing
infrastructure and ongoing construction projects.

I. INTRODUCTION

This paper addresses a central problem that occurs when
designing the layout and control systems for railway stations:
Does the station infrastructure have the capacity to handle the
amount of trains and the desired traveling times to provide
adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on
a railway station. Fig. 1 shows two sequences of movements
which result in such a crossing. There are a number of details
of the railway design which can cause this scenario to become
infeasible (or take an unacceptably long time), such as signal
placement, detector placement, correct allocation and freeing
of resources, track lengths, train lengths, etc.

Systematic capacity analysis for railways is typically per-
formed on the scale of national railway networks, using
comprehensive input on infrastructure and timetables, and
only after the complete design is finished. Moreover, the
widely used methods and tools for capacity analysis are

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two
trains on a two-track station. The green areas show track
segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

heavy-duty methods, consisting of complicated simulations,
and require specialized knowledge, thus not being suitable
for agile design-time verification of railway stations. As a
consequence, railway construction projects usually rely on
informal, vague, or even non-existent capacity specifications,
and engineers need to make ad-hoc/manual analyses of how
the control system can provide this capacity.

Our goal is to develop a verification technique and tool
to help engineers specify capacity properties at design time
and to check these automatically. To be agile, the tool needs
to (1) have reasonable running times so that the verification
can be run on the fly as the design is being updated by an
engineer working in a drafting CAD application, and (2) keep
the required input to the minimum of information needed
to verify relevant properties. This style of verification gives
engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

The problem: We consider the low-level railway infras-
tructure capacity verification problem, which we define as
follows:

Given a railway station track plan including signal-
ing components, rolling stock dynamic characteris-
tics, and a performance/capacity specification, verify
whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:
• Low-level running time analysis – verify the time re-

quired for getting from point A to point B.

I Overlaps. Partial release.
I Loops in the infrastructure / loops in the dispatch.



Local Capacity Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):



Case studies
Fig. 8: Stations Kolbotn, Eidsvoll, and Asker from Bane
NOR’s model of the Norwegian national network [31].

Infrastructure Property Result nDES tSAT tDES ttotal
Simple
(3 elem.)

Run.time Sat. 1 0.00 0.00 0.00
Crossing Unsat. 0 0.00 0.00 0.00

Two track
(14 elem.)

Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01

Kolbotn (BN)
(56 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06

Eidsvoll (BN)
(64 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21

Asker (BN)
(170 elem.)

Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77

Arna (CAD)
(258 elem.)

Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74

Gen. 3x3
(74 elem.)

High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19

Gen. 4x4
(196 elem.)

High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34

Gen. 5x5
(437 elem.)

High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

TABLE I: Verification performance on test cases, including
Bane NOR (BN) and RailCOMPLETE (CAD) infrastructure
models. The number of elementary routes (elem.) is shown
for each infrastructure to indicate the model’s size. nDES is
the number simulator runs, tSAT the time in seconds spent in
SAT solver, tDES the time in seconds spent in DES, and ttotal
the total calculation time in seconds.

visual representation of these models, i.e., the stations Kolbotn,
Eidsvoll, and Asker were converted from the railML models.

We have also tested against an infrastructure model from the
Arna construction project that uses the RailCOMPLETE CAD
design software, a realistic use case for agile verification.

Finally, to test the limitations of scalability in our method,
we construct a set of examples where m stations each with n
parallel tracks each are serially connected by a single track.
In this case, when a timing bound is slightly too small to be
satisfiable, the planner will have to come up with nm plans
for timing evaluation. This scenario is outside the intended use
case for our method: path selection can on this scale instead
be based on static speed profiles. Capacity over many stations
is better suited for the established timetabling tooling.

We attempted an alternative implementation using the
PDDL+ solver SMTPlan+, but found that even for greatly
simplified models, the required number of steps and numerical
constraints put all our case studies out of reach for sub-second
verification times.

V. RELATED WORK

Railway timetabling and capacity analysis has often been
posed as a planning problem and solved using mixed integer
programming and similar approaches. Zwaneveld et al. [32]
use integer programming on a problem closely related to our
low-level railway infrastructure capacity verification problem.
Isobe et al. [33] formulate a similar model in timed CSP,
representing train locations, velocities, and control logic. Our
definition of the problem in this paper includes non-linear
constraints on train dynamics (acceleration/braking power) and
communication constraints (trains must slow down if they have
not been informed of movement authority), which are relevant
in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in
railway dynamic analysis, see e.g. [34], [35], [36].

In the planning literature, the PDDL+ language [4] has
been introduced to capture mixed discrete/continuous planning
problems such as the one studied in this paper. General-
purpose solvers have recently been developed, using time
domain discretization (DiNo [37]) or the SMT theory of non-
linear real arithmetic (SMTPlan+ [38]).

VI. CONCLUSIONS AND FURTHER WORK

The goal of our suggested tool chain for railway engineering
is (1) to allow fully automated performance verification and (2)
use minimal input documentation for the verification. Both of
these aspects encourage bringing in performance verification
into frequently changing early-stage design projects, avoiding
the costly and time-consuming backtracking required when
later-stage analysis reveals unacceptable performance.

As future work we plan to integrate the current prototype
in the RailCOMPLETE tool and test the usability with the
engineers using this tool in their design work.

Acknowledgments: We thank the engineers at Railcomplete
AS, especially senior engineer Claus Feyling, for guidance on
railway operations and design methodology.



Static properties: technical regulations
I In our case study: Norwegian regulations from national

railways (Bane NOR)
I Static kind of properties, often related to object properties,

topology and geometry (example on next slide)



Static properties: technical regulations
Example from regulations:
I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Can be classified as follows:
– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking properties



Datalog verification tool
I Prototype using XSB Prolog tabled predicates, front-end is

the RailCOMPLETE tool based on Autodesk AutoCAD
I Rule base in Prolog syntax with structured comments

giving information about rules

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths



Challenge: participatory verification

Challenge: Users (railway engineers) are not experts in
verification techniques, so how can they
I build models of the systems to be verified?
I write properties in the verifier’s input language?
I interpret the output of the verifier when violated properties

are found?

Input to verification:
I Models: CAD extended with structured railway data

(familiar to engineers, user-friendly)
I Properties: Datalog (unfamiliar to engineers, not

user-friendly enough)

... consider another verification property input language?



Overview of approach
I Define a Controlled Natural Language as a high-level

domain-specific language to write properties.
I Represent properties as rephrasing of natural language

specifications (adds tracability of requirements)

CNL editor

Proper ties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation
of infrastructure

Datalog
reasoner

Issues presentation
(warnings, errors)

Or iginal text
(w/marked-up
sentences)

Side by side tracing through
CNL to original text.



Issues view
I Backwards tracing – explanation of non-compliance

CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringC
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValu

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End,

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.



Schematic drawings
I Incremental SAT with numerical constraints: unary

encoding vs. SMT difference constraints.
I Choose criteria bends vs. size.

2 Bjørnar Luteberget, Koen Claessen, and Christian Johansen

accurate drawings are not always suitable for communicating an overview that
can help with analyzing and reasoning about the railway models. Instead, many
disciplines use schematic representations of infrastructures to provide a com-
pressed overview, e.g., shortening sections of the railway that have low infor-
mation density. Fig. 1 compares a geographically correct drawing against two
alternative schematic renderings (for two purposes) of the same model. Pro-
ducing schematic drawings like these involves practical and aesthetic trade-offs
between intended structure, simplicity, and geographical accuracy.

Perhaps the most well-known railway schematics are the metro maps for
passengers, popularized by the iconic Tube Map of the London Underground.
When designing metro maps, removing and compressing geographical informa-
tion better conveys topological structure (e.g., useful for finding transfers) and
sequential information along lines (e.g., for finding your stop).

Methods for automatically producing metro maps have been surveyed in
[23]. The main approaches are iterative and force-directed algorithms for gradu-
ally transforming a geographical network map into a simpler presentation [2,7],
and mixed integer programming methods for finding exactly grid-structured and
rigidly optimized solutions [14,16]. For railway drawings the convention is to use
only horizontal, vertical, and diagonal lines (at 45◦). The problem of drawing
graphs optimized for size and/or bends using only horizontal and vertical lines
(so-called orthogonal drawings) can be solved by efficient algorithms [21], but
adding diagonal lines in general makes the problem NP-complete [14,15].

Schematic railway drawings used for engineering are usually more strictly
constrained than metro maps, but still have large variety in different versions
produced for different engineering use cases, project stages, and operational sce-
narios. Especially in construction projects for new railway lines or upgrades,

Fig. 1. Example cut-out from a geographical railway drawing (top) and two corre-
sponding full-station schematic layouts, optimized for bends (bottom left) and opti-
mized for height/width (bottom right). See on page 15 our tool’s optimization options.



RailCons results overview (1/2)

14

1.5 Research contributions

The following overview shows the components of our railway design tool chain
that we have developed and which is described in the following chapters.

Infrastructure models, edited in a
graphical interactive editor (CAD
program) extended with railway
semantic data and translated into
railML for analysis (Ch. 7).

12 Bjørnar Luteberget and Koen Claessen

(a) Crossover

(b) Ladder sidings (c) Real-world example: Eidsvoll railML

Fig. 9. Output examples for the level-based SAT method

Note that the if an edge is a short edge (such as a crossover between two
adjacent tracks) it does not require its own level, and we use instead the same
level as the one of its end nodes which has the highest value.

We need the following constraints:

– Each edge e connecting na to nb must be at least 1 unit long on the x axis:∨
i∈(a,b)

∆xi ≥ 1.

– Edge ordering constraints for ea <E eb:

la ≤ lb,
(
¬qupa ∧ ¬qdown

b

)
⇒ la + 1 ≤ lb

– An edge i is short (qup or qdown) if both ends have the same direction and
the vertical distance between nodes is one:

qupi ⇒ (dupi = Begin) ∧ (dupi = End) ∧ (ya + 1 = yb)

qdown
i ⇒ (ddown

i = Begin) ∧ (ddown
i = End) ∧ (ya − 1 = yb)

– Direction on edge i decides vertical level constraints:

(dbegini = Straight)⇒ (ya = li), (dbegini = Up)⇒ ya + 1 ≤ li,

(dbegini = Down)⇒ ((qupi ⇒ (ya ≥ li)) ∧ (¬qupi ⇒ (ya ≥ li + 1)))

And similar for dend.
– The sum of ∆x values over the edge must match the shape of the edge:(

qup ∨ qdown
)
⇒ Σj∈(a,b)∆xj ≤ 1(

¬qup ∧ ¬qdown ∧
(
dbegin 6= Straight ∨ dend 6= Straight

))
⇒ Σj∈(a,b)∆xj ≥ 2

With this representation we can now also optimize for bends by using the
difference between dbegin and dend on each edge. See examples in Figure 9. The
visual quality of the produced schematics is much better with the new additions
of switch orientation and short-edges.

Schematic drawings, automatically
created from the topological data in
an infrastructure model using a lin-
ear track referencing system (Ch. 6).

Warning

Error
Static verification, analysis of in-
frastructure and interlocking models
according to specifications given as
Datalog logic programs (Ch. 2).

Capacity analysis for railway construction using SAT modulo Discrete Event Simulation 3

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two trains on a two-track station.
The green areas show track segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which are currently occupied by a
train going from right to left.

In consequence, this paper addresses the following problem: in the context of designing
the layout and control systems for railway stations, does the station infrastructure have the
capacity to handle the amount of trains and the desired traveling times to provide adequate
service in transportation of goods and passengers?

As an example, consider the question of crossing trains on a railway station. Fig. 1
shows two sequences of movements which result in such a crossing. There are a number of
details of the railway design which can cause this scenario to become infeasible (or take an
unacceptably long time), such as signal placement, detector placement, correct allocation
and freeing of resources, track lengths, train lengths, etc.

Railway design and construction planning is an old engineering discipline with long-
standing traditions. Demands for the highest safety, compatibility with existing infrastruc-
ture and practices, and high investment costs, make railway engineering a conservative do-
main. The design of railways is in practice highly sequential, leading to the known advan-
tages and disadvantages of so-called waterfall process models.

Waterfall-style design processes require that high-level specifications can be written up-
front and afterwards implemented without feedback from the implementation process back
to the high-level specifications. This also means that verification and validation in waterfall-
style design processes is confined to the scope of each separate design activity, or destined
to have little hope of improving the design when weaknesses are uncovered.

Slightly unfounded design assumptions which are made early in the early process stages
have been known to trickle all the way down to the final stages and require new rounds of
design starting from the top, a process which typically takes several years.

These negative effects are typically mitigated by:

1. Re-using proven design concepts, i.e. doing something the same way as somewhere else,
where it has already turned out to work well.

2. Allowing sizable margins, e.g. planning the track with more than enough space for safety
distances so that it is highly likely that control system engineers will later be able to
come up with a safe and performant design.

These mitigations exploit tradition, experience and cross-discipline knowledge in the
railway engineers, which in turn contributes to making the engineering community slow-
moving and conservative.

However, modern construction practice expects and demands optimization. When space
requirements, performance requirements and cost limitations are squeezed to the limits of

Planning of operations, using
SAT for capacity verification, with
special-purpose specifications suited
to construction projects (Ch. 3).

Distance

Velocity Velocity restriction Simulation, implemented by estab-
lished methods and used as a timing
measurement component in capacity
verification (Ch. 3).

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringClassMasculine 
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValue (StringTerm "21.0m")))

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End, Dist), Dist < 21.0.

Controlled natural language, speci-
fying properties of infrastructure us-
ing a natural language-like syntax,
with editor support (Ch. 5).

Fig. 12: Partial screen capture from our interactive design tool showing suggestions
for design improvement to the user, inspired by integrated development environments
used for programming. The individual optimization steps run their calculations as a
background process, showing an information symbol where the algorithm is able to
provide an improvement over the current design. The user can decide to implement it
or to dismiss this change and similar changes from future suggestions.

towards a better design, which can be performed by a user interactively. Using
a computer-assisted design program for railway, or a drafting program (such as
AutoCAD) extended with semantic information about railway objects and rail
network topology, the user gets suggestions for smaller changes to their design
and can investigate how applying these changes affects the various scenarios.

Local optimization steps suggested to the user are the following:

– Redundant equipment: if removing a single object from the drawing can
still be made to satisfy all local capacity requirements, the program suggests
that the object is redundant. This class of suggestions is based on the SAT-
based component minimization technique described above.

– Local move of equipment: if moving a single object or a set of nearby
objects can improve the overall capacity measure on the station, the program
suggests moving the object (or set of objects). This class of suggestions is
based on the numerical timing optimization technique described above.

– Adding equipment: if adding a single piece of equipment (and perform-
ing local moves of equipment afterwards) can improve timing, the program
suggests this to the user. This class of suggestions is based on the numerical
timing optimization technique described above.

When the user accepts any of these changes, they can investigate how the
dispatch plans and the timings change. The tool meanwhile calculates new sug-
gestions based on the new layout.

We have developed a prototype tool which can calculate and suggest such
changes to a user while they are editing their layout, and we are currently starting
testing of this tool in an industrial setting together with railway engineers to
investigate how useful such suggestions are, and how often they can be used
compared to a from-scratch synthesis.

Synthesis and optimization, creating
a signalling design from scratch or
suggesting improvements to existing
designs. (Ch. 4).



RailCons results overview (2/2)

14

1.5 Research contributions

The following overview shows the components of our railway design tool chain
that we have developed and which is described in the following chapters.

Infrastructure models, edited in a
graphical interactive editor (CAD
program) extended with railway
semantic data and translated into
railML for analysis (Ch. 7).

12 Bjørnar Luteberget and Koen Claessen

(a) Crossover

(b) Ladder sidings (c) Real-world example: Eidsvoll railML

Fig. 9. Output examples for the level-based SAT method

Note that the if an edge is a short edge (such as a crossover between two
adjacent tracks) it does not require its own level, and we use instead the same
level as the one of its end nodes which has the highest value.

We need the following constraints:

– Each edge e connecting na to nb must be at least 1 unit long on the x axis:∨
i∈(a,b)

∆xi ≥ 1.

– Edge ordering constraints for ea <E eb:

la ≤ lb,
(
¬qupa ∧ ¬qdown

b

)
⇒ la + 1 ≤ lb

– An edge i is short (qup or qdown) if both ends have the same direction and
the vertical distance between nodes is one:

qupi ⇒ (dupi = Begin) ∧ (dupi = End) ∧ (ya + 1 = yb)

qdown
i ⇒ (ddown

i = Begin) ∧ (ddown
i = End) ∧ (ya − 1 = yb)

– Direction on edge i decides vertical level constraints:

(dbegini = Straight)⇒ (ya = li), (dbegini = Up)⇒ ya + 1 ≤ li,

(dbegini = Down)⇒ ((qupi ⇒ (ya ≥ li)) ∧ (¬qupi ⇒ (ya ≥ li + 1)))

And similar for dend.
– The sum of ∆x values over the edge must match the shape of the edge:(

qup ∨ qdown
)
⇒ Σj∈(a,b)∆xj ≤ 1(

¬qup ∧ ¬qdown ∧
(
dbegin 6= Straight ∨ dend 6= Straight

))
⇒ Σj∈(a,b)∆xj ≥ 2

With this representation we can now also optimize for bends by using the
difference between dbegin and dend on each edge. See examples in Figure 9. The
visual quality of the produced schematics is much better with the new additions
of switch orientation and short-edges.

Schematic drawings, automatically
created from the topological data in
an infrastructure model using a lin-
ear track referencing system (Ch. 6).

Warning

Error
Static verification, analysis of in-
frastructure and interlocking models
according to specifications given as
Datalog logic programs (Ch. 2).

Capacity analysis for railway construction using SAT modulo Discrete Event Simulation 3

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two trains on a two-track station.
The green areas show track segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which are currently occupied by a
train going from right to left.

In consequence, this paper addresses the following problem: in the context of designing
the layout and control systems for railway stations, does the station infrastructure have the
capacity to handle the amount of trains and the desired traveling times to provide adequate
service in transportation of goods and passengers?

As an example, consider the question of crossing trains on a railway station. Fig. 1
shows two sequences of movements which result in such a crossing. There are a number of
details of the railway design which can cause this scenario to become infeasible (or take an
unacceptably long time), such as signal placement, detector placement, correct allocation
and freeing of resources, track lengths, train lengths, etc.

Railway design and construction planning is an old engineering discipline with long-
standing traditions. Demands for the highest safety, compatibility with existing infrastruc-
ture and practices, and high investment costs, make railway engineering a conservative do-
main. The design of railways is in practice highly sequential, leading to the known advan-
tages and disadvantages of so-called waterfall process models.

Waterfall-style design processes require that high-level specifications can be written up-
front and afterwards implemented without feedback from the implementation process back
to the high-level specifications. This also means that verification and validation in waterfall-
style design processes is confined to the scope of each separate design activity, or destined
to have little hope of improving the design when weaknesses are uncovered.

Slightly unfounded design assumptions which are made early in the early process stages
have been known to trickle all the way down to the final stages and require new rounds of
design starting from the top, a process which typically takes several years.

These negative effects are typically mitigated by:

1. Re-using proven design concepts, i.e. doing something the same way as somewhere else,
where it has already turned out to work well.

2. Allowing sizable margins, e.g. planning the track with more than enough space for safety
distances so that it is highly likely that control system engineers will later be able to
come up with a safe and performant design.

These mitigations exploit tradition, experience and cross-discipline knowledge in the
railway engineers, which in turn contributes to making the engineering community slow-
moving and conservative.

However, modern construction practice expects and demands optimization. When space
requirements, performance requirements and cost limitations are squeezed to the limits of

Planning of operations, using
SAT for capacity verification, with
special-purpose specifications suited
to construction projects (Ch. 3).

Distance

Velocity Velocity restriction Simulation, implemented by estab-
lished methods and used as a timing
measurement component in capacity
verification (Ch. 3).

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringClassMasculine 
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValue (StringTerm "21.0m")))

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End, Dist), Dist < 21.0.

Controlled natural language, speci-
fying properties of infrastructure us-
ing a natural language-like syntax,
with editor support (Ch. 5).

Fig. 12: Partial screen capture from our interactive design tool showing suggestions
for design improvement to the user, inspired by integrated development environments
used for programming. The individual optimization steps run their calculations as a
background process, showing an information symbol where the algorithm is able to
provide an improvement over the current design. The user can decide to implement it
or to dismiss this change and similar changes from future suggestions.

towards a better design, which can be performed by a user interactively. Using
a computer-assisted design program for railway, or a drafting program (such as
AutoCAD) extended with semantic information about railway objects and rail
network topology, the user gets suggestions for smaller changes to their design
and can investigate how applying these changes affects the various scenarios.

Local optimization steps suggested to the user are the following:

– Redundant equipment: if removing a single object from the drawing can
still be made to satisfy all local capacity requirements, the program suggests
that the object is redundant. This class of suggestions is based on the SAT-
based component minimization technique described above.

– Local move of equipment: if moving a single object or a set of nearby
objects can improve the overall capacity measure on the station, the program
suggests moving the object (or set of objects). This class of suggestions is
based on the numerical timing optimization technique described above.

– Adding equipment: if adding a single piece of equipment (and perform-
ing local moves of equipment afterwards) can improve timing, the program
suggests this to the user. This class of suggestions is based on the numerical
timing optimization technique described above.

When the user accepts any of these changes, they can investigate how the
dispatch plans and the timings change. The tool meanwhile calculates new sug-
gestions based on the new layout.

We have developed a prototype tool which can calculate and suggest such
changes to a user while they are editing their layout, and we are currently starting
testing of this tool in an industrial setting together with railway engineers to
investigate how useful such suggestions are, and how often they can be used
compared to a from-scratch synthesis.

Synthesis and optimization, creating
a signalling design from scratch or
suggesting improvements to existing
designs. (Ch. 4).



Into the future
I A main goal was to provide engineers with tools.
I Many remaining challenges in representation, interfaces,

domain complexity(!). Railcomplete AS is progressing.
I Engineer+developer collaboration is essential.

CAD + Infrastructure model

Interlocking tables

Simulator Static analysis

Capacity specs. Natural lang.

Synthesis

Schematic





Railway control systems

4000 m

Constructing a new railway line starts with a track plan:



Railway control systems

4000 m

Constructing a new railway line starts with a track plan:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to
the train:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to
the train:



Railway control systems

4000 m

Now, other trains can occupy different sections.



Railway control systems

4000 m

We add signals to indicate to drivers when they can proceed.



Railway control systems

4000 m

This situation is in principle safe, but is it a good design?



Two views on capacity: schematic track plan

The schematic track plan is a map of tracks and components,
such as signals, detectors, etc.

Distance margins determine allowable simultaneous
movements.

4 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

Signal spacing ls = 800 m

Effective track length lt = 250 m

Safety distance lo = 150 m

Alternative safety dist.

Fig. 2: A schematic track plan, a key artifact in designing the signalling system in a
route-based interlocking system. The plan is annotated with signalling components and
distances between locations relevant for interlocking safety requirements.

detectors together in an electronic interlocking system which prevents one train
from entering a blocking section before it has been cleared by the previous train.

The block section principle directly impacts the maximum frequency of trains,
and consequently the capacity of the railway, through the interplay between train
parameters (length, acceleration, and braking power), track layout (how many
tracks are available at which stations), and the location of signalling equipment.
The topic of this paper is how to design this infrastructure, specifically how to
choose the number and locations of signals and detectors to optimize capacity.

There are two main design methods for deciding signal and detector locations,
which have different application areas. The first method is the blocking time
diagram where a single track on a railway line, or a single path through a railway
station, is presented on the horizontal axis, and consecutive trains traveling the
same path are plotted with the blocking time of each section shown as rectangles
stretching out on the vertical time axis (see Fig. 1).

The second design method is to use a schematic track plan showing the
topology of tracks and the locations of signals, detectors, and other signalling
system components. The schematic plan is not geographically accurate (for the
sake of readability) but is annotated with traveling lengths between relevant
locations, such as from one signal to the next signal or detector. This plan is
used in the design of route-based interlocking systems to make assessments of the
effective lengths of station tracks, safety distances from a signal to other tracks
(so-called overlaps), and more (see Fig. 2).

Observe how the blocking time diagram and the schematic plan provide views
in different dimensions: the blocking time diagram provides continuous time and
a single spatial dimension but does not treat different choices of path, while the
schematic track plan shows all paths at once, but does not directly show how a
train would travel in time. The latter concerns schedulability, while the former
concerns timing. For detailed signalling design, the decisions that impact the
interaction between these two analysis domains are a complex task where an
engineer balances a number of diverse concerns.



Two views on capacity: blocking diagram
A single path, or related paths mapped to a linear axis.

Synthesis of Railway Signaling Layout from Local Capacity Specifications 3

T
im

e

Station

Line Line

Block

section

Entry route Station
track Overlap

Exit route Block
section

Train 1

Block

section

Entry route Station
track Overlap

Exit route Block
section

Train 2

Critical
headway
section

Fig. 1: Blocking time diagram showing two (non-stopping) trains traveling from a line
blocking section into a station and back onto a line blocking section. Dashed lines
indicate train locations and velocity, and gray boxes indicate the lengths and times of
sections exclusively allocated to the trains. Figure adapted from [27].

how the changes influence the infrastructure and operational scenarios. Thus,
our method can consider some signals fixed, i.e., part of the design, while there
rest are amenable to optimization.

These methods are a step towards a railway signaling engineering method-
ology based on explicit specifications, and using analysis and verification tools
every step along the way, which we believe can improve decision-making.

The main contributions of this paper thus are: (1) defining and demonstrating
a novel specification-based design methodology for automating the layout of
railway signaling components, (2) extending existing planning and simulation
methods to make changes in the designs which improve their quality with respect
to given specifications, and (3) showing how incremental optimization and partial
synthesis can be used in specification-based design through an interactive tool.

2 Background

The basic safety principles used in most railways around the world are based
on dividing railway lines into fixed blocking sections, and use signals and train



Specification capture
Railway engineers gave us examples of performance properties
that governed their designs.

Typical categories:

1. Running time (get from A to B)
– Similar to a simulation test, but smaller specification.

2. Frequency (several consecutive trains)
– Route trains into alternate tracks.

3. Overtaking
4. Crossing

– Let one train wait on a side track while another train passes.



Capacity specifications
Local requirements suitable for construction projects.
I Operational scenario S = (V,M,C):
I Vehicle types V = {(li, vmax

i , ai, bi)}, defined by length, max
velocity, max accel, max braking.

I Movements M = {(vi, 〈qi〉)}, defined by vehicle type v and
ordered sequence of visits 〈qi〉.
I Each visit qi = ({li} , td) is a set of alternative

locations li and an optional dwelling time td.

I Timing constraints C = {(qa, qb, tc)} which orders two
visits and sets a maximum time from the first to the
second tqa < tqb < tqa + tc. The maximum time constraint
can be omitted (tc = ∞).



Advantages of capacity specification
Can be specified for a single construction project, not
dependent on whole-network timetables.

This can give us:
I Improved communication about specifications between

contractual parties.
I Automated analysis

– Early-stage, lower-effort capacity verification
– Regression testing after changes in design
– Unifies ad-hoc methods in use today

I Better understanding and communication between
construction engineers and timetable planners.



Verification of local capacity specifications

Verification of these specifications would involve finding
satisfying train trajectories and control system state:

∃p : spec(p)

Also, constrained by:
I 1 - Physical infrastructure
I 2 - Allocation of resources (collision safety)
I 3 - Limited communication
I 4 - Laws of motion



Constraints (2) Allocation of resources

An elementary route is a set of resources allocated together.

Signal A Signal C

Routes are conflicting if they use any of the same resources.

Signal A Signal C



Constraints (3) Limited communication
Signal information only carries across two signals
(”pre-signalling”).

Velocity

Known movement authority

Auth.



Constraints (4) Laws of motion
Trains move within the limits of given maximum acceleration
and braking power. Train drivers need to plan ahead for braking
so that the train respects its given movement authority and
speed restrictions at all times.

v − v0 ≤ a∆t, v2 − v2i ≤ 2bsi.

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Dispatch vs. driver
Split the planning work into two separate points of view:

Dispatcher

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Elementary routes and their
conflicts

Train driver

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Verification architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):



SAT encoding of dispatch planning
General idea: represent which train occupies which elementary
route in each of a sequence of steps.

↓

t1 t1

t2

t2



SAT encoding
Planning as bounded model checking (BMC). Build planning
steps as needed using incremental SAT solver interface.

Movement correctness:
I Conflicting routes are not active simultaneously

conflict(r1, r2) ⇒ oir1 = Free ∨ oir2 = Free.
I Elementary route allocation is consistent with train

movement: (oir 6= t ∧ oi+1
t = t) ⇒∨{

oi+1
rx = t | route(rx), entry(r) = exit(rx)

}
Satisfy specification:
I Visits happen in order (timing requirement is measured on

simulation).



From verification to synthesis

Can we use verification techniques
to synthesize signaling designs?



Initial design
I Adding a single component somewhere

does not give any good information.

I Let’s turn synthesis into optimization by
over-approximating required components.

Start with an initial design:
I Include signals at fixed distances from merging paths.
I The distances correspond to choices of overlap distance.Synthesis of Railway Signaling Layout from Local Capacity Specifications 9

Guard every branch

Fig. 7: Initial design: put signals in
place before every trailing switch, i.e.
where tracks join together.

Elementary route

Partial 1 Par
tia

l 2

Partial 3

Fig. 8: The planning abstraction of the
train dispatch allocates a set of partial
routes to each train. Elementary routes
are sets of partial routes which must
always be allocated together.

the design to allow dispatching to happen, we start the synthesis procedure by
heuristically over-approximating the components required to perform dispatch.
We insert a signal and a detector in front of every trailing switch, and at a set of
specified lengths corresponding to the choices of length of safety zone. We also
insert a detector in front of every facing switch. See Figure 7. If more than one
train is required on the same track for overtaking or crossing, we can also choose
to insert signals at multiples of the trains’ lengths. When there are several paths
of the specified length leading to a trailing switch, we put signals and detectors
at all the relevant locations. This design aims to allow all possible dispatches
and we rely on the next stage of the synthesis to remove redundant equipment.

3.3 SAT-based dispatch planning

The operational scenarios of the local capacity specifications describe train move-
ments only declaratively, so the first step to analyzing concrete states of the
system is to solve a planning problem which gives us a set of dispatch plans, i.e.,
determining sequences of trains and elementary routes which make the trains
end up visiting locations according to the movements specification.

Instead of using a constraint solver system (e.g. SMT solvers) to solve for
route dispatching and train dynamics simultaneously, we have chosen to sep-
arate the abstracted planning problem (i.e. selecting elementary routes to dis-
patch) from the physical constraints of train dynamics. This choice was made
for performance and extensibility reasons (see [21, Sec.III] for details).

We use the encoding from [21, Sec.III(B)] of an instance of the abstracted
planning problem into an instance of the Boolean satisfiability problem (SAT,
see [4] for an overview of SAT techniques). We consider the problem as a model
checking problem, and use the technique of bounded model checking (BMC) [3]
to unroll the transition relation of the system for a number of steps k, expressing
states and transitions using propositional logic. We thus assert the existence of
a plan, so that when the corresponding SAT instance is satisfiable, it proves the
fulfillment of the performance requirements and gives an example plan for it.
When unsatisfiable, we are ensured that there is no plan within the number of k
steps. Interlocking features such as elementary routes, partial route release, flank



Minimize number of signals
I Instead of verifying each property separately,

on a known model ...
I ... we have unknowns in the model, and

need to satisfy all properties simultaneously.10 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

. . . . . . . . . . . .

. . . . . .

. . . . . .

P
la

n
n

in
g

st
ep

s

Scenarios

S1,1

S1,2

S2,1

S2,2

Fig. 9: The planning matrix consists of the occupation status of a set of partial routes
for each state required for dispatch planning, and for each scenario in the local capacity
requirements. The top left cells show an example dispatch of a crossing movement where
green areas show track segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which are currently occupied
by a train going from right to left.

protection, overlaps, overlap timeouts, and swinging overlaps, can be converted
into our representation for solving the abstract planning problem.

To find a subset of the signaling components from the initial design that is
sufficient to successfully plan all the dispatches, we extend the planning approach
described above by adding a set of signal usage Booleans u indicating whether
the signal is needed. The set of occupancy status Booleans oir (for route r in state
i, taking values either Free or a train t) is repeated once for each operational
scenario, resulting in a SAT instance with parallel execution of each scenario on
copies of the same infrastructure (see Fig. 9). We link the signal usage status
u to each copy of the state so that the signal is marked as needed if it is used
independently of other signals:

∀i ∈ State : ∀s ∈ Signal : ∀t ∈ Train : ¬us ⇒∨{(
oir 6= t ∧ oi+1

r = t
)
| exit(r) = s

}
⇒∨{(

oir 6= t ∧ oi+1
r = t

)
| entry(r) = s

}
.

Similar approaches are taken for other signaling component types.
Now we find the smallest set of signaling equipment which is sufficient to

allow dispatching all scenarios. We minimize the number of signals by: taking
the sum of u variables as a unary-encoded number (see [5]) and then solving
SAT incrementally with a binary search on the upper bound of the sum.

3.4 Numerical optimization

When we have a design where dispatching is possible, we have fulfilled the dis-
crete part of the dispatch plan. Timing constraints, however might not yet be



Minimize number of signals
I Then, we can add a signal used indicator boolean to the

SAT problem, linking the usage of a signal across all
planning steps and all scenarions.

∀i ∈ State : ∀s ∈ Signal : ∀t ∈ Train : ¬us ⇒∨{(
oir 6= t ∧ oi+1

r = t
)
| exit(r) = s

}
⇒∨{(

oir 6= t ∧ oi+1
r = t

)
| entry(r) = s

}
.

I Solve MaxSAT maximising unused signals.



Numerical optimization of component locations
Signal minimization gives a set of signals and a set of
corresponding dispatches which fulfil the given specifications.
I Adjusting positions of components may improve timing

results in simulator.
I Discontinuous, non-linear, multivariate real-valued

optimization problem.

x



The function to be optimized
The function to be optimized is a weighted sum of dispatch
timing measures.

fb(~x) =
∑
s

ws

(
1

ns

∑
d

tb+~x(d)

)
,

where
I ~x represents the location of each signal and detector,
I s indexes capacity specifications,
I ws is the weight assigned to specification s,
I d indexes dispatch plans for each operational scenario, and
I tb+~x(d) is the simulation timing result.

(Trading performance and cost is performed by the user)



Powell’s method
We fix the set of components, fix the tracks that they belong to,
and fix their order within the track.

Powell’s method (1964):
I Given domain D ⊂ Rn, initial point ~x0 ∈ D, and cost

function f : D → R.
I Iterate through search vectors ~vi ∈ V and do a line search

for α ∈ R minimizing ~xi+1 = f(~xi + α~vi).
I Remove the ~vi which yielded the highest |α|, and replace it

with ~xi+1 − ~xi normalized. Repeat until ‖~xi+1 − ~xi‖ < ε.
Brent’s method (1973):
I A reliable method for root-finding or minimization for

non-differentiable functions.
I For well-behaved functions: inverse quadratic interpolation,

or linear interpolation.
I For not-so-well-behaved functions: bisection / golden

section.



Mapping locations to the unit cube
I Preserve which tracks components are located at, and

their order to ensure planned dispatches are still
meaningful. Minimum distance d between components.

I Map the component location space to the unit cube [0, 1]n

(n-tuples in [0, 1]) so that the whole of the unit cube is a
valid point in the component location space.

Encode: scan(0.0, λ s, x → linstep(replace(s, x) + d, l − d, x)).
Decode: scan(0.0, λ s, x → replace(s, lerp(s+ d, l − d, x))).

x0 = 0.45
x1 = 0.30



Synthesis algorithm overview

Synthesis of Railway Signaling Layout from Local Capacity Specifications 7

Track
plan

Capacity
specs.

Initial
design

Planning
SAT-based

dispatch plan-
ning with min.
no. of signals

Numerical
Powell/Brent nu-
merical method

optimizing signal
and detector

locations

Simulation
Discrete event
simulation as
optimization
cost function

Output
Signalling layout
and simulations
demonstrating

specs. fulfillment

Add new
signals/
detectors

Dispatch
plans

Fig. 6: Synthesis process overview. Track plan and capacity specifications are given as
input, and together with an initial design based on a heuristic algorithm they are given
to the SAT-based planner for simultaneous dispatch planning of all usage scenarios. A
numerical method takes the dispatch plans and adjusts the locations and number of
signals and detectors until no better result from simulation is achieved.

and crossings, and are read from the railML format3. We use our method
from [21] for local capacity specifications in SAT, summarized in Section 3.1.

2. Initial design: We propose in Section 3.2 a heuristic algorithm to over-
approximate the signaling components required to plan the set of all possible
movements on the given track plan. This forms our initial maximal design.

3. Planning optimization: Ignoring all timing aspects, we calculate the small-
est set of signals and detectors that are able to dispatch all of the scenarios
described in the local capacity specifications. This is done by solving a plan-
ning problem where all scenarios are planned simultaneously. An incremental
SAT solver derives the plans and optimizes the number of signals that are
used. This extends our work from [21], and is detailed in Section 3.3.

4. Numerical optimization: A measure for the performance of the design is
calculated by dispatching all of the planned ways to realize the performance
specifications and measuring the difference between the required time and
the simulated time. This measure is used as a goal function for a meta-
heuristic numerical optimization algorithm for moving the signals around,
and when this algorithm converges, each track is tested using Discrete Event
Simulation for how much improvement would be obtained by adding signals
to it and repeating the optimization process. See Section 3.4 below.

5. Output: After the process is done, the user is left with a design and a set
of dispatch plans and simulated train movements which describe how the
capacity requirements are fulfilled by this design.

3 See https://railml.org/



Local optimization steps
I Synthesis from scratch not always suitable.
I Instead, search for a single step of the synthesis algorithm

that gives the most effect on the current design.

1. Redundant component: removing a single object while still
satisfying specifications.

2. Local move of component: moving a single object or a set
of nearby objects may improve the overall capacity
measure.

3. Adding component: adding a single component (and
performing local moves) which improves overall capacity
measure.

Each of these can be suggested to the user.



Related work
I Formal methods is all about safe implementations of

control systems.
I Operations research is all about time tabling on large-scale

networks.

I Mao, B. et al.: Signalling layout for fixed-block railway lines
with real-coded genetic algorithms, Hong Kong Institute of
Engineers, Transactions (2006).

I Weits, E. et al.: Generating optimal signal positions,
Computers in Railways XII (2010).

– Does not deal with schedulability.
– Analytical performance models.

I Dillmann, S. and Hähnle, R.: Automated planning of ETCS
tracks, RSSRAIL 2019.

– Heuristic algorithm.



Conclusions and future work
I Not a complete method:

1. initial design does may not have maximum schedulability
2. simultaneous planning may not be the best starting points.
3. the cost function may have multiple local optima.

I Scalability concerns:
1. specification language unsuited for large terminals.
2. algorithm for adding new signals is naive.

I Assumes fixed block design principles. ERTMS Level 3 with
moving block may require different planning algorithm.

I Imperative simulation at the core allows extending timing
calculations to be more sophisicated.

I Fast results for small infrastructures.



RailCons project: automated verification

Project objectives:

I Verify that railway signalling and interlocking designs
comply with regulations.

I Provide tools which allow railway engineers to perform
such verification as part of their daily routine (“lightweight
verification”).

“Formal methods will never have a significant
impact until they can be used by people that don’t

understand them.”

— (attributed to) Tom Melham



Models: railway signalling and interlocking designs

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1 2

3

4 6

5

Switch X Switch Y

(a) Track and signalling component layout

Route Start End Sw. pos Detection sections Conflicts
AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

(b) Tabular interlocking specification



Static verification

Static verification

Controlled natural language



Properties: technical regulations
I In our case study: Norwegian regulations from national

railways (Bane NOR)
I Static kind of properties, often related to object properties,

topology and geometry (example on next slide)



Properties: technical regulations
Example from regulations:
I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Can be classified as follows:
– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking properties



Datalog verification tool
I Prototype using XSB Prolog tabled predicates, front-end is

the RailCOMPLETE tool based on Autodesk AutoCAD
I Rule base in Prolog syntax with structured comments

giving information about rules

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths



Challenge: participatory verification

Challenge: Users (railway engineers) are not experts in
verification techniques, so how can they
I build models of the systems to be verified?
I write properties in the verifier’s input language?
I interpret the output of the verifier when violated properties

are found?

Input to verification:
I Models: CAD extended with structured railway data

(familiar to engineers, user-friendly)
I Properties: Datalog (unfamiliar to engineers, not

user-friendly enough)

... consider another verification property input language?



Overview of approach
I Define a Controlled Natural Language as a high-level

domain-specific language to write properties.
I Represent properties as rephrasing of natural language

specifications (adds tracability of requirements)

CNL editor

Proper ties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation
of infrastructure

Datalog
reasoner

Issues presentation
(warnings, errors)

Or iginal text
(w/marked-up
sentences)

Side by side tracing through
CNL to original text.



Issues view
I Backwards tracing – explanation of non-compliance

CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringC
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValu

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End,

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.



Advantages
RailCNL as a front-end for property input for verification:
I RailCNL is domain-specific: tailored to Datalog logic and

regulations terminology. Gives readability and
maintainability.

I Resembles natural language – improves readability and
engineer participation.

I Separate textual explanation (such as comments used in
programming) are typically not needed.

I RailCNL statements are linked the original text. so that
reading them side by side reveals to domain experts
whether the CNL paraphrasing of the natural text is valid. If
not, they can edit the CNL text.



Further challenges and future work
Participatory verification:
I RailCNL is a common language shared between

programmers and railway engineers for verification work.
I CNLs are not a magical solution to end-user programming.
I DSLs evolve along-side the application.

Language:
I Structures in regulations that span several phrases/rules

(scopes, exceptions) – represent on textual or GUI level?
I Macros – can users extend the language within the scope

of their texts?

Tool support:
I Can railway engineers from other disciplines create their

properties themselves, from scratch, with editor support?
I Is example-based and editor-supported language learning

good enough?



Capacity verification

Capacity verification

local capacity specifications

synthesis and optimization



Railway control systems

4000 m

Constructing a new railway line starts with a track plan:



Railway control systems

4000 m

Constructing a new railway line starts with a track plan:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to
the train:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to
the train:



Railway control systems

4000 m

Now, other trains can occupy different sections.



Railway control systems

4000 m

We add signals to indicate to drivers when they can proceed.



Railway control systems

4000 m

This situation is in principle safe, but is it a good design?



Requirements

Will my station design handle the
actual traffic?

Two methods used in practice:
1. Whole-network time table analysis: a whole discipline in

itself – complicated theory and software
2. Manual, ad-hoc analysis: varying quality, little

documentation, low repeatability.



Design-implementation-operation

Design

Implementation

Operation

?

Formal methods for verifying
correctness (safety) [3, 2].

Railway optimization for
network-wide timetables [1, 4].

[1] M. Abril, F. Barber, L. Ingolotti, M.A. Salido, P. Tormos, and A. Lova. An
assessment of railway capacity. Transportation Research, 44(5):774 – 806, 2008.

[2] Arne Borälv and Gunnar Stålmarck. Formal verification in railways. In
Industrial-Strength Formal Methods in Practice, pages 329–350. Springer, 1999.

[3] A. Fantechi, W. Fokkink, and A. Morzenti. Some trends in formal methods
applications to railway signalling. In Formal Methods for Industrial Crit Sys., 2012.

[4] Alex Landex. Methods to est. railway cap. and passenger delays. PhD thesis,
2008.



Design-implementation-operation

Design

Implementation

Operation

Agile, fast verification methods with
suitable, small specifications.

Formal methods for verifying
correctness (safety).

Railway optimization for
network-wide timetables.



Specification capture
Railway engineers gave us examples of performance properties
that governed their designs.

Typical categories:

1. Running time (get from A to B)
– Similar to a simulation test, but smaller specification.

2. Frequency (several consecutive trains)
– Route trains into alternate tracks.

3. Overtaking
4. Crossing

– Let one train wait on a side track while another train passes.



Capacity specifications
Local requirements suitable for construction projects.
I Operational scenario S = (V,M,C):
I Vehicle types V = {(li, vmax

i , ai, bi)}, defined by length, max
velocity, max accel, max braking.

I Movements M = {(vi, 〈qi〉)}, defined by vehicle type v and
ordered sequence of visits 〈qi〉.
I Each visit qi = ({li} , td) is a set of alternative

locations li and an optional dwelling time td.

I Timing constraints C = {(qa, qb, tc)} which orders two
visits and sets a maximum time from the first to the
second tqa < tqb < tqa + tc. The maximum time constraint
can be omitted (tc = ∞).



Constraints

Verification of these specifications would involve finding
satisfying train trajectories and control system state:

∃p : spec(p)

Also, constrained by:
I 1 - Physical infrastructure
I 2 - Allocation of resources (collision safety)
I 3 - Limited communication
I 4 - Laws of motion



Constraints (2) Allocation of resources

An elementary route is a set of resources allocated together.

Signal A Signal C

Routes are conflicting if they use any of the same resources.

Signal A Signal C



Constraints (3) Limited communication
Signal information only carries across two signals
(”pre-signalling”).

Velocity

Known movement authority

Auth.



Constraints (4) Laws of motion
Trains move within the limits of given maximum acceleration
and braking power. Train drivers need to plan ahead for braking
so that the train respects its given movement authority and
speed restrictions at all times.

v − v0 ≤ a∆t, v2 − v2i ≤ 2bsi.

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Automated verification
Design-time capacity verification amounts to planning in a
mixed discrete/continuous space.

Some suggestions:
I PDDL+, planning domain description language for mixed

discrete-continuous planning domains [1].
I SMT with non-linear real arithmetic [2, 4].
I dReal: δ-complete decision proc. for FOL with reals [3].

Using these tools/techinques and straight-forward modeling
did not make our problem manageable on relevant scales.

[1] M. Fox and D. Long. Modelling mixed discrete-continuous domains for planning.
J. Artif. Intell. Res., 27:235–297, 2006.

[2] M. Franzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
J. SAT, 1:209–236, 2007.

[3] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories
over the reals. CADE-24 vol. 7898 of LNCS, pages 208–214. Springer, 2013.

[4] D. Jovanovic and L. de Moura. Solving non-linear arithmetic. ACM Comm.
Computer Algebra, 46(3/4):104–105, 2012.



Dispatch vs. driver
Split the planning work into two separate points of view:

Dispatcher

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Elementary routes and their
conflicts

Train driver

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):



SAT encoding of dispatch planning
General idea: represent which train occupies which elementary
route in each of a sequence of steps.

↓

t1 t1

t2

t2



SAT encoding
Planning as bounded model checking (BMC). Build planning
steps as needed using incremental SAT solver interface.

Movement correctness:
I Conflicting routes are not active simultaneously

conflict(r1, r2) ⇒ oir1 = Free ∨ oir2 = Free.
I Elementary route allocation is consistent with train

movement: (oir 6= t ∧ oi+1
t = t) ⇒∨{

oi+1
rx = t | route(rx), entry(r) = exit(rx)

}
Satisfy specification:
I Visits happen in order (timing requirement is measured on

simulation).



Freeing

A B C

D E

200 m 100 m 400 m

If A holds a train t of length 200.0m, freeing A is constrained by:

Ai ⇒
(
Ai+1 ∨ (Bi ∧ Ci) ∨ (Di ∧ Ei)

)
.



Eliminate equivalent solutions
I Can free⇒must free
I Can allocate⇒must allocate

I Exception to allocation: deferred progress
a train may waiting for a conflict to be resolved, even if the
conflict starts in the future.

Crossing example: exactly two solutions:

Design-Time Railway Capacity Verification using
SAT modulo Discrete Event Simulation

Bjørnar Luteberget
Railcomplete AS

Sandvika, Norway
Email: bjornar.luteberget@railcomplete.no

Koen Claessen
Chalmers University of Technology

Gothenburg, Sweden
Email: koen@chalmers.se

Christian Johansen
University of Oslo

Oslo, Norway
Email: cristi@ifi.uio.no

Abstract—Railway capacity is complex to define and analyze,
and existing tools and methods used in practice require com-
prehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-based methods of ca-
pacity analysis are available to them. Designs have subtle capacity
pitfalls which are discovered too late, only when network-wide
timetables are made – there is a mismatch between the scope
of construction projects and the scope of capacity analysis, as
currently practiced.

We suggest a language for capacity specifications suited for
construction projects, expressing properties such as running
time, train frequency, overtaking and crossing. Verifying these
properties amounts to solving a planning problem constrained by
discrete control system logic, network topology, laws of motion,
and sparse communication. To describe train dynamics one uses
second-order linear differential equations which when solved
analytically give rise to non-linear equations over real variables.

We argue that reasoning over the whole discrete/continuous
solution space is not efficient with current state-of-the-art solvers.
Instead, we have solved the problem by building a special-purpose
solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and continuous-domain dynamics and timing
constraints evaluated using discrete event simulation. The two
components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). We show that our method is fast
enough at relevant scales to provide agile verification in a design
setting, and we present case studies based on data from existing
infrastructure and ongoing construction projects.

I. INTRODUCTION

This paper addresses a central problem that occurs when
designing the layout and control systems for railway stations:
Does the station infrastructure have the capacity to handle the
amount of trains and the desired traveling times to provide
adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on
a railway station. Fig. 1 shows two sequences of movements
which result in such a crossing. There are a number of details
of the railway design which can cause this scenario to become
infeasible (or take an unacceptably long time), such as signal
placement, detector placement, correct allocation and freeing
of resources, track lengths, train lengths, etc.

Systematic capacity analysis for railways is typically per-
formed on the scale of national railway networks, using
comprehensive input on infrastructure and timetables, and
only after the complete design is finished. Moreover, the
widely used methods and tools for capacity analysis are

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two
trains on a two-track station. The green areas show track
segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

heavy-duty methods, consisting of complicated simulations,
and require specialized knowledge, thus not being suitable
for agile design-time verification of railway stations. As a
consequence, railway construction projects usually rely on
informal, vague, or even non-existent capacity specifications,
and engineers need to make ad-hoc/manual analyses of how
the control system can provide this capacity.

Our goal is to develop a verification technique and tool
to help engineers specify capacity properties at design time
and to check these automatically. To be agile, the tool needs
to (1) have reasonable running times so that the verification
can be run on the fly as the design is being updated by an
engineer working in a drafting CAD application, and (2) keep
the required input to the minimum of information needed
to verify relevant properties. This style of verification gives
engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

The problem: We consider the low-level railway infras-
tructure capacity verification problem, which we define as
follows:

Given a railway station track plan including signal-
ing components, rolling stock dynamic characteris-
tics, and a performance/capacity specification, verify
whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:
• Low-level running time analysis – verify the time re-

quired for getting from point A to point B.

I Overlaps. Partial release.
I Loops in the infrastructure / loops in the dispatch.



Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):



New design process

A

B

Interactive design session:
3 Running time

7 Crossing on A



New design process

A

B

Interactive design session:
3 Running time

7 Crossing on A



New design process

A

B

Interactive design session:
3 Running time

3 Crossing on A



New design process

A

B

Interactive design session:
3 Running time

7 Crossing on A



Conclusions
I Formalized capacity specifications for

construction projects.
I Verification by discrete planning and simulation:

abstract away from continuous time, distance, velocity.
I In practical cases: naive refinement works well enough.

Future work
I Improved abstraction refinement? Needs difficult cases.
I Integrate with graphical engineering editor.
I Interface with commercial simulators.





Satisfiability queries in system design
System properties can be:

I Qualitative: the system has or does not have the property.
Ask whether properties are satisfied: satisfiability query.

– Railway regulations.
I Quantitative: the system has more or less of the property.

Measure by objective function.
– Railway capacity.

Qualitative properties are modular.



SAT-based algorithms
If your problem is not (efficiently) expressible as SAT:
I generate an abstracted problem as SAT
I ... meaning that you leave out variable or constraints
I ... preserving UNSAT results, but not SAT results.
I For SAT results, check whether the abstracted system

model are still valid in the full model.
I If not, add variables or constraints to the SAT system that

eliminates this mismatch.
This technique has given rise to a wide range of SAT-based
algorithms.



SAT-based algorithms
SAT-based algorithms have various levels of sophistication:
I Generate and test (Add the negation of the current

solution.)
I Lazy constraints (E.g. non-cyclicity constraints, add path

cycles.)
I Lazy SMT / Fully lazy SMT (Use theory knowledge to

create new constraints in the SAT abstraction.)
I Counter-example guided abstraction refinement (Use full

system model to create new variables and/or constraints.)



SAT-based local railway capacity verification algorithm
67

SAT
Spurious
paths

Unnecessary
repetitions Simulation

(Section 3.4.1) (Section 3.4.2) (Section 3.4.3) (Section 3.5)

SuccessInput

Dispatch plan prefix

Set of related repetitions

SCC in train path

Figure 3.12: Main algorithm for local capacity verification (extended from Fig-
ure 3.4) with two more tests for handling loops and repetitions.

unlike a planning model, one cannot prescribe which state the simulation will end
up in, only measure the outcome. Simulation methods are commonly used to de-
velop and assess time tables, and by introducing stochastic elements in the model
and repeating the simulation a large number of times, the robustness of a time table
can be analysed (e.g., see [129]).

Discrete event simulation (DES) is a simulation technique based on assuming
that changes to system state happen only at a set of discrete points in time, so that
the simulation can progress efficiently by jumping from one point in time to the
next point in time where an event is scheduled. This simulation assumption can
be made to work even for the continuous dynamics of train movements, because
we assume that each train’s dynamics do not interact directly with other train’s
dynamics. Trains exist in separate worlds which are only connected to each other
through the control system, and the control system has only discrete state changes.
Each train acts separately on the information it has received from signals so far, and
needs only to predict how long it will take to reach the next signal or sensor where
it interacts with the control system.

In our tool architecture, the planner component works on an abstraction of the
simulation problem that is just detailed enough to ensure that trains end up where
they are specified to go, and that the system does not enter a dead-lock state. This
is the reason that the planning model must include safety zones, partial release and
the lengths of routes and trains – the sequences of routes and trains are represented
exactly so that we know what to expect during the simulation. If it turns out that
the planner’s assumptions about where the trains end up does not work out cor-
rectly in the simulator, then the correspondence between planning and simulation
is broken, which may be a modelling error in the simulator or errors in the route
specifications, for example if the switches are configured to turn in the wrong di-
rection. Running the capacity verification assumes that the route specifications are
correct, and this may be verified through other means (see [168]).



Schematic drawings
I Schematic drawings with linearly ordered nodes

x0 < x1 < x2 < x3 < . . ..
I Optimize size and simpleness.Automated Drawing of Railway Schematics using SAT 5

x = x0 x = x1 x = x2 x = x3

trunkend rightleft

leftright

trunk end

Node (end) Node (switch) Edge Ports

Fig. 3. Graph representation of linearized track plan. Nodes are ordered by an x coor-
dinate, and have a given type which determines which ports it has, e.g., a switch node
has trunk, left, and right ports. Edges connect ports on distinct nodes.

Begin

End

Out./left
switch

Out./right
switch

In./left
switch

In./right
switch

Crossing

(+1 other)

Flyover

(+4 others)

Fig. 4. Node classes and their drawing variants. Begin/end nodes have one variant
each. Switches are divided into four classes (each with two variants) based on their
orientation (incoming or outgoing) and their course (deviating left or right). Crossings
have three variants, and flyovers have six variants (symmetric variants omitted).

2.2 Track network representation

Different track segments are connected together at switches in a graph-like net-
work. The mathematical definition of a graph is too abstract for many engineer-
ing use cases. Some applications use a double node graph [11], or describe tracks
as nodes with two distinct sides [1]. For a schematic plan, we model switches
and crossings as graph nodes which have a given set of ports (Fig. 3 presents all
our modeling elements). Each end of each edge connects to a specific port on
a specific node. Model boundaries and track ends are also represented as nodes
with a single port.

Each location where tracks start/end or intersect with other tracks is rep-
resented as a node of a given class. The classes used in this paper are ends,
switches, crossings, and flyovers (shown in Fig. 4 with all their representative
variants). Each class comes with a different set of drawing requirements. For ex-
ample, a switch is oriented such that its branching edges (left/right) point either
up (called an outgoing switch) or down (called an incoming switch), seen in the
positive direction of the linear positioning system, and each switch class can be
drawn in two different variants, chosen freely, one with the trunk and straight leg
directed horizontally and another with the deviating leg directed horizontally.


