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I Bjørnar Luteberget

I (2005-2010) M.Sc. from NTNU: industrial mathematics.
I (2011-2014) Subsea engineering: Finite element analysis.
I (2014-2019) Ph.D. from UiO: software development for

railway engineering.



Numerical conformal mappings (M.Sc. thesis 2010)

I Numerical approximation of conformal mappings

Conformal mapping:

0 1

1 1

1-1

Figure 1.7: The map f (z) = z2 applied to a photo of a clock. See appendix A.1

for program code.



Numerical conformal mappings (M.Sc. thesis 2010)

Figure 1.5: Examples of different grid types used to graphically present confor-
mal maps. The first one is a rectangular grid mapped to the disc. The second
one is a polar grid mapped from the disc to the desired domain. The third one
is a Carleson grid mapped from the disc to the desired domain.
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Numerical conformal mappings (M.Sc. thesis 2010)

(a) (b)

(c) (d)

Figure 6.1: (a) The domain Ω. (b) Small circles that cover Ω as well as possible.
(c) Graph edges between tangent circles. (d) Approximate representation of Ω
as the intersection graph between the circles.

By letting each circle center be a node and each two tangent circles be an
edge, we get an intersection graph representing the hexagonal circle covering
of Ω.

Because we laid down the hexagonal grid without taking into account the
choice of Ω, it is possible that translating the original grid could have given a
marginally better covering of the domain, but both the polygonal approxima-
tion of Ω and the choice of r can easily be improved to make this effect negligi-
ble.
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Numerical conformal mappings (M.Sc. thesis 2010)

Figure 6.3: Circle packings for the domain Ω with decreasing radius in the
hexagonal grid
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Numerical conformal mappings (M.Sc. thesis 2010)
Application: planar potential flows (e.g. steady fluid flow).

Figure 3.1: Stream lines for fluid flow around an irregularity in the border. See
appendix A.2 for the program used to make the plots.
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Numerical conformal mappings (M.Sc. thesis 2010)
Application: flat maps of the brain surface.

Figure 7.2: Examples from Hurdal’s research on flat maps of the brain. Figures
from [8].
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IKM Ocean Design AS: finite element analysis

I Analysis of structural/mechanical, thermal properties.
I Wave statistics, material fatigue.
I Construction, installation planning.



Railcomplete AS: software for railway engineering

I Complex design dependencies between disciplines.
I Software support is not highly developed.
I AutoCAD plugin (C#/.NET): railway object model and

analysis tools.



Ph.D. research (2015-2019)
Ph.D. studies at Informatics, UiO funded by NFR and Railcomplete
AS (industry Ph.D.).

Automated reasoning for railway construction planning:

I Static analysis using Datalog
(published in iFM ’16, FM ’16, FMSD)

I Controlled natural language
(published in SEFM ’17, journ. u/review)

I Dynamic analysis (SAT-based verification/synthesis)
(published in FMCAD ’18, FM ’19, journ. u/review)

I Drawing railway schematics (SAT-based optimization)
(published in iFM ’19).



Ph.D. research (2015-2019)

I Best paper award at iFM ’16 for static railway infrastructure
verification.

I Rule base in Datalog syntax with structured comments:

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths



Ph.D. research (2015-2019)
I Best paper award at FMCAD ’18 for local railway capacity

verification.
I Split the planning work into two separate points of view:

Dispatcher (discrete planning)

↓
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Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is
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Hobby projects: Dynamic projection mapping

I C++ programming, computer vision library, least squares, ...
I Tom Nærland and Bjørnar Luteberget
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Hobby projects: Ill – audio-visual performance
I Supercollider audio programming, C++ / GLSL graphics,

guitar and electronics.
I Øyvind Mellbye, Tom Nærland, Markus Dvergastein, and

Bjørnar Luteberget.
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Research interests

Bjørnar’s main personal research interests:

I Mathematical/scientific programming in a broad sense.

I Automating and optimizing in design and engineering using
mathematical modelling and algorithms.

I The interface between general solvers and specific problem
domains.
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Outline

I Part I: SAT and SMT
a. SAT solvers
b. SAT-based algorithms and SMT

I Part II: SAT-based algorithms in railway engineering
a. Local capacity verification using planning and simulation.
b. Schematic drawings using difference logic and optimization.



Propositional logic
Propositions are statements that are either true or false:

I Example: it is raining
I Example: it is sunny
I Mathematical model: the statements x1, x2, . . . have no

further semantics than being either true or false.

Operations (logical connectives):
I AND (∧): x1 ∧ x2.
I OR (∨): x1 ∨ x2.
I NOT (¬): ¬x1.

I IMPLIES (→), a → b ≡ b ∨ ¬a.
I EQUIV (↔) a ↔ b ≡ (b ∨ ¬a) ∧ (a ∨ ¬b).
I ...



The Boolean satisfiability problem
Boolean algebra calculations:

I a = T , b = F
I a ∧ b = F
I a ∨ b = T

The Boolean satisfiability problem (SAT):
I Given a propositional logic formula φ(x1, x2, . . .), does there

exist an assignment to the variables such that
φ(x1, x2, . . .) = T?

I NP-complete. (”The” NP-complete problem).



The Boolean satisfiability problem

I Conjunctive normal form:
– express SAT problem as a conjunction of clauses.
– Each clause is a disjunction of literals.
– A literal is a variable or a negated variable.

I Example:

(x1 ∨ ¬x2) ∧
(x2 ∨ x3) ∧

(x4 ∨ x5 ∨ ¬x8) ∧
(x5 ∨ ¬x6 ∨ x7) ∧

(x2 ∨ ¬x6 ∨ ¬x7) ∧
x8



DPLL
The DPLL algorithm
(Davis, Putnam, Logemann, Loveland, 1962)

I Main idea: backtracking + unit propagation.
I Still basis for most efficient and complete solvers today.
I Let’s solve the following SAT problem:

(x1 ∨ x2) ∧
(x1 ∨ x3 ∨ x8) ∧

(¬x2 ∨ ¬x3 ∨ x4) ∧
(¬x4 ∨ x5 ∨ x7) ∧
(¬x4 ∨ x6 ∨ x8) ∧

(¬x5 ∨ ¬x6) ∧
(x7 ∨ ¬x8) ∧

(x7 ∨ ¬x9 ∨ x10) ∧



DPLL run (example by Jon Smock)

Decisions: Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = F .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = F .
x2 = T .
x3 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = F .
x2 = T .
x3 = T .
x4 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = F .
x2 = T .
x3 = T .
x4 = T .
x5 = T .
x6 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6 ← Conflict!
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = T .
x2 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = T .
x2 = T .
x3 = F .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = T .
x2 = T .
x3 = F .
x4 = F .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = T .
x2 = T .
x3 = F .
x4 = F .
x5 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10



DPLL run

Decisions:

x7 = F .
x8 = F .

x9 = T .
x10 = T .

x1 = T .
x2 = T .
x3 = F .
x4 = F .
x5 = T .

x6 = F .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6
x7, ¬x8
x7, ¬x9, x10
Solved!



Advances since DPLL
Many advances have been made in SAT solving since 1962:

I Conflict-driven clause learning in GRASP (Silva, 1996)
I Two-watched literals in zChaff (Chaff, 2001)
I VSIDS (variable state independent decaying sum) in zChaff
I Random restarts
I Locality based search (Chaff, Berkmin, MiniSAT)



Conflict-driven clause learning (CDCL) run
x7 = F



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T
x1 ∨ x2



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T

x3 = T
x1 ∨ x3 ∨ x8



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T

x3 = T

x4 = T



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T

x3 = T

x4 = T

x5 = T



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T

x3 = T

x4 = T

x5 = T

x6 = F



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T
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x5 = T
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Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T

x3 = T

x4 = T

x5 = T

x6 = F

x6 = T



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T

x3 = T

x4 = T

x5 = T

x6 = F

x6 = T



Conflict-driven clause learning (CDCL) run
x7 = F

x8 = F

x1 = F

x2 = T

x3 = T

x4 = T

x5 = T

x6 = F

x6 = T

Can learn the clause
x7 ∨ ¬x4 ∨ x8



DPLL run

Decisions:

x7 = F . ← Backtrack
x8 = F .

x9 = T .
x10 = T .

x1 = F .
x2 = T .
x3 = T .
x4 = T .
x5 = T .
x6 = T .

Formula:

x1, x2
x1, x3, x8
¬x2, ¬x3, x4
¬x4, x5, x7
¬x4, x6, x8
¬x5, ¬x6 ← Conflict!
x7, ¬x8
x7, ¬x9, x10
x7, ¬x4, x8 ← Learned



Conflict-driven clause learning
After having found a conflict clause, we can:

I Add the clause to our problem, hoping to gain unit
propagation from it in other situations.

I Backtrack to the highest decision level of the variables in the
clause: non-chronological backtracking.



SAT solver performance progression
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)

Figure 1: Evolution of the best solvers from 2002 to 2010 on the application benchmarks from the SAT 2009
competition using the cumulative number of problems solved (x axis) within a specific amount of time (y
axis). The farther to the right the data points are, the better the solver.

The strong emphasis on application benchmarks
led the community to organize a SAT Race in 2006,
an event especially dedicated to industrial applica-
tion problems (for details on the latest SAT Race,
see http://baldur.iti.uka.de/sat-race-2010/,
chaired by Carsten Sinz). Since then, SAT Competi-
tion and SAT Race have alternated, the former hav-
ing been organized in the odd years, and the latter
in even years.

2 Details on the Competitions

In the main track of the competition, the goal is to de-
termine whether a given SAT instance in conjunctive

normal form (CNF) is satisfiable or not as quickly as
possible. For satisfiable formulas, solvers are required
to output a model of the formula as a certificate.

The main track is run in two phases. The best
solvers of the first phase (selected by the competi-
tion jury) enter the second phase and are allocated
a longer timeout. Solvers are awarded according to
the number of benchmarks solved during the second
stage, using the cumulated time required to solve
those benchmarks to break ties. In 2011, two dif-
ferent rankings were used: one based on CPU time
which promotes solvers using resources as efficiently
as possible (e.g. sequential solvers) and another one
based on wall clock time which promotes solvers using
all available resources to answer as quickly as possible

2

Figure from M. Järvisalo, D. Le Berre, O. Roussel, L. Simon: The international
SAT solver competitions, AI Magazine, 2012.



Applications of SAT technology
I Formal methods:

– Hardware model checking, software model checking,
model-based testing.

I Artificial intelligence:
– Planning, knowledge representation, games.

I Bioinformatics
– Haplotype inference, pedigree checking, genetic regulatory

networks.
I Design automation

– Equivalence checking, delay computation, fault diagnosis, noise
analysis.

I Security
– Cryptanalysis, inverting hash functions.

 (from D. Le Berre: Introduction to SAT, SAT-SMT summer school 2014
slides)



Applications of SAT technology
I Computationally hard problems

– Graph coloring, traveling salesperson.
I Mathematical problems

– van der Waerden numbers, open problems in quasigroups.

I Core engine for other solvers: 0-1 ILP / pseudo-boolean,
QBF, #SAT, SMT, MaxSAT.

I Integrated with theorem provers: HOL, Isabelle.
I Integrated into software: SuSe Linux package dependency

manager, Eclipse provisioning system.

 (from D. Le Berre: Introduction to SAT, SAT-SMT summer school 2014
slides)



Incremental SAT
Solver interface from MiniSAT: (Eén, Sörensson, 2003)

public interface SATSolver {
public Literal NewVariable();
public void AddClause(List<Literal> clause);
public Model SolveUnderAssumptions(

List<Literal> assumptions);
}

I Allows solving many related SAT problems, reusing decisions
and learnt clauses!

I Basis for a wide variety of solvers.



Properties of transition systems

I System state: a vector of Booleans s.
I System transitions: a Boolean formula T (sj , sj+1).
I The system starts in an initial state I(s0).
I Verify that a property p(sj) holds in all states.
I ... and we’re willing to limit the number of transitions to k.

Bounded model checking (Biere et al., 1999):

BMC(S, I,T , p, k) = I(s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

¬p(sk)



Properties of transition systems
BMC gives a heavy formula. Incremental SAT helps:

BMC(k = 1) = I(s0) ∧ T (s0, s1) ∧ ¬p(s1)
BMC(k = 2) = I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ ¬p(s2)
BMC(k = 3) = I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ T (s2, s3) ∧ ¬p(s3)
. . .

... and the same idea applies to planning!
Planning as satisfiability (Kautz, Selman, 1992)



Satisfiability modulo theories
What if the propositions themselves had meaning in some other
theory with a corresponding decision procedure?
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Satisfiability modulo theories
What if the propositions themselves had meaning in some other
theory with a corresponding decision procedure?

φ = (a < b) ∧ (b < c) ∧ (c < a ∨ a < c)

Boolean abstraction:

φ = x1 ∧ x2 ∧ (x3 ∨ x4)

SAT solver finds x1 = T , x2 = T , x3 = T .
Theory solver (difference logic) learns ¬x1 ∨ ¬x2 ∨ ¬x3.



Satisfiability modulo theories
Approaches to SMT:

1. Eager SMT: represent or approximate domain by Booleans
(”bit-blasting”).

– Encoding techinques: one-hot, unary, binary (logarithmic).
(see Björk, 2009)

2. Fully lazy SMT: wait for an assignment from the SAT solver,
use it as an assumption in the theory solver.

3. Lazy SMT: wait for a partial assignment, and search for
constraints that can be deduced from the partial assignment.



Satisfiability modulo theories

φ = (g(a) = c) ∧ (f (g(a)) 6= f (c) ∨ g(a) = d) ∧ (c 6= d)

Boolean abstraction:

φ = x1 ∧ (¬x2 ∨ x3) ∧ ¬x4

SAT solver suggests: x1 = T , x2 = F , x4 = F .

Uninterpreted functions solver finds conflict:
f (g(a)) = f (c) 6= f (c), add new clause:

¬x1 ∨ x2



Satisfiability modulo theories

Figure from Clark Barrett, Summer School on Formal Techniques slides, 2016



Satisfiability modulo theories
Desirable properties in a theory solver:

I Speed/efficiency.
I Incrementality.
I Backtracking.
I Concise expression of conflicts.



The Z3 theorem prover
A highly popular and successful solver: Z3 from Microsoft
Research.

Supports many theories:
I Linear integer arithmetic, mixed linear/real arithmetic, ...
I Real difference logic, integer difference logic, ..
I Non-linear real arithmetic.
I Fixed size bit vectors
I Uninterpreted functions
I Arrays
I ... and can select automatically between them.

Other popular SMT solvers include MathSAT, Yices, CVC4.
Heavily used in program analysis, and interactive theorem provers.



Satisfiability modulo theories
Two perspectives on SMT:

1. General-purpose logic engines. Large, ambitious automated
reasoning programs (Z3, MathSAT, Yices, CVC4). Common
standardized input language SMT-LIB2. Z3 has ≈ 400k LOC.

2. Extend SAT solvers with domain-specific reasoning when
needed. MiniSAT has ≈ 3k LOC. Diff. logic 0.3k LOC.



Satisfiability modulo theories
Two perspectives on SMT:

1. General-purpose logic engines. Large, ambitious automated
reasoning programs (Z3, MathSAT, Yices, CVC4). Common
standardized input language SMT-LIB2. Z3 has ≈ 400k LOC.

2. Extend SAT solvers with domain-specific reasoning when
needed. MiniSAT has ≈ 3k LOC. Diff. logic 0.3k LOC.

↑ Will present two case studies from railway



Railway engineering

Part II:
SAT-based algorithms in railway engineering



Railway control systems

4000 m

Constructing a new railway line starts with a track plan:
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Constructing a new railway line starts with a track plan:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to the
train:



Railway control systems

4000 m

By adding detectors, we can allocate smaller pieces of tracks to the
train:



Railway control systems

4000 m

Now, other trains can occupy different sections.



Railway control systems

4000 m

We add signals to indicate to drivers when they can proceed.



Railway control systems

4000 m

This situation is in principle safe, but is it a good design?



Requirements

Will my station design handle the
actual traffic?

Two methods used in practice:
1. Whole-network time table analysis: a whole discipline in itself

– complicated theory and software
2. Manual, ad-hoc analysis: varying quality, little documentation,

low repeatability.



Design-implementation-operation

Design

Implementation

Operation

?

Formal methods for verifying
correctness (safety) [3, 2].

Railway optimization for
network-wide timetables [1, 4].

[1] M. Abril, F. Barber, L. Ingolotti, M.A. Salido, P. Tormos, and A. Lova. An
assessment of railway capacity. Transportation Research, 44(5):774 – 806, 2008.

[2] Arne Borälv and Gunnar Stålmarck. Formal verification in railways. In
Industrial-Strength Formal Methods in Practice, pages 329–350. Springer, 1999.

[3] A. Fantechi, W. Fokkink, and A. Morzenti. Some trends in formal methods
applications to railway signalling. In Formal Methods for Industrial Crit Sys.,
2012.

[4] Alex Landex. Methods to est. railway cap. and passenger delays. PhD thesis,
2008.



Design-implementation-operation

Design

Implementation

Operation

Agile, fast verification methods with
suitable, small specifications.

Formal methods for verifying
correctness (safety).

Railway optimization for
network-wide timetables.



Specification capture
Railway engineers gave us examples of performance properties that
governed their designs.

Typical categories:

1. Running time (get from A to B)
– Similar to a simulation test, but smaller specification.

2. Frequency (several consecutive trains)
– Route trains into alternate tracks.

3. Overtaking
4. Crossing

– Let one train wait on a side track while another train passes.



Capacity specifications
Local requirements suitable for construction projects.

I Operational scenario S = (V ,M,C):
I Vehicle types V = {(li , vmax

i , ai , bi)}, defined by length, max
velocity, max accel, max braking.

I Movements M = {(vi , 〈qi〉)}, defined by vehicle type v and
ordered sequence of visits 〈qi〉.

I Each visit qi = ({li} , td) is a set of alternative locations
li and an optional dwelling time td .

I Timing constraints C = {(qa, qb , tc)} which orders two visits
and sets a maximum time from the first to the second
tqa < tqb < tqa + tc . The maximum time constraint can be
omitted (tc =∞).



Constraints

Verification of these specifications would involve finding satisfying
train trajectories and control system state:

∃p : spec(p)

Also, constrained by:
I 1 - Physical infrastructure
I 2 - Allocation of resources (collision safety)
I 3 - Limited communication
I 4 - Laws of motion



Constraints (2) Allocation of resources

An elementary route is a set of resources allocated together.

Signal A Signal C

Routes are conflicting if they use any of the same resources.

Signal A Signal C



Constraints (3) Limited communication
Signal information only carries across two signals (”pre-signalling”).

Velocity

Known movement authority

Auth.



Constraints (4) Laws of motion
Trains move within the limits of given maximum acceleration and
braking power. Train drivers need to plan ahead for braking so that
the train respects its given movement authority and speed
restrictions at all times.

v − v0 ≤ a∆t, v2 − v2
i ≤ 2bsi .

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Automated verification
Design-time capacity verification amounts to planning in a mixed
discrete/continuous space.

Some suggestions:
I PDDL+, planning domain description language for mixed

discrete-continuous planning domains [1].
I SMT with non-linear real arithmetic [2, 4].
I dReal: δ-complete decision proc. for FOL with reals [3].

Using these tools/techinques and straight-forward modeling did
not make our problem manageable on relevant scales.

[1] M. Fox and D. Long. Modelling mixed discrete-continuous domains for
planning. J. Artif. Intell. Res., 27:235–297, 2006.

[2] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving
of large non-linear arithmetic constraint systems with complex boolean
structure. J. SAT, 1:209–236, 2007.

[3] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories
over the reals. CADE-24 vol. 7898 of LNCS, pages 208–214. Springer, 2013.

[4] D. Jovanovic and L. de Moura. Solving non-linear arithmetic. ACM Comm.
Computer Algebra, 46(3/4):104–105, 2012.



Dispatch vs. driver
Split the planning work into two separate points of view:

Dispatcher

↓

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Elementary routes and their conflicts

Train driver
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Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



Local Capacity Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting
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routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):



SAT encoding of dispatch planning
General idea: represent which train occupies which elementary
route in each of a sequence of steps.

↓

t1 t1

t2

t2



SAT encoding
Planning as bounded model checking (BMC [1,2]). Build planning
steps as needed using incremental SAT solver interface.

Movement correctness:
I Conflicting routes are not active simultaneously

conflict(r1, r2)⇒ o i
r1 = Free ∨ o i

r2 = Free.
I Elementary route allocation is consistent with train

movement: (o i
r 6= t ∧ o i+1

t = t)⇒∨{
o i+1

rx = t | route(rx), entry(r) = exit(rx)
}

Satisfy specification:
I Visits happen in order (timing requirement is measured on

simulation).
[1] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. Formal Methods in System Design, 19:7–34, 2001.
[2] J. F. Groote, S. F. M. van Vlijmen, and J. W. C. Koorn. The safety

guaranteeing system at station Hoorn-Kersenboogerd. COMPASS ’95, p.
57–68. IEEE, 1995.



Freeing

A B C

D E

200 m 100 m 400 m

If A holds a train t of length 200.0 m, freeing A is constrained by:

Ai ⇒
(
Ai+1 ∨ (B i ∧ C i) ∨ (D i ∧ E i)

)
.



Eliminate equivalent solutions

I Can free⇒ must free
I Can allocate⇒ must allocate

I Exception to allocation: deferred progress
a train may be waiting for a conflict to be resolved, even if the
conflict starts in the future.

Crossing example: exactly two solutions:
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Abstract—Railway capacity is complex to define and analyze,
and existing tools and methods used in practice require com-
prehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-based methods of ca-
pacity analysis are available to them. Designs have subtle capacity
pitfalls which are discovered too late, only when network-wide
timetables are made – there is a mismatch between the scope
of construction projects and the scope of capacity analysis, as
currently practiced.

We suggest a language for capacity specifications suited for
construction projects, expressing properties such as running
time, train frequency, overtaking and crossing. Verifying these
properties amounts to solving a planning problem constrained by
discrete control system logic, network topology, laws of motion,
and sparse communication. To describe train dynamics one uses
second-order linear differential equations which when solved
analytically give rise to non-linear equations over real variables.

We argue that reasoning over the whole discrete/continuous
solution space is not efficient with current state-of-the-art solvers.
Instead, we have solved the problem by building a special-purpose
solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and continuous-domain dynamics and timing
constraints evaluated using discrete event simulation. The two
components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). We show that our method is fast
enough at relevant scales to provide agile verification in a design
setting, and we present case studies based on data from existing
infrastructure and ongoing construction projects.

I. INTRODUCTION

This paper addresses a central problem that occurs when
designing the layout and control systems for railway stations:
Does the station infrastructure have the capacity to handle the
amount of trains and the desired traveling times to provide
adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on
a railway station. Fig. 1 shows two sequences of movements
which result in such a crossing. There are a number of details
of the railway design which can cause this scenario to become
infeasible (or take an unacceptably long time), such as signal
placement, detector placement, correct allocation and freeing
of resources, track lengths, train lengths, etc.

Systematic capacity analysis for railways is typically per-
formed on the scale of national railway networks, using
comprehensive input on infrastructure and timetables, and
only after the complete design is finished. Moreover, the
widely used methods and tools for capacity analysis are

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two
trains on a two-track station. The green areas show track
segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

heavy-duty methods, consisting of complicated simulations,
and require specialized knowledge, thus not being suitable
for agile design-time verification of railway stations. As a
consequence, railway construction projects usually rely on
informal, vague, or even non-existent capacity specifications,
and engineers need to make ad-hoc/manual analyses of how
the control system can provide this capacity.

Our goal is to develop a verification technique and tool
to help engineers specify capacity properties at design time
and to check these automatically. To be agile, the tool needs
to (1) have reasonable running times so that the verification
can be run on the fly as the design is being updated by an
engineer working in a drafting CAD application, and (2) keep
the required input to the minimum of information needed
to verify relevant properties. This style of verification gives
engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

The problem: We consider the low-level railway infras-
tructure capacity verification problem, which we define as
follows:

Given a railway station track plan including signal-
ing components, rolling stock dynamic characteris-
tics, and a performance/capacity specification, verify
whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:
• Low-level running time analysis – verify the time re-

quired for getting from point A to point B.

I Overlaps. Partial release.
I Loops in the infrastructure / loops in the dispatch.



Local Capacity Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational

scenarios
(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):



Case studies
Fig. 8: Stations Kolbotn, Eidsvoll, and Asker from Bane
NOR’s model of the Norwegian national network [31].

Infrastructure Property Result nDES tSAT tDES ttotal
Simple
(3 elem.)

Run.time Sat. 1 0.00 0.00 0.00
Crossing Unsat. 0 0.00 0.00 0.00

Two track
(14 elem.)

Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01

Kolbotn (BN)
(56 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06

Eidsvoll (BN)
(64 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21

Asker (BN)
(170 elem.)

Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77

Arna (CAD)
(258 elem.)

Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74

Gen. 3x3
(74 elem.)

High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19

Gen. 4x4
(196 elem.)

High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34

Gen. 5x5
(437 elem.)

High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

TABLE I: Verification performance on test cases, including
Bane NOR (BN) and RailCOMPLETE (CAD) infrastructure
models. The number of elementary routes (elem.) is shown
for each infrastructure to indicate the model’s size. nDES is
the number simulator runs, tSAT the time in seconds spent in
SAT solver, tDES the time in seconds spent in DES, and ttotal
the total calculation time in seconds.

visual representation of these models, i.e., the stations Kolbotn,
Eidsvoll, and Asker were converted from the railML models.

We have also tested against an infrastructure model from the
Arna construction project that uses the RailCOMPLETE CAD
design software, a realistic use case for agile verification.

Finally, to test the limitations of scalability in our method,
we construct a set of examples where m stations each with n
parallel tracks each are serially connected by a single track.
In this case, when a timing bound is slightly too small to be
satisfiable, the planner will have to come up with nm plans
for timing evaluation. This scenario is outside the intended use
case for our method: path selection can on this scale instead
be based on static speed profiles. Capacity over many stations
is better suited for the established timetabling tooling.

We attempted an alternative implementation using the
PDDL+ solver SMTPlan+, but found that even for greatly
simplified models, the required number of steps and numerical
constraints put all our case studies out of reach for sub-second
verification times.

V. RELATED WORK

Railway timetabling and capacity analysis has often been
posed as a planning problem and solved using mixed integer
programming and similar approaches. Zwaneveld et al. [32]
use integer programming on a problem closely related to our
low-level railway infrastructure capacity verification problem.
Isobe et al. [33] formulate a similar model in timed CSP,
representing train locations, velocities, and control logic. Our
definition of the problem in this paper includes non-linear
constraints on train dynamics (acceleration/braking power) and
communication constraints (trains must slow down if they have
not been informed of movement authority), which are relevant
in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in
railway dynamic analysis, see e.g. [34], [35], [36].

In the planning literature, the PDDL+ language [4] has
been introduced to capture mixed discrete/continuous planning
problems such as the one studied in this paper. General-
purpose solvers have recently been developed, using time
domain discretization (DiNo [37]) or the SMT theory of non-
linear real arithmetic (SMTPlan+ [38]).

VI. CONCLUSIONS AND FURTHER WORK

The goal of our suggested tool chain for railway engineering
is (1) to allow fully automated performance verification and (2)
use minimal input documentation for the verification. Both of
these aspects encourage bringing in performance verification
into frequently changing early-stage design projects, avoiding
the costly and time-consuming backtracking required when
later-stage analysis reveals unacceptable performance.

As future work we plan to integrate the current prototype
in the RailCOMPLETE tool and test the usability with the
engineers using this tool in their design work.

Acknowledgments: We thank the engineers at Railcomplete
AS, especially senior engineer Claus Feyling, for guidance on
railway operations and design methodology.



Schematic drawings: background

I Schematics used for visualizing operations, communicate
system specifications, construction blueprints.

I Engineers need to coordinate 2D, 3D, and schematic drawings.
I Automated drawing from geographical and/or topological

models can help engineers produce and update schematics
efficiently.

2 Bjørnar Luteberget, Koen Claessen, and Christian Johansen

accurate drawings are not always suitable for communicating an overview that
can help with analyzing and reasoning about the railway models. Instead, many
disciplines use schematic representations of infrastructures to provide a com-
pressed overview, e.g., shortening sections of the railway that have low infor-
mation density. Fig. 1 compares a geographically correct drawing against two
alternative schematic renderings (for two purposes) of the same model. Pro-
ducing schematic drawings like these involves practical and aesthetic trade-offs
between intended structure, simplicity, and geographical accuracy.

Perhaps the most well-known railway schematics are the metro maps for
passengers, popularized by the iconic Tube Map of the London Underground.
When designing metro maps, removing and compressing geographical informa-
tion better conveys topological structure (e.g., useful for finding transfers) and
sequential information along lines (e.g., for finding your stop).

Methods for automatically producing metro maps have been surveyed in
[23]. The main approaches are iterative and force-directed algorithms for gradu-
ally transforming a geographical network map into a simpler presentation [2,7],
and mixed integer programming methods for finding exactly grid-structured and
rigidly optimized solutions [14,16]. For railway drawings the convention is to use
only horizontal, vertical, and diagonal lines (at 45◦). The problem of drawing
graphs optimized for size and/or bends using only horizontal and vertical lines
(so-called orthogonal drawings) can be solved by efficient algorithms [21], but
adding diagonal lines in general makes the problem NP-complete [14,15].

Schematic railway drawings used for engineering are usually more strictly
constrained than metro maps, but still have large variety in different versions
produced for different engineering use cases, project stages, and operational sce-
narios. Especially in construction projects for new railway lines or upgrades,

Fig. 1. Example cut-out from a geographical railway drawing (top) and two corre-
sponding full-station schematic layouts, optimized for bends (bottom left) and opti-
mized for height/width (bottom right). See on page 15 our tool’s optimization options.



Schematic drawings: model
Topological representation extracted from CAD:Automated Drawing of Railway Schematics using SAT 5

x = x0 x = x1 x = x2 x = x3

trunkend rightleft

leftright

trunk end

Node (end) Node (switch) Edge Ports

Fig. 3. Graph representation of linearized track plan. Nodes are ordered by an x coor-
dinate, and have a given type which determines which ports it has, e.g., a switch node
has trunk, left, and right ports. Edges connect ports on distinct nodes.

Begin

End
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switch

Out./right
switch
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Fig. 4. Node classes and their drawing variants. Begin/end nodes have one variant
each. Switches are divided into four classes (each with two variants) based on their
orientation (incoming or outgoing) and their course (deviating left or right). Crossings
have three variants, and flyovers have six variants (symmetric variants omitted).

2.2 Track network representation

Different track segments are connected together at switches in a graph-like net-
work. The mathematical definition of a graph is too abstract for many engineer-
ing use cases. Some applications use a double node graph [11], or describe tracks
as nodes with two distinct sides [1]. For a schematic plan, we model switches
and crossings as graph nodes which have a given set of ports (Fig. 3 presents all
our modeling elements). Each end of each edge connects to a specific port on
a specific node. Model boundaries and track ends are also represented as nodes
with a single port.

Each location where tracks start/end or intersect with other tracks is rep-
resented as a node of a given class. The classes used in this paper are ends,
switches, crossings, and flyovers (shown in Fig. 4 with all their representative
variants). Each class comes with a different set of drawing requirements. For ex-
ample, a switch is oriented such that its branching edges (left/right) point either
up (called an outgoing switch) or down (called an incoming switch), seen in the
positive direction of the linear positioning system, and each switch class can be
drawn in two different variants, chosen freely, one with the trunk and straight leg
directed horizontally and another with the deviating leg directed horizontally.

Node type variants:

Automated Drawing of Railway Schematics using SAT 5
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Fig. 3. Graph representation of linearized track plan. Nodes are ordered by an x coor-
dinate, and have a given type which determines which ports it has, e.g., a switch node
has trunk, left, and right ports. Edges connect ports on distinct nodes.
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Fig. 4. Node classes and their drawing variants. Begin/end nodes have one variant
each. Switches are divided into four classes (each with two variants) based on their
orientation (incoming or outgoing) and their course (deviating left or right). Crossings
have three variants, and flyovers have six variants (symmetric variants omitted).

2.2 Track network representation

Different track segments are connected together at switches in a graph-like net-
work. The mathematical definition of a graph is too abstract for many engineer-
ing use cases. Some applications use a double node graph [11], or describe tracks
as nodes with two distinct sides [1]. For a schematic plan, we model switches
and crossings as graph nodes which have a given set of ports (Fig. 3 presents all
our modeling elements). Each end of each edge connects to a specific port on
a specific node. Model boundaries and track ends are also represented as nodes
with a single port.

Each location where tracks start/end or intersect with other tracks is rep-
resented as a node of a given class. The classes used in this paper are ends,
switches, crossings, and flyovers (shown in Fig. 4 with all their representative
variants). Each class comes with a different set of drawing requirements. For ex-
ample, a switch is oriented such that its branching edges (left/right) point either
up (called an outgoing switch) or down (called an incoming switch), seen in the
positive direction of the linear positioning system, and each switch class can be
drawn in two different variants, chosen freely, one with the trunk and straight leg
directed horizontally and another with the deviating leg directed horizontally.



Schematic drawings: constraints
Hard constraints:

I Octilinearity: 45 degree lines only.
I Linear order: nodes are ordered horizontally by ”mileage”.
I Node shapes: left/right branches recognizable.
I Uniform vertical spacing.

Soft constraints / optimization criteria:
I Height / width of the drawing
I Length of diagonal lines (non-horizontal lines)
I Number of bends (direction changes on lines)



Schematic drawings: encoding

I Horizontal distance between consecutive nodes:
∆x ∈ {0, 1, ≥ 2 }.

I Short edge up/down indicator boolean qup
j , qdown

j .
I Node vertical yi and edge level lj : unbounded integers in the

theory of difference constraints.
I Node variant selection ri .
I Edge direction values dbegin

i , dend
i ∈ {Up,Down,Straight}10 Bjørnar Luteberget, Koen Claessen, and Christian Johansen

Begin node

End node

(a)

(b)
(c)

Level

Fig. 6. The edge level model divides the edge into three sections on the horizontal axis:
(a) the initial diagonal section from the left-most node to the edge level, (b) the middle
horizontal section connecting the two diagonal sections, (c) the final diagonal section
reaching the right-most node from the edge level. Any of these may have zero length.

(a) Junction (b) Crossover (c) Nested siding loops

(d) Ladder sidings

Fig. 7. Output examples for the linear programming method. The junction (a) and
nested sidings (c) are correctly drawn. The crossover (b) uses 2 units for the diagonal,
where 1 would be sufficient, because each edge requires a level distinct from other edges
with intersecting linear position intervals. The ladder sidings (d) are unnecessarily wide
because node shape variants are not included (compare with Fig. 8(b)).

2. Node location distance for nodes ni, nj connected by an edge ek, where
si < sj , gives xi + |lk − yi| + |yj − lk| + qk ≤ xj , where qk is 0 if the edge
connects an outgoing switch to an incoming switch with the same branching
direction, and 1 otherwise. This creates room for a horizontal line segment
if needed. The sign of the absolute value terms is determined statically (not
part of the linear programming) by the node class and variant. This con-
straint corresponds to the octilinearity requirement (from Sec. 2.3(A)).

3. Edge level ordering for edges: ei <E ej gives li + 1 ≤ lj , corresponding to
the node shape requirement (from Sec. 2.3(C)).

4. Edge levels are related by switches, i.e.: each switch node ni constrains the
trunk-side edge ej and the straight branch-side edge ek to be at the same
level as the node (yi = lj = lk) corresponding to the node shape requirement.

Note that the uniform horizontal spacing constraint (from Sec. 2.3(D)) is implicit
in these equations. Now we have the following criteria available for optimization:

– Width of the drawing. Take the node ni with the lowest si, and the node
nj with the highest sj . Then the width of the drawings is xj − xi.

– Height of the drawing. The height of the drawing is not directly express-
ible in this model, but can be approximated by summing the vertical level



Schematic drawings: optimization
For a set of constraints φ, we can perform numerical optimization
on some number x by solving the sequence of formulas
φ∧ (x < m1), φ∧ (x < m2), . . . , where the sequence mi is a linear
or binary search over the range of x , locating the smallest value
that satisfies the constraints.
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accurate drawings are not always suitable for communicating an overview that
can help with analyzing and reasoning about the railway models. Instead, many
disciplines use schematic representations of infrastructures to provide a com-
pressed overview, e.g., shortening sections of the railway that have low infor-
mation density. Fig. 1 compares a geographically correct drawing against two
alternative schematic renderings (for two purposes) of the same model. Pro-
ducing schematic drawings like these involves practical and aesthetic trade-offs
between intended structure, simplicity, and geographical accuracy.

Perhaps the most well-known railway schematics are the metro maps for
passengers, popularized by the iconic Tube Map of the London Underground.
When designing metro maps, removing and compressing geographical informa-
tion better conveys topological structure (e.g., useful for finding transfers) and
sequential information along lines (e.g., for finding your stop).

Methods for automatically producing metro maps have been surveyed in
[23]. The main approaches are iterative and force-directed algorithms for gradu-
ally transforming a geographical network map into a simpler presentation [2,7],
and mixed integer programming methods for finding exactly grid-structured and
rigidly optimized solutions [14,16]. For railway drawings the convention is to use
only horizontal, vertical, and diagonal lines (at 45◦). The problem of drawing
graphs optimized for size and/or bends using only horizontal and vertical lines
(so-called orthogonal drawings) can be solved by efficient algorithms [21], but
adding diagonal lines in general makes the problem NP-complete [14,15].

Schematic railway drawings used for engineering are usually more strictly
constrained than metro maps, but still have large variety in different versions
produced for different engineering use cases, project stages, and operational sce-
narios. Especially in construction projects for new railway lines or upgrades,

Fig. 1. Example cut-out from a geographical railway drawing (top) and two corre-
sponding full-station schematic layouts, optimized for bends (bottom left) and opti-
mized for height/width (bottom right). See on page 15 our tool’s optimization options.
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Model Src. Size Direct/SAT Levels/SAT Cross-sec./SAT

hwb size (v/c) bhw size (v/c) hwb hbw bhw size (v/c)

Eidsvoll [19] 35 60.7 57k/153k 0.02 2.3k/0.7k 0.05 0.06 0.33 4.0k/28k

Arna RC 57 294 167k/493k 0.03 4.9k/1.3k 0.26 0.65 1.06 11k/100k

Asker [19] 64 T/O 104k/295k 0.04 5.6k/2.0k 0.61 1.02 0.87 14k/124k

Weert [6] 102 T/O 304k/969k 0.18 11k/4.0k 0.72 19.3 21.4 29k/327k

5x10 T 228 T/O 2.8M/13M 0.58 35k/2.7k 5.83 7.48 8.08 46k/364k

5x20 T 478 T/O 2.8M/12M 3.37 97k/7.7k 279 299 T/O 265k/4.2M

10x5 T 203 T/O 3.0M/14M 0.40 28k/2.0k 0.52 0.59 1.08 20k/83k

20x5 T 403 T/O 3.0M/14M 1.73 70k/4.0k 1.95 2.50 3.36 44k/165k

10x10 T 453 T/O 2.6M/12M 2.74 86k/5.5k 21.9 22.4 40.7 96k/727k

15x15 T 1053 T/O 2.3M/10M 22.7 255k/15k T/O T/O T/O N/A

Table 1. Running times in seconds on a mid-range workstation. Time-outs (T/O) in-
dicate exceeding 300 s. Model sizes are given as the sum of the number of nodes and
edges. Models were obtained from BaneNOR [19], a RailCOMPLETE CAD project
(RC), and adapted from [6]. Scaling test models (T) named n × m consist of n seri-
ally connected stations, each spreading out to m parallel tracks. Optimization criteria
are height (h), width (w) and bends (b). The size columns show the number of SAT
variables and clauses (v/c).

or post-processing), SVG (for use in web pages and web applications), or TikZ
(for use in LaTeX documents).

We have implemented and compared the performance of the above SAT-
based methods, summarized in Table 1 (the linear programming formulation is
omitted for space, since it has lower quality output). The Direct/SAT encoding
has too poor performance to be of practical value. The Levels/SAT encoding is
the fastest, and produces good output when optimizing for bends first. Cross-
sec./SAT is slower, but is more capable for optimizing for height and width.

5 Conclusions and Future Work

We have demonstrated the feasibility of using an incremental SAT solver to
automatically produce and optimize schematic railway drawings using several
different optimization criteria. However, the choice of encoding makes a signifi-
cant difference in the size of models that can be handled in a reasonable amount
of time, cf. Table 1. The direct representation using an explicit grid fails to
handle instances of relevant scale. Only after reformulating the problem in a
more structured solution space, where the order of symbols is hard-coded into
the problem, rather than added as a constraint after the fact, we were able to
solve industrial-size instances in reasonable time for interactive use (i.e., under
1s). A remaining interesting problem is the study of the inherent computational
complexity of the linear schematic drawing problem.

Our goal is that professionals should be able to rely on high-quality automatic
schematics, which requires further tailoring of symbol and text placement to
specific use cases, and integration with GUI tools.



Schematic drawings: output examples (1/2)16 Bjørnar Luteberget, Koen Claessen, and Christian Johansen
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Model: Weert, remodeled from figures in [6]
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Symbol placement and style affects track layout

Fig. 11. Comparison of three optimization models on various infrastructure mod-
els: Levels/Lin.Prog. (see Sec. 3.2), Levels/SAT (see Sec. 3.3), Cross-sec./SAT (see
Sec. 3.4). Symbols and labels placed on the drawing may also affect layout (see Sec. 3.5).



Schematic drawings: output examples (2/2)

16 Bjørnar Luteberget, Koen Claessen, and Christian Johansen

Model: Eidsvoll, imported from BaneNOR railML [19]

Levels/Lin.Prog. Levels/SAT
Cross-sec./SAT,

opt. width/height

Model: Asker, imported from BaneNOR railML [19]

Levels/Lin.Prog. Levels/SAT
Cross-sec./SAT,

opt. height/bends

Model: Arna, imported from RailCOMPLETE CAD project

Levels/SAT Cross-sec./SAT, opt. bends/width

Cross-sec./SAT, opt. height/bends Cross-sec./SAT, opt. height/width

Model: Weert, remodeled from figures in [6]

Cross-sec./SAT, opt. height/bends Cross-sec./SAT, opt. height/width

Symbol placement and style affects track layout
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Conclusions?

Consider SAT/SMT for operations research if your
constraint/optimization problem is:

I Program-like domain: lists, arrays, etc.
I Real/integer arithmetic with complex Boolean structure.
I Integer problems with small domains.
I Lexicographical objectives.

Advanced free solvers available.

Solvers can be taken apart and tailored to your problem..

Competetive with CPLEX on LGDB problems (MILP + big-M)
(Sebastiani, Tomasi, 2012).


