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» (2005-2010) M.Sc. from NTNU: industrial mathematics.
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Numerical conformal mappings (M.Sc. thesis 2010)

» Numerical approximation of conformal mappings

Conformal mapping:

1
Figure 1.7: The map f(z) = z? applied to a photo of a clock. See appendix A.1
for program code.



Numerical conformal mappings (M.Sc. thesis 2010)

Figure 1.5: Examples of different grid types used to graphically present confor-
mal maps. The first one is a rectangular grid mapped to the disc. The second
one is a polar grid mapped from the disc to the desired domain. The third one
is a Carleson grid mapped from the disc to the desired domain.



Numerical conformal mappings (M.Sc. thesis 2010)
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Figure 6.1: (a) The domain Q. (b) Small circles that cover Q) as well as possible.
(c) Graph edges between tangent circles. (d) Approximate representation of ()
as the intersection graph between the circles.



Numerical conformal mappings (M.Sc. thesis 2010)

Figure 6.3: Circle packings for the domain ) with decreasing radius in the
hexagonal grid



Numerical conformal mappings (M.Sc. thesis 2010)

Application: planar potential flows (e.g. steady fluid flow).
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Numerical conformal mappings (M.Sc. thesis 2010)

Application: flat maps of the brain surface.

Figure 7.2: Examples from Hurdal’s research on flat maps of the brain. Figures
from [8].



IKM Ocean Design AS: finite element analysis

» Analysis of structural/mechanical, thermal properties.
» Wave statistics, material fatigue.

» Construction, installation planning.




Railcomplete AS: software for railway engineering

» Complex design dependencies between disciplines.
» Software support is not highly developed.

» AutoCAD plugin (C#/.NET): railway object model and
analysis tools.
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Ph.D. research (2015-2019)

Ph.D. studies at Informatics, UiO funded by NFR and Railcomplete
AS (industry Ph.D.).

Automated reasoning for railway construction planning:

» Static analysis using Datalog
(published in iFM '16, FM '16, FMSD)

» Controlled natural language
(published in SEFM '17, journ. u/review)

» Dynamic analysis (SAT-based verification/synthesis)
(published in FMCAD '18, FM '19, journ. u/review)

» Drawing railway schematics (SAT-based optimization)
(published in iFM '19).



Ph.D. research (2015-2019)

» Best paper award at iFM '16 for static railway infrastructure
verification.

» Rule base in Datalog syntax with structured comments:

o

| rule: Home signal too close to first facing switch.
| type: technical

| severity: error
homeSignalBeforeFacingSwitchError (S, SW) :-—
firstFacingSwitch (B, SW,DIR),
homeSignalBetween (S, B, SW),

distance (S,SW,DIR,L), L < 200.

oe

o

9 R190

Sw. 1

Update
! Category Description

i |sianal No interiocking defined.

lm- |signal Ferecostmndm nimimrme et

in detectors must be 21.0 m apart.

Open reference




Ph.D. research (2015-2019)

» Best paper award at FMCAD '18 for local railway capacity

verification.

» Split the planning work into two separate points of view:

Dispatcher (discrete planning) Train driver (simulation)

Critical time
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Hobby projects: Dynamic projection mapping

» C++ programming, computer vision library, least squares, ...

» Tom Nerland and Bjgrnar Luteberget




Hobby projects: Dynamic projection mapping




Hobby projects: Il — audio-visual performance

» Supercollider audio programming, C++ / GLSL graphics,
guitar and electronics.

» @yvind Mellbye, Tom Narland, Markus Dvergastein, and
Bjgrnar Luteberget.




Hobby projects: Il — audio-visual performance
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Research interests

Bjgrnar's main personal research interests:

» Mathematical /scientific programming in a broad sense.

» Automating and optimizing in design and engineering using
mathematical modelling and algorithms.

» The interface between general solvers and specific problem
domains.
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Outline

» Part I: SAT and SMT
a. SAT solvers
b. SAT-based algorithms and SMT

» Part Il: SAT-based algorithms in railway engineering
a. Local capacity verification using planning and simulation.
b. Schematic drawings using difference logic and optimization.



Propositional logic

Propositions are statements that are either true or false:
> Example: it is raining
» Example: it is sunny

» Mathematical model: the statements xy, xo, ... have no
further semantics than being either true or false.

Operations (logical connectives):
» AND (/\) X1 A Xa.

OR (\/) x1V Xxa.

NOT (T71):  —xp.

v

v

IMPLIES (—?), a—b=bV —a.
EQUIV (7)) a< b= (bV-a)A(aV-b).

v

v



The Boolean satisfiability problem

Boolean algebra calculations:
»a=T,b=F
» aAb=F
»avb=T

The Boolean satisfiability problem (SAT):

» Given a propositional logic formula ¢(xi, xa, . ..), does there
exist an assignment to the variables such that

¢(X1,X2, 0o ) = [l
» NP-complete. ("The” NP-complete problem).



The Boolean satisfiability problem

» Conjunctive normal form:

— express SAT problem as a conjunction of clauses.
— Each clause is a disjunction of literals.
— A literal is a variable or a negated variable.

» Example:

(Xl V =Xy

(X5 V =xg V X7

> > > > >

)
)
(x4 V x5 V —x3)
)
(x2 V —xg V —x7)

X8



DPLL

The DPLL algorithm
(Davis, Putnam, Logemann, Loveland, 1962)

» Main idea: backtracking + unit propagation.
» Still basis for most efficient and complete solvers today.

> Let's solve the following SAT problem:

(x1 V x2)

(x1 Vx3V x3)
(—x2 V —x3 V x4)
(=xa V x5 V x7)
(—x1 V x6 V X3)
(—=x5 V —xg)

)

)

(x7 V —xg

> > > > > > > >

(x7 V =xg V x10



DPLL run (example by Jon Smock)

Decisions:

Formula:

X1, X2

X1, X3, X8
X2, TX3, X4
Xy, X5, X7
X4, X6, X8
X5, X6
X7, TIX8

X7, T X9, X10



DPLL run

Decisions:

X7=F.

Formula:

X1, X2

X1, X3, X8
X2, T1X3, X4
X4, X5, X7
X4, X6, X8
X5, T X6
X7, X8

X7, X9, X10



DPLL run

Decisions:
X7 = F.
X8 = F.

Formula:

X1, X2

X1, X3, X8
X2, T1X3, X4
X4, X5, X7
X4, Xp, X3
X5, T X6
X X®

X7, X9, X10



DPLL run

Decisions:

X7 = F.
X8 = F.

Xg — T.

Formula:

X1, X2

X1, X3, X8
X2, T1X3, X4
X4, X5, X7
X4, Xp, X3
X5, T X6
X X®

X7 TXg, X10



DPLL run

Decisions:

Formula:

X1, X2

X1, X3, X8
X2, X3, X4
X4, X5, X7
X4, Xp, X3
X5, T X6
X X®

K —=Xg X10



DPLL run

Decisions:

Formula:

X, X2

X1 X3, X%
X2, T1X3, X4
X4, X5, X7
X4, Xp, X3
X5, T X6
X X®

K —=Xg X10



DPLL run

Decisions: Formula:

x7 = F. Xy
xg = F. X X3¢

X =T X2, X3, X4
xio=T X4, X5, X7

x1=F Xy, X6, X
X9 = T X5, X6
x3=T XXy



DPLL run

Decisions: Formula:
x7 = F. Xy
xs = F. S TES T
Xg= T X9, X3, X]
xio=T =Xz, X5, X7
x3 =F =X, X6, X
X9 = T X5, X
X3 = XXy



DPLL run

Decisions:

X7 = F.
X8 = F

Xg — T.
X10 — T

X1 = F.
X9 — T.
X3 = T.
Xy = T.
X5 = T.
X6 — T.

Formula:




DPLL run

Decisions: Formula:
x7 = F. X1, X
xs = F. XX
Xg= T. —Xy, T1X3, X4
X190 = T. Xy, X5, X7
x1=T. X4, Xg, X%
X5, T X6
XK Xg

X=X X10



DPLL run

Decisions: Formula:
x7 = F. XX
xs = F. XX
Xg= T. =Xy, X3, X4
X190 = T. Xy, X5, X7
x1=T. X4, Xg, X%
Xo = T. X5, X6
XK Xg



DPLL run

Decisions:

X7 = F.
X8 = F.

Xg — T.

X10 — T

X1:T.
X2:T.
X3:F.

Formula:



DPLL run

Decisions:

X7 = F.
X8 = F.

Xg — T.

X10 — T

X1:T.
X2:T.
X3:F.
X4=F.

Formula:



DPLL run

Decisions:
X7 = F.
X8 = F.
Xg — T.
X10 — T.
X1 = T.
X9 = T.
X3 = F.
X4 = F.

X5:T.

Formula:



DPLL run

Decisions:
X7 = F
Xg = F.
Xg — T
X10 — T
X1 = T.
Xo = T.
X3 = F
X4 = F.
X5 = T

XGIF.

Formula:

X —Xgy X0
Solved!



Advances since DPLL

Many advances have been made in SAT solving since 1962:

» Conflict-driven clause learning in GRASP (Silva, 1996)
Two-watched literals in zChaff (Chaff, 2001)
VSIDS (variable state independent decaying sum) in zChaff

v

v

v

Random restarts
Locality based search (Chaff, Berkmin, MiniSAT)

v



Conflict-driven clause learning (CDCL) run

X7:F
o



Conflict-driven clause learning (CDCL) run

X7:F
o

XgZF



Conflict-driven clause learning (CDCL) run

X7:F
o

X1

XgZF



Conflict-driven clause learning (CDCL) run

X7:F
o



Conflict-driven clause learning (CDCL) run

X7:F
o

Savo o X1 VX3 VoXg
ox=T

L4
L4



Conflict-driven clause learning (CDCL) run

X7:F
o



Conflict-driven clause learning (CDCL) run

X7:F
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Conflict-driven clause learning (CDCL) run

X7:F
®



Conflict-driven clause learning (CDCL) run
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Conflict-driven clause learning (CDCL) run

X7:F
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Conflict-driven clause learning (CDCL) run

X7:F
‘ C
AR *
§~I
LS
X2 = T AR DR = T
]
£~ - R
~ ~
A ~el PR ..
¢ Se 10 ey F
’ ~e o ~ 6 —
. *? :
4 N~
" X4 = T L4 : .....
L4 ~
~ * ] e —
Xle'.. 'l 1 '~.X6_T
~ 1
~ L4 -
S 4 L ,-"
1 -
P\ _ T ] _—‘—
o 3 — _—“
'¢ =" |
P PR e 1y
.’ =" .
-
X — - A
8 ¢—,‘



Conflict-driven clause learning (CDCL) run

X7:F
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DPLL run

Decisions:

x; = F. < Backtrack

Formula:

=x5, = < Conflict!
XK XY

X=X X10
X7, X4y Xg Learned



Conflict-driven clause learning

After having found a conflict clause, we can:
» Add the clause to our problem, hoping to gain unit
propagation from it in other situations.
» Backtrack to the highest decision level of the variables in the
clause: non-chronological backtracking.



SAT solver performance progression

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
T T T T T = T T
Limmat (2002) o ." v
Zchaff (2002) . ve
Berkmin (2002) #
Forklift (2003)
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Figure 1: Evolution of the best solvers from 2002 to 2010 on the application benchmarks from the SAT 2009
competition using the cumulative number of problems solved (x axis) within a specific amount of time (y
axis). The farther to the right the data points are, the better the solver.

Figure from M. Jarvisalo, D. Le Berre, O. Roussel, L. Simon: The international

SAT solver competitions, Al Magazine, 2012.



Applications of SAT technology

» Formal methods:

— Hardware model checking, software model checking,
model-based testing.

v

Artificial intelligence:
— Planning, knowledge representation, games.
Bioinformatics

v

— Haplotype inference, pedigree checking, genetic regulatory
networks.

» Design automation

— Equivalence checking, delay computation, fault diagnosis, noise
analysis.

v

Security
— Cryptanalysis, inverting hash functions.

(from D. Le Berre: Introduction to SAT, SAT-SMT summer school 2014
slides)



Applications of SAT technology

» Computationally hard problems
— Graph coloring, traveling salesperson.
» Mathematical problems
— van der Waerden numbers, open problems in quasigroups.

» Core engine for other solvers: 0-1 ILP / pseudo-boolean,
QBF, #SAT, SMT, MaxSAT.

» Integrated with theorem provers: HOL, Isabelle.
> Integrated into software: SuSe Linux package dependency

manager, Eclipse provisioning system.

(from D. Le Berre: Introduction to SAT, SAT-SMT summer school 2014
slides)



Incremental SAT
Solver interface from MiniSAT: (Eén, Sérensson, 2003)

public interface SATSolver {
public Literal NewVariable();
public void AddClause(List<Literal> clause);
public Model SolveUnderAssumptions(
List<Literal> assumptions);

» Allows solving many related SAT problems, reusing decisions
and learnt clauses!

» Basis for a wide variety of solvers.



Properties of transition systems

v

System state: a vector of Booleans s.

v

System transitions: a Boolean formula T (s}, sj+1).

v

The system starts in an initial state /(sp).

v

Verify that a property p(s;) holds in all states.

» ... and we're willing to limit the number of transitions to k.
Bounded model checking (Biere et al., 1999):

k—1 k

BMC(S, I, T,p, k) = I(s0) A /\ T(si,si41) A \/ —p(se)
i=0 i=0



Properties of transition systems
BMC gives a heavy formula. Incremental SAT helps:
BMC(k =1) = I(sp) A T(so,51) A =p(s1)

BMC(k =2) = I(sp) A T(so,51) A T(s1,52) A=p(s2)
BMC(k =3) = I(so) A T(so,51) A T(s1,82) A T(s2,53) A —p(s3)

.. and the same idea applies to planning!
Planning as satisfiability (Kautz, Selman, 1992)



Satisfiability modulo theories

What if the propositions themselves had meaning in some other
theory with a corresponding decision procedure?



Satisfiability modulo theories

What if the propositions themselves had meaning in some other
theory with a corresponding decision procedure?

p=(a<b)AN(b<c)A(c<aVa<c)



Satisfiability modulo theories

What if the propositions themselves had meaning in some other
theory with a corresponding decision procedure?

p=(a<b)AN(b<c)A(c<aVa<c)

Boolean abstraction:

¢ZX1AX2/\(X3\/X4)



Satisfiability modulo theories

What if the propositions themselves had meaning in some other
theory with a corresponding decision procedure?

p=(a<b)AN(b<c)A(c<aVa<c)

Boolean abstraction:

¢ZX1AX2/\(X3\/X4)

SAT solver finds x; = T, xo =T, x3=T.
Theory solver (difference logic) learns —x; V —ix2 V —x3.



Satisfiability modulo theories

Approaches to SMT:

1. Eager SMT: represent or approximate domain by Booleans
("bit-blasting™).
— Encoding techinques: one-hot, unary, binary (logarithmic).
(see Bjork, 2009)

2. Fully lazy SMT: wait for an assignment from the SAT solver,
use it as an assumption in the theory solver.

3. Lazy SMT: wait for a partial assignment, and search for
constraints that can be deduced from the partial assignment.



Satisfiability modulo theories

¢ = (g(a) = c) A (f(g(a)) # f(c) Vg(a) = d) A(c # d)

Boolean abstraction:
d=x1 A (7x2V x3) A —xq
SAT solver suggests: x; =T, xo = F, x4y = F.

Uninterpreted functions solver finds conflict:
f(g(a)) = f(c) # f(c), add new clause:

—x1 V Xo



Satisfiability modulo theories

- conflicts
+ lemmas

Figure from Clark Barrett, Summer School on Formal Techniques slides, 2016



Satisfiability modulo theories

Desirable properties in a theory solver:
» Speed/efficiency.
» Incrementality.
» Backtracking.

» Concise expression of conflicts.



The Z3 theorem prover

A highly popular and successful solver: Z3 from Microsoft
Research.

Supports many theories:

» Linear integer arithmetic, mixed linear/real arithmetic, ...

v

Real difference logic, integer difference logic, ..

Non-linear real arithmetic.

v

Fixed size bit vectors

v

» Uninterpreted functions
> Arrays
» ... and can select automatically between them.

Other popular SMT solvers include MathSAT, Yices, CVC4.
Heavily used in program analysis, and interactive theorem provers.



Satisfiability modulo theories
Two perspectives on SMT:
1. General-purpose logic engines. Large, ambitious automated

reasoning programs (Z3, MathSAT, Yices, CVC4). Common
standardized input language SMT-LIB2. Z3 has ~ 400k LOC.

2. Extend SAT solvers with domain-specific reasoning when
needed. MiniSAT has = 3k LOC. Diff. logic 0.3k LOC.



Satisfiability modulo theories

Two perspectives on SMT:

1. General-purpose logic engines. Large, ambitious automated
reasoning programs (Z3, MathSAT, Yices, CVC4). Common
standardized input language SMT-LIB2. Z3 has ~ 400k LOC.

2. Extend SAT solvers with domain-specific reasoning when
needed. MiniSAT has = 3k LOC. Diff. logic 0.3k LOC.

1 Will present two case studies from railway



Railway engineering

Part II:
SAT-based algorithms in railway engineering



Railway control systems

Constructing a new railway line starts with a track plan:

AN

4000 m

v




Railway control systems

Constructing a new railway line starts with a track plan:

m N

AN

4000 m

~



Railway control systems

By adding detectors, we can allocate smaller pieces of tracks to the
train:

AN

AN

4000 m

~



Railway control systems

By adding detectors, we can allocate smaller pieces of tracks to the
train:

AN

4000 m

~



Railway control systems

Now, other trains can occupy different sections.

AN

4000 m

~N



Railway control systems

We add signals to indicate to drivers when they can proceed.

AN

4000 m

N




Railway control systems

This situation is in principle safe, but is it a good design?

AN

4000 m

N




Requirements

Will my station design handle the
actual traffic?

Two methods used in practice:
1. Whole-network time table analysis: a whole discipline in itself
— complicated theory and software
2. Manual, ad-hoc analysis: varying quality, little documentation,
low repeatability.



Design-implementation-operation

Design ?
v
. Formal methods for verifying
Implementation
correctness (safety) [3, 2].
v
Operation Railway optimization for

network-wide timetables [1, 4].

[1] M. Abril, F. Barber, L. Ingolotti, M.A. Salido, P. Tormos, and A. Lova. An
assessment of railway capacity. Transportation Research, 44(5):774 — 806, 2008.

[2] Arne Borilv and Gunnar Stalmarck. Formal verification in railways. In
Industrial-Strength Formal Methods in Practice, pages 329-350. Springer, 1999.

[3] A. Fantechi, W. Fokkink, and A. Morzenti. Some trends in formal methods
applications to railway signalling. In Formal Methods for Industrial Crit Sys.,
2012.

[4] Alex Landex. Methods to est. railway cap. and passenger delays. PhD thesis,

~NOANO



Design-implementation-operation

Design b

v

Implementation b

v

Operation b

Agile, fast verification methods with
suitable, small specifications.

Formal methods for verifying
correctness (safety).

Railway optimization for
network-wide timetables.



Specification capture

Railway engineers gave us examples of performance properties that
governed their designs.

Typical categories:

[y

. Running time (get from A to B)
— Similar to a simulation test, but smaller specification.

N

. Frequency (several consecutive trains)
— Route trains into alternate tracks.

w

. Overtaking

o

. Crossing
— Let one train wait on a side track while another train passes.



Capacity specifications

Local requirements suitable for construction projects.
» Operational scenario S = (V, M, C):
» Vehicle types V = {(/;, v"®, aj, b;)}, defined by length, max
velocity, max accel, max braking.

» Movements M = {(vj, (gi))}, defined by vehicle type v and
ordered sequence of visits (g;).

» Each visit g; = ({/i}, tq) is a set of alternative locations
li and an optional dwelling time t,.

» Timing constraints C = {(qa, g», tc)} which orders two visits
and sets a maximum time from the first to the second
tg, < tg, < tg, + tc. The maximum time constraint can be
omitted (tc = 00).



Constraints

Verification of these specifications would involve finding satisfying
train trajectories and control system state:

dp : spec(p)

Also, constrained by:
» 1 - Physical infrastructure
» 2 - Allocation of resources (collision safety)

3 - Limited communication

v

4 - Laws of motion

v



Constraints (2) Allocation of resources

An elementary route is a set of resources allocated together.

oo—

“Illllllllll._

\d
‘0

Signal A Signal C

Routes are conflicting if they use any of the same resources.

“Illllllllll._

‘0

- Pbannngunsp—
00 OO0 \ OO
Signal A Signal C




Constraints (3) Limited communication

Signal information only carries across two signals ("pre-signalling”).




Constraints (4) Laws of motion

Trains move within the limits of given maximum acceleration and
braking power. Train drivers need to plan ahead for braking so that
the train respects its given movement authority and speed
restrictions at all times.

v — vy < aAt, v — v,-2 < 2bs;.
Velocity
] ]
Velocity restriction Braking
curve -
targets
/

o
e
==/
\ I/

Critical time
| | |

Distance



Automated verification

Design-time capacity verification amounts to planning in a mixed
discrete/continuous space.

Some suggestions:
» PDDL+, planning domain description language for mixed
discrete-continuous planning domains [1].
» SMT with non-linear real arithmetic [2, 4].
» dReal: d-complete decision proc. for FOL with reals [3].

Using these tools/techinques and straight-forward modeling did
not make our problem manageable on relevant scales.

[1] M. Fox and D. Long. Modelling mixed discrete-continuous domains for
planning. J. Artif. Intell. Res., 27:235-297, 2006.

[2] M. Franzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving
of large non-linear arithmetic constraint systems with complex boolean
structure. J. SAT, 1:209-236, 2007.

[3] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories
over the reals. CADE-24 vol. 7898 of LNCS, pages 208—214. Springer, 2013.
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Dispatch vs. driver
Split the planning work into two separate points of view:

Dispatcher Train driver
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Velocity restriction Braking

l, — — curve
sl s’ targets
[ |_ & 0 [ ] /
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Critical time
| |

Elementary routes and their conflicts Distance



Local Capacity Solver architecture

Input l

Pre-processor:
convert model representation for
each solver component

Route/conflict Infrastructure graph
abstraction / Candidate plan\ representation

~ S

Planner (SAT): Simulator (DES):
generate route execute planned
activation sequence sequence up to time limit

N —

Eliminate plan prefix lSAT

UNSAT l



SAT encoding of dispatch planning

General idea: represent which train occupies which elementary
route in each of a sequence of steps.
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SAT encoding

Planning as bounded model checking (BMC [1,2]). Build planning
steps as needed using incremental SAT solver interface.

Movement correctness:

» Conflicting routes are not active simultaneously
conflict(ri, r;) = o} = Free V o}, = Free.

» Elementary route allocation is consistent with train
movement: (ol # tAol™! =t) =
V {0t = t | route(ry), entry(r) = exit(rx) }

Satisfy specification:
» Visits happen in order (timing requirement is measured on
simulation).
[1] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. Formal Methods in System Design, 19:7-34, 2001.

[2] J. F. Groote, S. F. M. van Vlijmen, and J. W. C. Koorn. The safety
guaranteeing system at station Hoorn-Kersenboogerd. COMPASS '95, p.
57-68. IEEE, 1995.



Freeing

I D__— | E__—¥
I A = | 5= | c_ —
—— 200 m — —— 100 m > < 400 m >

If A holds a train t of length 200.0 m, freeing A is constrained by:

A= (AT vV (B'AC) V(D' AET).



Eliminate equivalent solutions

» Can free = must free
» Can allocate :> must allocate

» Exception to allocation: deferred progress
a train may be waiting for a conflict to be resolved, even if the
conflict starts in the future.

Crossing example: exactly two solutions:

g Plan 1: s Plan 2:

LN || T
Sy S.

¢ e || el ™\

» Overlaps. Partial release.

» Loops in the infrastructure / loops in the dispatch.



Local Capacity Solver architecture

Input l

Pre-processor:
convert model representation for
each solver component

Route/conflict Infrastructure graph
abstraction / Candidate plan\ representation

~ S

Planner (SAT): Simulator (DES):
generate route execute planned
activation sequence sequence up to time limit

N —

Eliminate plan prefix lSAT

UNSAT l



Case studies
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Property  |Result npgs tsar  tpes trotal
Simple! Run.time Sat. 1 0.00  0.00 0.00
(3 elem.) Crossing s 0.00  0.00 0.00

Run.time 0.01 0.00 0.01
o (s Frequency |Sat. 0.0 0.00 0.01

Overtaking 2|Sat. 0.00  0.00 0.01
(14 elem.)

Overtaking 3 0.01  0.00 0.01

Crossing 3 001000 001

Run. time 001 000 002

('é‘g“;‘]‘;‘n‘FN) Overtake 4 005 000 006

- Overtake 3 0.05 0.00 0.06

Run. time 001000 002

Eidsvoll (BN) [Overtake 2 008 000 008

(64 clem)  |Crossing 3 y 0.04

Crossing 4 0.21 0.00 0.21

¥ Overtaking Z[Sat. 020000 021

Asker BN) |6 Coking 3|Unsat. 073 000 074
(170 clem.)

075 0.00 0.77
0.02  0.00 0.04
050  0.00 0.51

Crossing 4 _|Sat.
Run. time | Sat.
Ama (CAD)  |Overtaking 2 Sat.

[ | R S PO SO PN P
8

(258 elem.)  |Overtaking 3|Sat. 143 0.00 1.45

Crossing 4 |Sat. 173 0.00 1.74
Gen. 3x3 High time 0.0 0.00 0.01
(74 elem.) Low time 2 0.18 001 0.19
Gen. 4x4 High time 0.0 0.00 0.03
(196 elem.) Low time S 25t 208 026 2.34
Gen. 5x5 High time ~ [Sat. 0.06  0.00 0.09
(437 elem.)  [Low time Unsat. 312 38.80 435 4324

TABLE I: Verification performance on test cases, including
Bane NOR (BN) and RailCOMPLETE (CAD) infrastructure
models. The number of elementary routes (elem.) is shown
for each infrastructure to indicate the model’s size. npgs is
the number simulator runs, tsar the time in seconds spent in
SAT solver, tpgs the time in seconds spent in DES, and #i
the total calculation time in seconds.



Schematic drawings: background

» Schematics used for visualizing operations, communicate
system specifications, construction blueprints.
» Engineers need to coordinate 2D, 3D, and schematic drawings.

» Automated drawing from geographical and/or topological
models can help engineers produce and update schematics
efficiently.
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Schematic drawings: model

Topological representation extracted from CAD:

Node (end) Node (switch) Edge Ports
L] 1 U N
- i Y [ 2R
eft ‘ol
*end trunk* ﬂt trunk  end
RN RN
O O right left O O
T =0 xr =21 T =2 r =3

Node type variants:

Out./left  Out./right  In./left In. /right Cressie Do
switch switch switch switch |

— X

Begin

End

—

(+1 other) (+4 others)



Schematic drawings: constraints

Hard constraints:
» Octilinearity: 45 degree lines only.
» Linear order: nodes are ordered horizontally by "mileage”.
» Node shapes: left/right branches recognizable.
» Uniform vertical spacing.

Soft constraints / optimization criteria:
» Height / width of the drawing

» Length of diagonal lines (non-horizontal lines)

» Number of bends (direction changes on lines)



Schematic drawings: encoding

» Horizontal distance between consecutive nodes:
Ax € {0,1, > 2}.
> Short edge up/down indicator boolean ¢}, qJ‘.jOW”.

» Node vertical y; and edge level /;: unbounded integers in the
theory of difference constraints.

» Node variant selection r;.

» Edge direction values d,-begi", de"d € {Up, Down, Straight}

® End node

(b) (Cy Level

Begin node o

Fig. 6. The edge level model divides the edge into three sections on the horizontal axis:
(a) the initial diagonal section from the left-most node to the edge level, (b) the middle
horizontal section connecting the two diagonal sections, (c) the final diagonal section
reaching the right-most node from the edge level. Any of these may have zero length.



Schematic drawings: optimization

For a set of constraints ¢, we can perform numerical optimization
on some number x by solving the sequence of formulas

N (x <myp), A (x < mg), ..., where the sequence m; is a linear
or binary search over the range of x, locating the smallest value
that satisfies the constraints.
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Schematic drawings: tool performance

Model Src. Size| Direct/SAT Levels/SAT Cross-sec./SAT
hwb size (v/c)| bhw size (v/c)| hwb hbw bhw size (v/c)
Eidsvoll [19] 35 | 60.7 57k/153k | 0.02 2.3k/0.7k | 0.05 0.06 0.33  4.0k/28k
Arna  RC 57 | 294 167k/493k| 0.03 4.9k/1.3k | 0.26 0.65 1.06 11k/100k
Asker [19] 64 | T/O 104k/295k| 0.04 5.6k/2.0k | 0.61 1.02 0.87 14k/124k
Weert  [6] 102 | T/O 304k/969k| 0.18 11k/4.0k | 0.72 19.3 21.4  29k/327k
5x10 T 228 | T/0 2.8M/13M| 0.58 35k/2.7k | 5.83 7.48 8.08  46k/364k
5x20 T 478 | T/0 2.8M/12M| 3.37 97k/7.7k | 279 299 T/O 265k/4.2M
10x5 T 203| /0 3.0M/14M| 0.40 28k/2.0k | 0.52 0.59 1.08  20k/83k
T
T

20x5 403 | T/O 3.0M/14M| 1.73 70k/4.0k | 1.95 2.50 3.36  44k/165k
10x10 453 | T/O 2.6M/12M| 2.74 86k/5.5k | 21.9 22.4 40.7 96k/727k
15x15 T 1053| T/O0 2.3M/10M| 22.7 255k/15k | T/O T/O T/O N/A

Table 1. Running times in seconds on a mid-range workstation. Time-outs (T/0) in-
dicate exceeding 300 s. Model sizes are given as the sum of the number of nodes and
edges. Models were obtained from BaneNOR [19], a RailCOMPLETE CAD project
(RC), and adapted from [6]. Scaling test models (T) named n x m consist of n seri-
ally connected stations, each spreading out to m parallel tracks. Optimization criteria
are height (h), width (w) and bends (b). The size columns show the number of SAT
variables and clauses (v/c).



Schematic drawings: output examples (1/2)

Model: Eidsvoll, imported from BaneNOR railML [19]

g/ E/ Cross-sec./SAT,

Levels/Lin.Prog. Levels/SAT opt. width/height

Model: Asker, imported from BaneNOR railML [19]

Cross-sec./SAT,
Levels/Lin.Prog. Levels/SAT opt. height/bends




Schematic drawings: output examples (2/2)

Model: Arna, imported from RailCOMPLETE CAD project

7_7‘\9\

Levels/SAT Cross-sec./SAT, opt. bends/width
I_\ / S 2 - V A— N 4
AN 2\
Cross-sec./SAT, opt. height/bends Cross-sec./SAT, opt. height/width

Model: Weert, remodeled from figures in [6]

==

Cross-sec./SAT, opt. height /bends Cross-sec./SAT, opt. height/width




Conclusions?

Consider SAT/SMT for operations research if your
constraint/optimization problem is:

» Program-like domain: lists, arrays, etc.
» Real/integer arithmetic with complex Boolean structure.
> Integer problems with small domains.

» Lexicographical objectives.

Advanced free solvers available.
Solvers can be taken apart and tailored to your problem..

Competetive with CPLEX on LGDB problems (MILP + big-M)
(Sebastiani, Tomasi, 2012).



