
Improving Online Railway
Deadlock Detection using a
Partial Order Reduction
Bjørnar Luteberget

FMAS 2021, October 22, 2021

Acknowledgments

Project context: GoTo – Greater Oslo Area Train Optimization, with Norwegian
railway infrastructure manager Bane NOR.

Thanks to:

Koen Claessen, Chalmers Univ., Gothenburg

Christian Johansen, NTNU, Gjøvik

Martin Steffen, Univ. Oslo

Veronica Dal Sasso, Optrail, Rome

Carlo Mannino, SINTEF Digital, Oslo

1

Automation and autonomy in railway

Tight schedules are often disrupted by unforseen events.

Manual dispatching: operators try to re-schedule.

Autonomous dispatching: automatically compute optimal schedules.
3 Sensors are connected to online computer system.

3 Optimization tools can compute good or optimal schedules in real time.

7 ... for large infrastructures

7 ... with direct control of trains

2

Schedules and deadlocks

Even finding a feasible schedule in a real-time
dispatching situation is NP-hard1.

Situations change in minutes.

Large scale re-scheduling systems are likely to use
heuristics and/or limited scheduling horizons.

no feasible schedule⇔ bound for deadlock

Check for deadlocks as a separate procedure?

Found to be hard in a 2021 study2.

2Lu, Dessouky, and Leachman, “Modeling train movements through complex rail networks”.
2Sasso et al., “The Tick Formulation for deadlock detection and avoidance in railways traffic control”.

3

Manual overrides

Even with a working autonomous
re-scheduling and dispatching,
operators might want to override
decisions.

This may cause deadlocks.

4

Deadlocks in manual dispatching

Photo by Nate Beal (CC-BY-2.0)

With manual dispatching of long
trains, actual deadlocks happen in
practice.

These require costly recovery
operations.

Beneficial to know about deadlocks as
early as possible.

5

Train movements

A C

6

Train movements

6

Train movements

6

Train movements

6

Train movements

6

Approach to the deadlock detection problem

The route system already supplies a discretization for us!
For deadlock detection, we can ignore:

velocities and exact locations

acceleration/braking power

sight distances

Solution idea:

1. Define problem using route infrastructure model.

2. Model as a (discrete) transition system.

3. Solve with a SAT solver.

7

Infrastructure model I

{r1, r2, r3} ∈ ElemRoutes

r1 ∈ PRoutes r2 ∈ PRoutes r3 ∈ PRoutes

exit(r1) = entry(r2) = d2 ∈ Delims

entry(r1) = d1 ∈ Delims

exit(r3) = d4 ∈ Delims
routeLength(r1) = 50.0

routeLength(r2) = 50.0
routeLength(r3) = 250.0

Conflicts ⊂ PRoutes× PRoutes

8

Trains model T

In addition to infrastructure, we need the following train data:

A set of trains, Trains.

The length of each train, trainLength : Trains→ R.

Each train’s initial position, initialRoutes : Trains→ 2PRoutes.

Each train’s final position alternatives, finalRoutes : Trains→ 2PRoutes.

9

Online railway deadlock detection problem

Definition
The online railway deadlock detection problem D = (I,T) ...

... is solved by a deadlock detection algorithm d : D→ {Live,Dead}, which
returns Live if all trains can travel to one of their final positions, and Dead
otherwise.

10

Transition system model3

Propositional logic: k-step unrolling of transition relation:

Φk =

k∧
i=0

φi

Variables for state i:
For each partial route r: One-hot encoding of

oi
r ∈ Trains ∪ {Free}

Does the train reach its destination in or before state i?

f i
t

.
3Based on Luteberget et al., “SAT modulo discrete event simulation applied to railway design capacity

analysis”.

11

Specifying the transition relation

First attempts at planning with SAT used classical frame axioms4: one action in
each step and consecutive states equal except for action effects.

atMostOne({α}), α⇒ (vi−1 ⇒ vi), for all v not in effects(α)

Usually, better encodings from explanatory frame axioms5: a changed value must
be explained as an action effect. Thinking backwards!

(¬vi−1 ∧ vi)⇒
∨
α, (any α with effect v)

Non-interfering actions can happen in the same step!
4Kautz and Selman, “Planning as Satisfiability”.
5Kautz, McAllester, and Selman, “Encoding Plans in Propositional Logic”.

12

Constraints (1)

Mutual exclusion between conflicting routes:∧
(a,b)∈Conflicts

(
(oi

a = Free) ∨ (oi
b = Free)

)

13

Constraints (2)

Path consistency: (
oi−1

r 6= t ∧ oi
r = t

)
⇒ . . .

State i− 1

State i

14

Constraints (2)

Path consistency: (
oi−1

r 6= t ∧ oi
r = t

)
⇒

∨
x∈PRoutes

entry(r)=exit(x)

oi−1
x = t

State i− 1

State i

14

Constraints (2)

Path consistency:(
oi−1

r 6= t ∧ oi
r = t

)
⇒

∨
x∈PRoutes

entry(r)=exit(x)

(oi−1
x = t ∧ oi

x = t)

State i− 1

State i

14

Constraints (2)

Path consistency: (
oi−1

r 6= t ∧ oi
r = t

)
⇒

∨
x∈PRoutes

entry(r)=exit(x)

oi
x = t

State i− 1

State i

14

Path consistency in cyclic infrastructure

Can use cycle elimination constraints6.

This a general issue with logical encoding of problems involving graphs7.
6Luteberget et al., “SAT modulo discrete event simulation applied to railway design capacity analysis”.
7Gebser, Janhunen, and Rintanen, “SAT Modulo Graphs: Acyclicity”.

15

Constraints (3)

Train persistence: (
oi−1

r = t ∧ oi
r 6= t

)
⇒ . . .

State i− 1

State i

16

Freeing combinations

A

B C

D E

200 m 100 m 400 m

100 m 400 m

If A holds a train t of length 200.0 m, freeing A is constrained by:

Ai−1 ⇒
(

Ai ∨ (Bi ∧ Ci) ∨ (Di ∧ Ei)
)
.

17

Constraints (3)

Train persistence:(
oi−1

r = t ∧ oi
r 6= t

)
⇒ freeablei

t(r, trainLength(t))

State i− 1

State i

18

Constraints (3)

Train persistence:

(oi−1
r = t)⇒ (oi

r 6= t⇔ freeablei
t(r, trainLength(t)))

State i− 1

State i

18

The transition system

Putting the constraints together, φi is the conjunction of:
Mutual exclusion:

∧
(a,b)∈Conflicts

(
(oi

a = Free) ∨ (oi
b = Free)

)
Path consistency:

(
oi−1

r 6= t ∧ oi
r = t

)
⇒
∨

x∈PRoutes
entry(r)=exit(x)

oi
x = t

Train persistence: (oi−1
r = t)⇒ (oi

r 6= t⇔ freeablei
t(r, trainLength(t))

Elementary routes:
∧

e∈ElemRoutes
∧

r∈e

((
oi−1

r 6= t ∧ oi
r = t

)
⇒
∧

r∈e(oi
r = t)

)
We also have a known initial state φ0, and a goal condition Gi =

∧
t∈Trains f i

t , where:

(¬f i−1
t ∧ f i

t)⇒
∨

r∈finalRoutes(t)

oi
r = t

19

Complete bounded model checking

Bounded model checking8 is not complete unless the number of transitions
exceeds the completeness threshold.

Completeness threshold for acyclic route-based railway model9: longest possible
path, summed over trains.

Algorithm 1: Deadlock detection using incremental k-bounded model checking
Input : A problem instance D = (I,T) and a bound k.
Output: Dead if the system is bound for deadlock, Live otherwise.

1 let i = 1.
2 if Φi ∧ Gi is Sat, return Live
3 if i < k, increment i and go to 2, else return Dead

8Biere et al., “Bounded model checking”.
9Sasso et al., “The Tick Formulation for deadlock detection and avoidance in railways traffic control”.

20

Instance Ticks MIP alg. Algorithm 1
(reported in [21])

Result nr nt Steps Time (s) Steps Time (s)
01 LIVE 14 3 8 1.08 5 0.00
02 DEAD 14 3 8 0.98 10 0.00
03 LIVE 14 3 8 0.93 5 0.00
04 LIVE 30 2 15 1.20 4 0.00
05 LIVE 30 3 20 1.31 5 0.00
06 DEAD 30 3 20 2.78 19 0.03
07 DEAD 38 5 34 37.31 34 0.17
08 LIVE 46 5 33 1.78 5 0.00
09 DEAD 38 6 37 >60.00 37 0.26
10 DEAD 38 7 42 4.23 42 0.02
11 DEAD 62 2 27 17.60 26 3.30
12 DEAD 62 4 39 >60.00 40 1.70
13 DEAD 62 4 39 >60.00 40 1.30
14 LIVE 62 4 39 3.27 6 0.00
15 DEAD 46 4 42 >60.00 42 0.22
16 LIVE 62 5 50 5.33 5 0.00
17 LIVE 62 4 50 43.11 6 0.00
18 DEAD 62 4 50 >60.00 49 2.10
19 DEAD 62 5 51 >60.00 50 0.83
20 DEAD 70 5 57 >60.00 56 1.2021

Zig-zag algorithm10

Idea: at least one route must be allocated in each transition:

zi =
∨

t∈Trains

∨
r∈PRoutes

((oi−1
r 6= t) ∧ (oi

r = t)), Zi =

i∧
j=1

zj

Algorithm 2: Online railway deadlock detection with global progress constraint
Input : A problem instance D = (I,T).
Output: Dead if the system is bound for deadlock, Live otherwise.

1 let i = 1.
2 if Φi ∧ Zi is Unsat, return Dead
3 if Φi ∧ Zi ∧ Gi is Sat, return Live
4 increment i and go to 2.

10Eén and Sörensson, “Temporal induction by incremental SAT solving”.

22

Instance Ticks MIP alg. Algorithm 1 Algorithm 2
(reported in [21])

Result nr nt Steps Time (s) Steps Time (s) Steps Time (s)
01 LIVE 14 3 8 1.08 5 0.00 5 0.00
02 DEAD 14 3 8 0.98 10 0.00 7 0.00
03 LIVE 14 3 8 0.93 5 0.00 5 0.00
04 LIVE 30 2 15 1.20 4 0.00 4 0.00
05 LIVE 30 3 20 1.31 5 0.00 5 0.00
06 DEAD 30 3 20 2.78 19 0.03 9 0.04
07 DEAD 38 5 34 37.31 34 0.17 7 0.00
08 LIVE 46 5 33 1.78 5 0.00 5 0.00
09 DEAD 38 6 37 >60.00 37 0.26 14 0.25
10 DEAD 38 7 42 4.23 42 0.02 2 0.00
11 DEAD 62 2 27 17.60 26 3.30 15 3.30
12 DEAD 62 4 39 >60.00 40 1.70 20 9.60
13 DEAD 62 4 39 >60.00 40 1.30 20 11.00
14 LIVE 62 4 39 3.27 6 0.00 6 0.01
15 DEAD 46 4 42 >60.00 42 0.22 15 1.30
16 LIVE 62 5 50 5.33 5 0.00 5 0.00
17 LIVE 62 4 50 43.11 6 0.00 6 0.01
18 DEAD 62 4 50 >60.00 49 2.10 15 13.10
19 DEAD 62 5 51 >60.00 50 0.83 16 36.00
20 DEAD 70 5 57 >60.00 56 1.20 - >60.0023

Symmetries

φ1

φ2

φ3

φ4

24

Symmetries

φ1

φ2

φ3

φ4

24

Symmetries

φ1

φ2

φ3

φ4

24

Maximal progress

For any allocation that is extending the path from the previous state,

... a route conflicting with r must be occupied in the previous state.

Same idea as process semantics for planning as SAT11: all actions happen as early
as possible.

oi−1
r 6= t ∧ oi

r = t ∧
∨

x∈PRoutes
entry(r)=exit(x)

(oi−1
x = t)

⇒ ∨
(r,y)∈Conflicts

...or y=r

(
oi−1

y 6= t ∧ oi−1
y 6= Free

)
11Rintanen, Heljanko, and Niemelä, “Planning as satisfiability: parallel plans and algorithms for plan

search”.

25

φ0

Plan A
φ1

φ2
7

φ3

7

Plan B
φ1

φ2

26

Maximal progress

We call this constraint a partial order reduction because it creates a unique
representation of all solutions that represent the same partial order containing the
trains’ paths and the order in which they use conflicting routes.

Algorithm 3: Online railway deadlock detection with partial order reduction
Input : A problem instance D = (I,T).
Output: Dead if the system is bound for deadlock, Live otherwise.

1 let i = 1.
2 if Φi ∧ Zi ∧ Pi is Unsat, return Dead
3 if Φi ∧ Zi ∧ Pi ∧ Gi is Sat, return Live
4 increment i and go to 2.

27

Instance Ticks MIP alg. Algorithm 1 Algorithm 2 Algorithm 3
(reported in [21])

Result nr nt Steps Time (s) Steps Time (s) Steps Time (s) Steps Time (s)
01 LIVE 14 3 8 1.08 5 0.00 5 0.00 5 0.00
02 DEAD 14 3 8 0.98 10 0.00 7 0.00 5 0.00
03 LIVE 14 3 8 0.93 5 0.00 5 0.00 5 0.00
04 LIVE 30 2 15 1.20 4 0.00 4 0.00 4 0.00
05 LIVE 30 3 20 1.31 5 0.00 5 0.00 5 0.00
06 DEAD 30 3 20 2.78 19 0.03 9 0.04 5 0.00
07 DEAD 38 5 34 37.31 34 0.17 7 0.00 5 0.00
08 LIVE 46 5 33 1.78 5 0.00 5 0.00 5 0.00
09 DEAD 38 6 37 >60.00 37 0.26 14 0.25 7 0.01
10 DEAD 38 7 42 4.23 42 0.02 2 0.00 2 0.00
11 DEAD 62 2 27 17.60 26 3.30 15 3.30 3 0.00
12 DEAD 62 4 39 >60.00 40 1.70 20 9.60 8 0.19
13 DEAD 62 4 39 >60.00 40 1.30 20 11.00 8 0.12
14 LIVE 62 4 39 3.27 6 0.00 6 0.01 6 0.02
15 DEAD 46 4 42 >60.00 42 0.22 15 1.30 6 0.01
16 LIVE 62 5 50 5.33 5 0.00 5 0.00 5 0.01
17 LIVE 62 4 50 43.11 6 0.00 6 0.01 6 0.02
18 DEAD 62 4 50 >60.00 49 2.10 15 13.10 6 0.05
19 DEAD 62 5 51 >60.00 50 0.83 16 36.00 6 0.03
20 DEAD 70 5 57 >60.00 56 1.20 - >60.00 6 0.0328

Conclusion

Adapted a transition system model for railway planning from12 to the online railway
deadlock detection problem.

Shows improved performance over earlier work13 because of:
Specifying the transition relation with more parallelism,
decreasing the minimum number of transitions to find a feasible schedule.

Partial order reduction,
decreasing the maximum number of transitions to find a bound-for-deadlock
situation.

Using a SAT solver (instead of MIP)
Future work:

Abstraction refinement to find deadlocks in larger networks

Integration with a scheduling algorithm for producing deadlock-free schedules

12Luteberget et al., “SAT modulo discrete event simulation applied to railway design capacity analysis”.
13Sasso et al., “The Tick Formulation for deadlock detection and avoidance in railways traffic control”.

29

