

120

Improving Online Railway Deadlock Detection using a Partial Order Reduction

Bjørnar Luteberget FMAS 2021, October 22, 20 Project context: **GoTo – Greater Oslo Area Train Optimization**, with Norwegian railway infrastructure manager Bane NOR.

Thanks to:

- Koen Claessen, Chalmers Univ., Gothenburg
- Christian Johansen, NTNU, Gjøvik
- Martin Steffen, Univ. Oslo
- Veronica Dal Sasso, Optrail, Rome
- Carlo Mannino, SINTEF Digital, Oslo

Automation and autonomy in railway

- Tight schedules are often disrupted by unforseen events.
- Manual dispatching: operators try to re-schedule.
- Autonomous dispatching: automatically compute optimal schedules.
 - ✓ Sensors are connected to online computer system.
 - \checkmark Optimization tools can compute good or optimal schedules in real time.
 - \blacksquare X ... for large infrastructures
 - \blacksquare X ... with direct control of trains

Schedules and deadlocks

- Even finding a feasible schedule in a real-time dispatching situation is NP-hard¹.
- Situations change in minutes.
- Large scale re-scheduling systems are likely to use heuristics and/or limited scheduling horizons.
- \blacksquare no feasible schedule \Leftrightarrow bound for deadlock
- Check for deadlocks as a separate procedure?
- Found to be hard in a 2021 study².

²Lu, Dessouky, and Leachman, "Modeling train movements through complex rail networks".
 ²Sasso et al., "The Tick Formulation for deadlock detection and avoidance in railways traffic control".

Manual overrides

- Even with a working autonomous re-scheduling and dispatching, operators might want to override decisions.
- This may cause deadlocks.

Deadlocks in manual dispatching

Photo by Nate Beal (CC-BY-2.0)

- With manual dispatching of long trains, actual deadlocks happen in practice.
- These require costly recovery operations.
- Beneficial to know about deadlocks as early as possible.

Approach to the deadlock detection problem

The **route system** already supplies a <u>discretization</u> for us! For deadlock detection, we can ignore:

- velocities and exact locations
- acceleration/braking power
- sight distances

Solution idea:

- 1. Define problem using route infrastructure model.
- 2. Model as a (discrete) transition system.
- 3. Solve with a SAT solver.

Infrastructure model I

In addition to infrastructure, we need the following train data:

- A set of trains, Trains.
- The length of each train, trainLength : Trains $\rightarrow \mathbb{R}$.
- Each train's initial position, initialRoutes : Trains $\rightarrow 2^{PRoutes}$.
- \blacksquare Each train's final position alternatives, finalRoutes : Trains $o 2^{PRoutes}$.

Online railway deadlock detection problem

Definition

- The online railway deadlock detection problem $D = (I, T) \dots$
- ... is solved by a deadlock detection algorithm $d : D \rightarrow \{Live, Dead\}$, which returns Live <u>if all trains can travel to one of their final positions</u>, and Dead otherwise.

Transition system model³

■ Propositional logic: *k*-step unrolling of transition relation:

$$\Phi_k = \bigwedge_{i=0}^k \phi_i$$

■ Variables for state *i*:

■ For each partial route *r*: One-hot encoding of

 $o_r^i \in \operatorname{Trains} \cup \{\operatorname{Free}\}$

Does the train reach its destination in or before state *i*?

³Based on Luteberget et al., "SAT modulo discrete event simulation applied to railway design capacity analysis".

 f_t^i

Specifying the transition relation

■ First attempts at planning with SAT used <u>classical frame axioms</u>⁴: one action in each step and consecutive states equal except for action effects.

 $\texttt{atMostOne}(\{\alpha\}), \qquad \alpha \Rightarrow (\mathbf{v}^{i-1} \Rightarrow \mathbf{v}^i), \quad \text{ for all } \mathbf{v} \text{ not in effects}(\alpha)$

Usually, better encodings from <u>explanatory frame axioms</u>⁵: a changed value must be explained as an action effect. <u>Thinking backwards!</u>

$$(\neg \mathbf{v}^{i-1} \wedge \mathbf{v}^{i}) \Rightarrow \bigvee \alpha, \quad \text{(any } \alpha \text{ with effect } \mathbf{v})$$

■ Non-interfering actions can happen in the same step!

⁵Kautz, McAllester, and Selman, "Encoding Plans in Propositional Logic".

⁴Kautz and Selman, "Planning as Satisfiability".

Mutual exclusion between conflicting routes:

$$\bigwedge_{(a,b)\in \text{Conflicts}} \left((o_a^i = \text{Free}) \lor (o_b^i = \text{Free})
ight)$$

$$\left(o_r^{i-1} \neq t \wedge o_r^i = t\right) \Rightarrow \dots$$

Constraints (2)

$$ig(o_r^{i-1}
eq t \wedge o_r^i = tig) \Rightarrow igvee_{\substack{x \in ext{PRoutes} \ ext{entry}(r) = ext{exit}(x)}} o_x^{i-1} = t$$

Constraints (2)

$$(o_{r}^{i-1} \neq t \land o_{r}^{i} = t) \Rightarrow \bigvee_{\substack{x \in PRoutes \\ entry(r) = exit(x)}} (o_{x}^{i-1} = t \land o_{x}^{i} = t)$$
State $i - 1$
State i

Constraints (2)

$$ig(o_r^{i-1}
eq t \land o_r^i = t ig) \Rightarrow igvee_{\substack{x \in ext{PRoutes} \ ext{entry}(r) = ext{exit}(x)}} o_x^i = t$$

Path consistency in cyclic infrastructure

■ Can use cycle elimination constraints⁶.

This a general issue with logical encoding of problems involving graphs⁷.
 ⁶Luteberget et al., "SAT modulo discrete event simulation applied to railway design capacity analysis".
 ⁷Gebser, Janhunen, and Rintanen, "SAT Modulo Graphs: Acyclicity".

Constraints (3)

Train persistence:

$$\left(o_r^{i-1}=t\wedge o_r^i
eq t
ight)\Rightarrow\ldots$$

Freeing combinations

If *A* holds a train *t* of length 200.0 m, freeing *A* is constrained by:

$$A^{i-1} \Rightarrow \left(A^i \vee (B^i \wedge C^i) \vee (D^i \wedge E^i)\right).$$

Constraints (3)

Train persistence:

$$(o_r^{i-1} = t \land o_r^i \neq t) \Rightarrow \text{freeable}_t^i(r, \text{trainLength}(t))$$

State $i - 1$
State i

Constraints (3)

Train persistence:

The transition system

Putting the constraints together, ϕ_i is the conjunction of:

Mutual exclusion:

$$\bigwedge_{(a,b)\in\text{Conflicts}} \left((o_a^i = \text{Free}) \lor (o_b^i = \text{Free}) \right)$$

- **Path consistency:** $(o_r^{i-1} \neq t \land o_r^i = t) \Rightarrow \bigvee_{\substack{x \in \text{PRoutes} \\ entry(r) = exit(x)}} o_x^i = t$
- **Train persistence:** $(o_r^{i-1} = t) \Rightarrow (o_r^i \neq t \Leftrightarrow \text{freeable}_t^i(r, \text{trainLength}(t))$
- **Elementary routes:** $\bigwedge_{e \in \text{ElemRoutes}} \bigwedge_{r \in e} \left(\left(o_r^{i-1} \neq t \land o_r^i = t \right) \Rightarrow \bigwedge_{r \in e} (o_r^i = t) \right)$

We also have a known initial state ϕ_0 , and a goal condition $G_i = \bigwedge_{t \in \text{Trains}} f_t^i$, where:

$$(\neg f_t^{i-1} \wedge f_t^i) \Rightarrow \qquad \bigvee \qquad o_r^i = t$$

 $r \in \text{finalRoutes}(t)$

Complete bounded model checking

 Bounded model checking⁸ is not complete unless the number of transitions exceeds the <u>completeness threshold</u>.

 Completeness threshold for acyclic route-based railway model⁹: longest possible path, summed over trains.

Algorithm 1: Deadlock detection using incremental k-bounded model checking

Input : A problem instance D = (I, T) and a bound k.

Output: Dead if the system is bound for deadlock, Live otherwise.

- 1 **let** i = 1.
- 2 if $\Phi_i \wedge G_i$ is Sat, return Live
- **3** if i < k, increment *i* and go to 2, else return Dead
 - ⁸Biere et al., "Bounded model checking".

⁹Sasso et al., "The Tick Formulation for deadlock detection and avoidance in railways traffic control".

Instance				Ticks	MIP alg.	Algorithm 1		
				(report	ed in [21])			
#	Result	lt n_r n_t		Steps	Time (s)	Steps	Time (s)	
01	LIVE	14	3	8	1.08	5	0.00	
02	DEAD	14	3	8	0.98	10	0.00	
03	LIVE	14	3	8	0.93	5	0.00	
04	LIVE	30	2	15	1.20	4	0.00	
05	LIVE	30	3	20	1.31	5	0.00	
06	DEAD	30	3	20	2.78	19	0.03	
07	DEAD	38	5	34	37.31	34	0.17	
08	LIVE	46	5	33	1.78	5	0.00	
09	DEAD	38	6	37	>60.00	37	0.26	
10	DEAD	38	7	42	4.23	42	0.02	
11	DEAD	62	2	27	17.60	26	3.30	
12	DEAD	62	4	39	>60.00	40	1.70	
13	DEAD	62	4	39	>60.00	40	1.30	
14	LIVE	62	4	39	3.27	6	0.00	
15	DEAD	46	4	42	>60.00	42	0.22	
16	LIVE	62	5	50	5.33	5	0.00	
17	LIVE	62	4	50	43.11	6	0.00	
18	DEAD	62	4	50	>60.00	49	2.10	
19	DEAD	62	5	51	>60.00	50	0.83	
20	DEAD	70	5	57	>60.00	56	1.20	

Zig-zag algorithm¹⁰

Idea: at least one route must be allocated in each transition:

$$z_i = \bigvee_{t \in \text{Trains } r \in \text{PRoutes}} ((o_r^{i-1} \neq t) \land (o_r^i = t)), \qquad \quad Z_i = \bigwedge_{j=1}^{l} z_j$$

Algorithm 2: Online railway deadlock detection with global progress constraint

Input : A problem instance D = (I, T).

Output: Dead if the system is bound for deadlock, Live otherwise.

- 1 **let** i = 1.
- 2 if $\Phi_i \wedge \mathbf{Z}_i$ is Unsat, return Dead
- **3** if $\Phi_i \wedge \mathbf{Z}_i \wedge G_i$ is Sat, return Live
- 4 increment i and go to 2.

¹⁰Eén and Sörensson, "Temporal induction by incremental SAT solving".

Instance				Ticks	MIP alg.	Algo	orithm 1	Algorithm 2		
				(report	ed in [21])					
#	Result	n_r	n_t	Steps	Steps Time (s)		Time (s)	Steps	Time (s)	
01	LIVE	14	3	8	1.08	5	0.00	5	0.00	
02	DEAD	14	3	8	0.98	10	0.00	7	0.00	
03	LIVE	14	3	8	0.93	5	0.00	5	0.00	
04	LIVE	30	2	15	1.20	4	0.00	4	0.00	
05	LIVE	30	3	20	1.31	5	0.00	5	0.00	
06	DEAD	30	3	20	2.78	19	0.03	9	0.04	
07	DEAD	38	5	34	37.31	34	0.17	7	0.00	
08	LIVE	46	5	33	1.78	5	0.00	5	0.00	
09	DEAD	38	6	37	>60.00	37	0.26	14	0.25	
10	DEAD	38	7	42	4.23	42	0.02	2	0.00	
11	DEAD	62	2	27	17.60	26	3.30	15	3.30	
12	DEAD	62	4	39	>60.00	40	1.70	20	9.60	
13	DEAD	62	4	39	>60.00	40	1.30	20	11.00	
14	LIVE	62	4	39	3.27	6	0.00	6	0.01	
15	DEAD	46	4	42	>60.00	42	0.22	15	1.30	
16	LIVE	62	5	50	5.33	5	0.00	5	0.00	
17	LIVE	62	4	50	43.11	6	0.00	6	0.01	
18	DEAD	62	4	50	>60.00	49	2.10	15	13.10	
19	DEAD	62	5	51	>60.00	50	0.83	16	36.00	
20	DEAD	70	5	57	>60.00	56	1.20	-	>60.00	

Symmetries

Symmetries

Symmetries

Maximal progress

- For any allocation that is extending the path from the previous state,
- ... a route conflicting with *r* must be occupied in the previous state.
- Same idea as process semantics for planning as SAT¹¹: all actions happen as early as possible.

$$\left(o_r^{i-1} \neq t \land o_r^i = t \land \bigvee_{\substack{x \in \text{PRoutes} \\ \text{entry}(r) = \text{exit}(x)}} (o_x^{i-1} = t)\right) \Rightarrow \bigvee_{\substack{(r,y) \in \text{Conflicts} \\ \dots \text{or } y = r}} (o_y^{i-1} \neq t \land o_y^{i-1} \neq \text{Free})$$

¹¹Rintanen, Heljanko, and Niemelä, "Planning as satisfiability: parallel plans and algorithms for plan search".

Plan A ϕ_1 ϕ_2 X ϕ_3

We call this constraint a <u>partial order reduction</u> because it creates a unique representation of all solutions that represent the same partial order containing the trains' paths and the order in which they use conflicting routes.

Algorithm 3: Online railway deadlock detection with partial order reduction

Input : A problem instance D = (I, T).

Output: Dead if the system is bound for deadlock, Live otherwise.

- 1 **let** i = 1.
- **2** if $\Phi_i \wedge Z_i \wedge P_i$ is Unsat, **return** Dead
- **3** if $\Phi_i \wedge Z_i \wedge P_i \wedge G_i$ is Sat, return Live
- 4 increment i and go to 2.

Instance			Ticks	MIP alg.	Algorithm 1		Algorithm 2		Algorithm 3		
			(report	ed in [21])							
#	Result	n_r	n_t	Steps	Time (s)	Steps	Time (s)	Steps	Time (s)	Steps	Time (s)
01	LIVE	14	3	8	1.08	5	0.00	5	0.00	5	0.00
02	DEAD	14	3	8	0.98	10	0.00	7	0.00	5	0.00
03	LIVE	14	3	8	0.93	5	0.00	5	0.00	5	0.00
04	LIVE	30	2	15	1.20	4	0.00	4	0.00	4	0.00
05	LIVE	30	3	20	1.31	5	0.00	5	0.00	5	0.00
06	DEAD	30	3	20	2.78	19	0.03	9	0.04	5	0.00
07	DEAD	38	5	34	37.31	34	0.17	7	0.00	5	0.00
08	LIVE	46	5	33	1.78	5	0.00	5	0.00	5	0.00
09	DEAD	38	6	37	>60.00	37	0.26	14	0.25	7	0.01
10	DEAD	38	7	42	4.23	42	0.02	2	0.00	2	0.00
11	DEAD	62	2	27	17.60	26	3.30	15	3.30	3	0.00
12	DEAD	62	4	39	>60.00	40	1.70	20	9.60	8	0.19
13	DEAD	62	4	39	>60.00	40	1.30	20	11.00	8	0.12
14	LIVE	62	4	39	3.27	6	0.00	6	0.01	6	0.02
15	DEAD	46	4	42	>60.00	42	0.22	15	1.30	6	0.01
16	LIVE	62	5	50	5.33	5	0.00	5	0.00	5	0.01
17	LIVE	62	4	50	43.11	6	0.00	6	0.01	6	0.02
18	DEAD	62	4	50	>60.00	49	2.10	15	13.10	6	0.05
19	DEAD	62	5	51	>60.00	50	0.83	16	36.00	6	0.03
20	DEAD	70	5	57	>60.00	56	1.20	-	>60.00	6	0.03

Conclusion

Adapted a transition system model for railway planning from¹² to the <u>online railway</u> <u>deadlock detection problem</u>.

- Shows improved performance over earlier work¹³ because of:
 - Specifying the transition relation with more parallelism, decreasing the minimum number of transitions to find a <u>feasible schedule</u>.
 - Partial order reduction, decreasing the maximum number of transitions to find a <u>bound-for-deadlock</u> situation.
 - Using a SAT solver (instead of MIP)

Future work:

- Abstraction refinement to find deadlocks in larger networks
- Integration with a scheduling algorithm for producing deadlock-free schedules

 ¹²Luteberget et al., "SAT modulo discrete event simulation applied to railway design capacity analysis".
 ¹³Sasso et al., "The Tick Formulation for deadlock detection and avoidance in railways traffic control".