
Dynamic time
discretization for train
scheduling
Bjørnar Luteberget
24 January 2024



Summary: DDD for train scheduling

• Schedule optimization often uses time discretization,but this has severe drawbacks for train scheduling.
• We have developed a Dynamic discretization discovery (DDD)that can overcome some of these drawbacks.
• We have tested the DDD on a simplified train dispatching problem.
• For competitive performance, the mathematical solver also needs to workdynamically. A MaxSAT algorithm outperforms MILP solvers on some objectives.

Joint work with Anna Livia Croella, Carlo Mannino, and Paolo Ventura.Nominated for INFORMS RAS Student Paper Award 2022.Journal paper currently under review.



Train Re-Scheduling

Unexpected (endogenous or exogenous) events can determine delays and
deviations from the planned activity.

▷ Timetables may become infeasible and parts of the network may becomeunavailable for inbound trains
▷ The original schedule must be adjusted in real-time to mitigate the impact on theoverall traffic.
▷ One aim to restore a feasible situation while minimizing some measure of the
deviation of the actual schedule from the official timetable.



A simplified train re-scheduling problem

• Trains travel on fixed routes through tracks and stations.• Trains spend a fixed amount of time to traverse a track.• Station capacities and routing are ignored.
• Extension to variable travel times is straight-forward,
station capacity is easy, general routing is possible.



A simplified train re-scheduling problem

• ts2
i − ts1

i ≥ l

• ts2
j − ts1

j ≥ l

• ts2
j − ts1

i ≥ 0 ∨ ts1
j − ts2

i ≥ 0



MILP formulations

Two classes of MILP models are adopted in the literature:
• big-M formulations⇒ continuous time variables tir

tir − tjr + M(1 − yij
r ) ≥ lij

r

tjr − tir + Myij
r ≥ lji

r

• Time-Indexed formulations⇒ discrete time variables xp
ir

xp
ir + xq

jr ≤ 1



MILP formulations

Two classes of MILP models are adopted in the literature:
• big-M formulations⇒ continuous time variables tir

tir − tjr + M(1 − yij
r ) ≥ lij

r

tjr − tir + Myij
r ≥ lji

r

• Time-Indexed formulations⇒ discrete time variables xp
ir

xp
ir + xq

jr ≤ 1



Classical MILP formulations drawbacks

big-M formulations

• Poor bounds
• Large branching trees

TI formulations

• Oversize
• Bad approximation

We introduce a new TI based formulation:the Interval Assignment Problem (IAP)



Classical MILP formulations drawbacks

big-M formulations

• Poor bounds
• Large branching trees

TI formulations

• Oversize
• Bad approximation

We introduce a new TI based formulation:the Interval Assignment Problem (IAP)



A novel paradigm

• E. He, N. Boland, G. Nemhauser, and M. Savelsbergh. A dynamic discretization discovery algorithm for the
minimum duration time-dependent shortest path problem,2018

• Y. He, F. Lehuédé, and O. Péton. A dynamic discretization approach to the integrated service network design and
vehicle routing problem In VeRoLog 2019 : seventh annual workshop of the EURO Working Group on VehicleRouting and Logistics Optimization, Sevilla, Spain, June 2019.

• D. M. Vu, M. Hewitt, N. Boland, and M. Savelsbergh. Dynamic discretization discovery for solving the
time-dependent traveling salesman problem with time windows Transportation Science, 2020

• Y. O. Scherr, M. Hewitt, B. A. N. Saavedra, and D. C. Mattfeld. Dynamic discretization discovery for the service
network design problem with mixed autonomous fleets. Transportation Research Part B: Methodological, 2020

• L. Marshall, N. Boland, M. Savelsbergh, and M. Hewitt. Interval-based dynamic discretization discovery for solving
the continuous-time service network design problem Transportation Science, 2021.

The DDD consists in solving a sequence of models with both a
fine discretization & limited size.



Classical TI formulation
For each train and each track segment

Λ = {λ1, λ2, . . . , λn} be a partition of the time horizon [t,M)such that λp = [tp, tp+1)

Λ
t = t1

Mλ1

t2

λ2

t3

λ3

t4

λ4

t5

λ5

t6

xp =


1 if train enters the track segmentat the beginning tp of the interval λp

0 otherwise



Classical TI formulation
For each train and each track segment

Λ = {λ1, λ2, . . . , λn} be a partition of the time horizon [t,M)such that λp = [tp, tp+1)

Λ
t = t1

Mλ1

t2

λ2

t3

λ3

t4

λ4

t5

λ5

t6

xp =


1 if train enters the track segmentat the beginning tp of the interval λp

0 otherwise



TI-Incompatibility
Given two trains traversing the same track segment, two intervals λp = [tp, tp+1) and
λs = [ts, ts+1) are said TI-incompatible if

[tp, tp + l) ∩ [ts, ts + l) ̸= ∅

Train 1
Mtp

Train 2
M

ts

λp

λs

λp

λs

ts < tp + l



TI-Incompatibility
Given two trains traversing the same track segment, two intervals λp = [tp, tp+1) and
λs = [ts, ts+1) are said TI-incompatible if

tp < ts + l and ts < tp + l

Train 1
Mtp

Train 2
M

ts

λp

λs

λp

λs

ts < tp + l



TI-Incompatibility
Given two trains traversing the same track segment, two intervals λp = [tp, tp+1) and
λs = [ts, ts+1) are said TI-incompatible if

tp < ts + l and ts < tp + l

Train 1
Mtp

Train 2
M

ts

λp

λs

λp

λs

xp + xs ≤ 1 ∀ λp TI-incompatible with λs



TI formulation
Given a set of partitions Λ = {Λir : i ∈ I, r ∈ Ri},we want to find x∗, the incidence vector of a set of non-TI-incompatible intervals ofminimum cost c̄(x∗).

min
∑

i∈I
∑

r∈Ri

∑
λp∈Λir c̄p · (xp)

s.t.
(1)

∑
λp∈Λir xp = 1, i ∈ I, r ∈ Ri

(2) xp + xs ≤ 1, λp TI-incompatible with λs

xp ∈ {0, 1} i ∈ I, r ∈ Ri, λp ∈ Λir

We can obtain a schedule t∗ = Φ(x∗),if x∗ is optimal then t∗ is optimal for the TRP



TI formulation
Given a set of partitions Λ = {Λir : i ∈ I, r ∈ Ri},we want to find x∗, the incidence vector of a set of non-TI-incompatible intervals ofminimum cost c̄(x∗).

min
∑

i∈I
∑

r∈Ri

∑
λp∈Λir c̄p · (xp)

s.t.
(1)

∑
λp∈Λir xp = 1, i ∈ I, r ∈ Ri

(2) xp + xs ≤ 1, λp TI-incompatible with λs

xp ∈ {0, 1} i ∈ I, r ∈ Ri, λp ∈ Λir

We can obtain a schedule t∗ = Φ(x∗),if x∗ is optimal then t∗ is optimal for the TRP



IAP formulation

For each train and each track segment
Λ = {λ1, λ2, . . . , λn} be a partition of the time horizon [t,M)such that λp = [tp, tp+1)

Λ
t = t1

Mλ1

t2

λ2

t3

λ3

t4

λ4

t5

λ5

xp =


1 if train enters the track segmentat some time in the interval λp

0 otherwise



IAP formulation

For each train and each track segment
Λ = {λ1, λ2, . . . , λn} be a partition of the time horizon [t,M)such that λp = [tp, tp+1)

Λ
t = t1

Mλ1

t2

λ2

t3

λ3

t4

λ4

t5

λ5

xp =


1 if train enters the track segmentat some time in the interval λp

0 otherwise



IAP formulation

For each train and each track segment
Λ = {λ1, λ2, . . . , λn} be a partition of the time horizon [t,M)such that λp = [tp, tp+1)

Λ
t = t1

Mλ1

t2

λ2

t3

λ3

t4

λ4

t5

λ5

xp =


1 if train enters the track segmentat some time in the interval λp

0 otherwise



DDD-Incompatibility
Given two trains traversing the same track segment, two distinct intervals λp and λs aresaid DDD-incompatible if for any t ∈ λp and any t′ ∈ λs we have:

t < t′ + l and t′ < t + l

Train 1
Mt

Train 2
M

λp

λs

λp

λs

xp + xs ≤ 1 ∀ λp DDD-incompatible with λs



DDD-Incompatibility
Given two trains traversing the same track segment, two distinct intervals λp and λs aresaid DDD-incompatible if for any t ∈ λp and any t′ ∈ λs we have:

t < t′ + l and t′ < t + l

Train 1
M

t′

Train 2
M

λp

λs

λp

λs

xp + xs ≤ 1 ∀ λp DDD-incompatible with λs



TI-Incompatibility vs DDD-incompatibility

Train 1
Mtp

Train 2
M

ts

λp

λs

λp

λs

Note:Two intervals λp and λs can be
TI-incompatible and not DDD-incompatible



Interval Assignment Problem (IAP)
Given a set of partitions Λ = {Λir : i ∈ I, r ∈ Ri},we want to find x∗, the incidence vector of a set of non-DDD-incompatible intervals ofminimum cost c̄(x∗).

min
∑

i∈I
∑

r∈Ri

∑
λp∈Λir c̄p · (xp)

s.t.
(1)

∑
λp∈Λir xp = 1, i ∈ I, r ∈ Ri

(2) xp + xs ≤ 1, λp TI-incompatible with λs

xp ∈ {0, 1} i ∈ I, r ∈ Ri, λp ∈ Λir

We can obtain a schedule t∗ = Φ(x∗),if x∗ is optimal then t∗ is optimal for the TRP



Interval Assignment Problem (IAP)
Given a set of partitions Λ = {Λir : i ∈ I, r ∈ Ri},we want to find x∗, the incidence vector of a set of non-DDD-incompatible intervals ofminimum cost c̄(x∗).

min
∑

i∈I
∑

r∈Ri

∑
λp∈Λir c̄p · (xp)

s.t.
(1)

∑
λp∈Λir xp = 1, i ∈ I, r ∈ Ri

(2) xp + xs ≤ 1, λp DDD-incompatible with λs

xp ∈ {0, 1} i ∈ I, r ∈ Ri, λp ∈ Λir

We can obtain a schedule t∗ = Φ(x∗),
t∗ is a lower bound for the TRP



Initialize the IAP

The initial problem D0 considers for each track segment traversed by each train, a singleinterval of the type:

Train i t M
λ0

Λ0 = {[t,M), for each i ∈ I and each r ∈ Ri}



Refine the IAP problem
Example of refinement for two DDD-incompatible intervals

M
Train 1 tp+ l

Train 2
Mts+ l

λp

λs

λp

λs

M
Train 1 tp

Train 2
Mts

ts + l

λs′

λp′

λp

λs

λp′

λs′



Refine the IAP problem
Example of refinement for two DDD-incompatible intervals

M
Train 1 tp+ l

Train 2
Mts+ l

λp

λs

λp

λs

M
Train 1 tp

Train 2
Mts

ts + l

λs′

λp′

λp

λs

λp′

λs′



Computational experiments

• In our experience, running the DDD algorithmusing a MILP solver (Gurobi) is not competitive with the big-M formulation.
• Row and column (variables and constraints) generation:MILP solvers typically restart completely.

• Two ways forward:
1. Use a more incremental solver: core-based MaxSAT2. Use a custom branch-and-bound algorithm



Computational experiments

• In our experience, running the DDD algorithmusing a MILP solver (Gurobi) is not competitive with the big-M formulation.
• Row and column (variables and constraints) generation:MILP solvers typically restart completely.
• Two ways forward:

1. Use a more incremental solver: core-based MaxSAT2. Use a custom branch-and-bound algorithm



SAT solvers

• The Boolean satisfiability (SAT) problem asks whether there is an assignment tobinary variables that satisfies a set of clause constraints:
x1 + . . .+ xk + (1 − xk+1) + . . .+ (1 − xn) ≥ 1

• Very good open source solvers such as MiniSat and CaDiCaL.

• Many applications in computer science, many based on incremental use– similar to row and column generation.
• Last 5 years has seen good progress also in MaxSAT, the optimization version of SAT– no “native” numbers, so typically small integer objectives.



SAT solvers

• The Boolean satisfiability (SAT) problem asks whether there is an assignment tobinary variables that satisfies a set of clause constraints:
x1 + . . .+ xk + (1 − xk+1) + . . .+ (1 − xn) ≥ 1

• Very good open source solvers such as MiniSat and CaDiCaL.
• Many applications in computer science, many based on incremental use– similar to row and column generation.
• Last 5 years has seen good progress also in MaxSAT, the optimization version of SAT– no “native” numbers, so typically small integer objectives.



SAT solvers

Train scheduling DDD translates nicely to clause constraints
⇒ can be solved as a MaxSAT problem.

(we solved it using the RC2 algorithm)



Instances

The test set consists of 24 real-life instances derived from two single-track railwaynetworks of the Norwegian railroad.
Line A Line B

Number of instances 12 12
Number of routes 33 25
Avg Train 20 11
Avg Track per Train 19 15

We created an additional 48 test instances by letting some trains take longer to traveltracks or wait longer in stations.



Objective functions
We minimize the train delays at their final destination stations f considering a delayfunction of the type:

c(tif ) = max(0, tif − tif )

We tested stepwise functions with different number of steps:
1. Linear rounded function: Σtif∈F⌊c(tif )/Q⌋where Q=180 is the time between stepwise increases
2. 3 steps function (0-3-6min):

3. 1 step function (0-5min).



Objective functions
We minimize the train delays at their final destination stations f considering a delayfunction of the type:

c(tif ) = max(0, tif − tif )

We tested stepwise functions with different number of steps:
1. Linear rounded function: Σtif∈F⌊c(tif )/Q⌋where Q=180 is the time between stepwise increases
2. 3 steps function (0-3-6min):

3. 1 step function (0-5min).



Computational results
DDD-ALG and Big-M computation times (in ms) for different objective functions on the 10

hardest instances of our set.
Linear rounded 3 steps 1 stepInstance Big-M DDD-ALG Big-M DDD-ALG Big-M DDD-ALG

IAT
11 T/O T/O 2541 453 689 221

IAT
12 T/O T/O 2405 362 442 231

IAS
12 T/O T/O 2080 380 565 172

IAS
11 T/O T/O 917 335 566 198

IAS
8 115622 40404 1811 241 1188 126

IAT
8 37574 13416 875 247 254 191

IAS
1 1694 512 1161 178 393 144

IBO
11 1187 78 123 23 71 17
IAS

2 555 306 372 83 127 46
IAO

8 587 198 200 57 92 77



Computational results

It turned out that:
▷ when using a linear rounded objective function the DDD-ALG is typically between 2x
and 10x faster than Big-M (the rounding makes a large difference to the DDD-ALG)

▷ with a 3 steps objective function the computation times are always much lower (the
DDD-ALG is faster than Big-M by 3x-10x on all instances)

▷ with a 1 step objective function the DDD-ALG has computational times lower than300 ms
▷ when using a linear objective, the DDD-ALG is not a successful approach (general

weakness with exact core-based MaxSAT solvers)



Computational results

It turned out that:
▷ when using a linear rounded objective function the DDD-ALG is typically between 2x
and 10x faster than Big-M (the rounding makes a large difference to the DDD-ALG)

▷ with a 3 steps objective function the computation times are always much lower (the
DDD-ALG is faster than Big-M by 3x-10x on all instances)

▷ with a 1 step objective function the DDD-ALG has computational times lower than300 ms
▷ when using a linear objective, the DDD-ALG is not a successful approach (general

weakness with exact core-based MaxSAT solvers)



Computational results

It turned out that:
▷ when using a linear rounded objective function the DDD-ALG is typically between 2x
and 10x faster than Big-M (the rounding makes a large difference to the DDD-ALG)

▷ with a 3 steps objective function the computation times are always much lower (the
DDD-ALG is faster than Big-M by 3x-10x on all instances)

▷ with a 1 step objective function the DDD-ALG has computational times lower than300 ms

▷ when using a linear objective, the DDD-ALG is not a successful approach (general
weakness with exact core-based MaxSAT solvers)



Computational results

It turned out that:
▷ when using a linear rounded objective function the DDD-ALG is typically between 2x
and 10x faster than Big-M (the rounding makes a large difference to the DDD-ALG)

▷ with a 3 steps objective function the computation times are always much lower (the
DDD-ALG is faster than Big-M by 3x-10x on all instances)

▷ with a 1 step objective function the DDD-ALG has computational times lower than300 ms
▷ when using a linear objective, the DDD-ALG is not a successful approach (general

weakness with exact core-based MaxSAT solvers)



Sketch of a branch-and-bound algorithm
Idea:
• Solve each train’s schedule separately as a
shortest path problem in a time-expanded network.

Track 1
Track 2
Track 3
Track 4



Sketch of a branch-and-bound algorithm
Idea:
• The shortest path corresponds to a set of intervals whereresources are occupied by the train.

Track 1
Track 2
Track 3
Track 4



Sketch of a branch-and-bound algorithm
Idea:
• When combining schedules into a complete solution,there will be resource conflicts between pairs of trains.

Track 1
Track 2
Track 3
Track 4



Sketch of a branch-and-bound algorithm
Idea:
• We can branch on which of the two trainsis granted the resource in the time interval.

Track 1
Track 2
Track 3
Track 4 n1

n2 n3



Sketch of a branch-and-bound algorithm
Idea:
• We can branch on which of the two trainsis granted the resource in the time interval.

Track 1
Track 2
Track 3
Track 4 n1

n2 n3



Sketch of a branch-and-bound algorithm
Idea:
• We can branch on which of the two trainsis granted the resource in the time interval.

Track 1
Track 2
Track 3
Track 4 n1

n2 n3



Sketch of a branch-and-bound algorithm
Idea:
• The shortest path problem is solved againfor one train per new node.

Track 1
Track 2
Track 3
Track 4 n1

n2 n3



Future work

• The custom branch and bound is a continuous-time (DDD) versionof Multi-agent path finding.
• Routing is solved per-train as part of the shortest path problem(theoretically easy!)
• Branching space is still very large and easy to get stuck in deep branches.
• Pending computational experiments...



Technology for abetter society


	Classical TI vs. IAP

