
Conflict-based search
for real-time railway
dispatching
Bjørnar Luteberget, Paolo Ventura, and
Carlo Mannino
2024-09-12

A timetable at Oslo central Dispatchers at Oslo control centre

Timetabling and real-time dispatching

The train dispatching problem

The train dispatching problem: given the current position of the trains,decide a route and a schedule for each train, s.t.:
• ... trains do not use the same track segments at the same time, and
• ... delays (compared to the timetable) are minimized.

Real-time application

Traffic Management System (TMS)

Control system

Real-time
schedule

Dispatchers'
user interface

Timetable

Scheduling
algorithm

• Optimized Train Scheduling can increase throughput and
reduce delays.

• Yet, it is still the missing piece of many TMS systems
• That is because it requires state-of-the-art optimization

methods, advanced software engineering skills, and a
tremendous amount of experience

Real-time train dispatching is difficult!

It is very hard to solve train dispatching problems in practice:
1. The core is a job-shop scheduling problem (NP-hard) (Mascis & Pacciarelli 2002).
2. In practice, additional rules and constraints.
3. Very large instances (of practical interest)
4. Short computational time (< 2 minutes)

Formalizing the train dispatching problem

• A train is a directed acyclic graph of
operations.

• A route for a train is a path through thegraph from an initial to a final node.
• A schedule is an assignment of starttimes to each operation in the route.
• Each operation requires exclusiveaccess to some resources.
• Operations have start time andduration bounds.

A B
l r1

r2

op 0, δ = 5
t = 0res.: [l]

op 1, δ = 5res.: [r1]

op 2, δ = 5res.: [r2]

op 3, δ = 0res.: []

Train A

op 0, δ = 5
t = 0res.: [r1]

op 1, δ = 5res.: [l]
op 2, δ = 0res.: []

Train B

State of the art

Approaches to solving train dispatching problems:
• Heuristics (out of scope here)
• Alternative graph (AG) models (“resource-oriented”)

— Create graph with all potential precedence constraints between conflicting operationsand select a subset of precedence constraints.— MILP with many big-M constraints (custom branch-and-bound beneficial)
• Time-indexed models (“time-oriented”)

— Decide on a set of discrete time ”slots” and allow only one train in each location in eachtime slot.— MILP with packing constraints (column generation typically beneficial)
• Spatial decomposition is also very important (but out of scope here)

Alternative graph models

• Let xi
j ∈ {0, 1} be the decision ofwhether train i performs operation j.

• Flow conservation constraints select apath for each train.
• Let ti

j, t∗i
j ∈ R be the start and end timeof train i’s operation j. (End time mustbe start time of the next operation.)

• For pair of conflicting operations xi
j, xk

l :
(xi

j = 0)∨ (xk
l = 0)∨ (t∗i

j ≤ tk
l)∨ (t∗k

l ≤ ti
j)

op 0, δ = 5
t = 0res.: [l]

op 1, δ = 5res.: [r1]

op 2, δ = 5res.: [r2]

op 3, δ = 0res.: []

Train A

op 0, δ = 5
t = 0res.: [r1]

op 1, δ = 5res.: [l]
op 2, δ = 0res.: []

Train B

Alternative graph models

• Let xi
j ∈ {0, 1} be the decision ofwhether train i performs operation j.

• Flow conservation constraints select apath for each train.
• Let ti

j, t∗i
j ∈ R be the start and end timeof train i’s operation j. (End time mustbe start time of the next operation.)

• For pair of conflicting operations xi
j, xk

l :
(xi

j = 0)∨ (xk
l = 0)∨ (t∗i

j ≤ tk
l)∨ (t∗k

l ≤ ti
j)

op 0, δ = 5
t = 0res.: [l]

op 1, δ = 5res.: [r1]

op 2, δ = 5res.: [r2]

op 3, δ = 0res.: []

Train A

op 0, δ = 5
t = 0res.: [r1]

op 1, δ = 5res.: [l]
op 2, δ = 0res.: []

Train B

op 0, δ = 5
t = 0res.: [l]

op 1, δ = 5res.: [l]

Alternative graph

(xi
j = 0) ∨ (xk

l = 0) ∨ (t∗i
j ≤ tk

l) ∨ (t∗k
l ≤ ti

j)

• Introduce variables y for selecting the last two disjuncts.
• The disjunctive constraint can be linearized with big-M.
• Branch-and-bound over decisions x and y.
• Node relaxations optimize timing t as a longest path problem (easy).
• Called “alternative graph” because the relaxation is a project scheduling graph andthe branch-and-bound selects between alternative choices of precedences.

Alternative graph

• Introduced without routing in 2002.
(Mascis & Pacciarelli, 2002)

• Used in practice with extensions to routing and spatial decomposition.
(D’Ariano et al., 2007), (Pellegrini et al., 2015), (Lamorgese & Mannino, 2015), (Leutwiler & Corman 2022)

• Reasonably scalable when routing is very limited (or decomposable).
• With comprehensive routing choices: multiple independent decisions to makebefore the node relaxation’s bound increases.

(xi
j = 0) ∨ (xk

l = 0) ∨ (t∗i
j ≤ tk

l) ∨ (t∗k
l ≤ ti

j)

Time-oriented models

• Alternative: time-oriented models:decide on a set of relevant time points(discretization).
• As a MILP: packing constraints givebetter relaxation bounds.
• Granulatity trade-off bites: finediscretizations give a huge number ofdecisions

source

sink

0 1 2 3 4 5 6 7r0

r1

r2

r3

r4

r5

r6

r7

Time intervals

Re
so

ur
ce

Time-oriented models

• Can be used for dispatching, especially in station areas.
(Zwaneveld et al., 2001), (Harrod, 2011)

• Somewhat scalable in number of trains and resources (w/column generation).
(Lusby et al., 2013), (Reynolds et al. 2020) .

• ... but harder to scale time horizon and to longer lines.
• Dynamic discretization helps. (Croella et al. 2023)

Time-oriented branch-and-bound

What has been done in similar applications?
• Robotics path planning literature hasmany similarities!

Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

• The multi-agent path finding problem

Time-oriented branch-and-bound

What has been done in similar applications?
• Robotics path planning literature hasmany similarities!

Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

• The multi-agent path finding problem:
— agents placed on a grid (or graph)

— traveling one cell per time unit— each agent ends up in a specified cell

Time-oriented branch-and-bound

What has been done in similar applications?
• Robotics path planning literature hasmany similarities!

Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

• The multi-agent path finding problem:
— agents placed on a grid (or graph)— traveling one cell per time unit

— each agent ends up in a specified cell

Time-oriented branch-and-bound

What has been done in similar applications?
• Robotics path planning literature hasmany similarities!

Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

• The multi-agent path finding problem:
— agents placed on a grid (or graph)— traveling one cell per time unit— each agent ends up in a specified cell

Time-oriented branch-and-bound

What has been done in similar applications?
• Robotics path planning literature hasmany similarities!

Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

• The multi-agent path finding problem:
— agents placed on a grid (or graph)— traveling one cell per time unit— each agent ends up in a specified cell

... minimizing delays

Conflict based search

Much progress in multi-agent path finding, especially a branch-and-bound algorithmcalled conflict-based search (Sharon et al., 2015).Idea:
• Plan each agent as a shortest path problem in a time-expanded graph.
• Combine the individual plans and look for conflicts(two agents in the same cell at the same time).
• For a conflict in cell c at time t, branch on the decision of whether

— agent A is not in cell c at time t— agent B is not in cell c at time t

(zA,c
t = 0) ∨ (zB,c

t = 0)

Adaptation to train dispatching

Adapting CBS to deal in continuous timesimilar to (Andreychuk et al., 2022)and (Walker et al., 2018):
• For a conflict in resource r1— used by train A in the interval [tA

r1
, t∗A

r1
]

— used by train B in the interval [tB
r1
, t∗B

r1
]

What constraint can we use to
eliminate this solution?

r1 Train A Train B
[tA

r1
, t∗A

r1
]

[tB
r1
, t∗B

r1
]

From precedences to time windows

Starting from the familiar precedence constraint,
(xA = 0) ∨ (xB = 0) ∨ (t∗B ≤ tA) ∨ (t∗A ≤ tB)

From precedences to time windows

Starting from the familiar precedence constraint,
. . . ∨ (t∗B ≤ tA) ∨ . . .

From precedences to time windows

Starting from the familiar precedence constraint,
. . . ∨ (t∗B ≤ tA) ∨ . . .

... choose any constant λ ∈ R, then we have:
. . . ∨ (t∗B < λ) ∨ (λ ≤ tA) ∨ . . .

From precedences to time windows

Starting from the familiar precedence constraint,
(xA = 0) ∨ (xB = 0) ∨ (t∗B ≤ tA) ∨ (t∗A ≤ tB)

... choose constants λ1, λ2 ∈ R, then we have:
(xA = 0) ∨ (xB = 0) ∨ (t∗B < λ1) ∨ (λ1 ≤ tA) ∨ (t∗A < λ2) ∨ (λ2 ≤ tB)

Adaptation to train dispatching

The constants λ1 = t∗B
r1
and λ2 = t∗A

r1makes most sense, since the end time is
likely to already be as early as possible.

(xA
r1
= 0) ∨ (xB

r1
= 0)∨

(tA
r1
≥ t∗B

r1
) ∨ (t∗B

r1
< t∗B

r1
)∨

(tB
r1
≥ t∗A

r1
) ∨ (t∗A

r1
< t∗A

r1
)

r1 Train A Train B
[tA

r1
, t∗A

r1
]

[tB
r1
, t∗B

r1
]

Adaptation to train dispatching

How to deal with the 6-way disjunction?Rearrange:

(xA
r1
= 0) ∨ (xB

r1
= 0) ∨ (tA

r1
≥ t∗B

r1
) ∨ (t∗B

r1
< t∗B

r1
) ∨ (tB

r1
≥ t∗A

r1
) ∨ (t∗A

r1
< t∗A

r1
)

Adaptation to train dispatching

How to deal with the 6-way disjunction?Rearrange:

(xA
r1
= 0) ∨ (tA

r1
≥ t∗B

r1
) ∨ (t∗A

r1
< t∗A

r1
) ∨ (xB

r1
= 0) ∨ (t∗B

r1
< t∗B

r1
) ∨ (tB

r1
≥ t∗A

r1
)

Adaptation to train dispatching

How to deal with the 6-way disjunction?Rearrange:

(xA
r1
= 0) ∨ (tA

r1
≥ t∗B

r1
) ∨ (t∗A

r1
< t∗A

r1
)︸ ︷︷ ︸Left branch: timing/path constraint on train A
∨ (xB

r1
= 0) ∨ (t∗B

r1
< t∗B

r1
) ∨ (tB

r1
≥ t∗A

r1
)︸ ︷︷ ︸Right branch: timing/path constraint on train B

Shortest path subproblem
In each branch-and-bound node, find shortest path in time-expanded network.
• The relevant times are only theoperation lower bounds and the timesmentioned in the constraints.
• We generalize slightly from Safe

Interval Path Planning.(Phillips & Likhachev, 2011)
• Implementation is straight-forward with“labelled Dijkstra’s”.
• Strong domination when constraintsare sparse. E.g., r4 is unconstrained, sousing the earliest start time suffices.

r1

r2

r3

r4

time

Beware of swapping!
If trains move immediately from oneresource to the next, we can get swapping.
• Node relaxation has a pair of train

marginally overlapping in adjacentresources r1, r2.
• No time-window constraint on eitherresource will suffice.

r1

r2

Train A Train B
Train ATrain B

Solution: condition the constraint on all four operations.
(xA

r1
= 0) ∨ (xA

r2
= 0) ∨ (xB

r1
= 0) ∨ (xB

r2
= 0)∨

(tA
r1
≥ t∗B

r2
) ∨ (t∗B

r2
< t∗B

r2
) ∨ (tB

r1
≥ t∗A

r2
) ∨ (t∗A

r2
< t∗A

r2
)

Beware of swapping in cycles!

We can also see three or more trainsswapping in a cycle.
• Node relaxation has a pair of train

marginally overlapping in a cyclebetween resources r1, r2, r3.
• No two-way disjunction on a pair oftrains will suffice.

r1

r2

r3

Train A Train B
Train B Train C
Train C Train A

Solution: three-way disjunction.(fortunately, this happens very rarely)

Conflict based search for train dispatching

We implemented:
• Shortest path search with path/timing constraints.
• Incremental conflict detector using interval trees.
• Constraint generator with cycle conflict detection.
• Branch-and-bound with strong branching and probing.

• Using the Rust programming langauge• Running on AMD Ryzen 9 7900X 12-core desktop computer• Gurobi v10.0 for MILP comparison

Experiments
We tested on problem instances provided by Siemens Mobility.Freight-dominated, 5-12 trains, avg. ∼1400 operations per instance.
MILP with big-M for comparison. Note that MILP has heuristics, while CBS is pure best-first.

Instance Alternative graph MILP Conflict-based searchTrains Ops. Gap Nodes Time (s) Gap Nodes Time (s)6 443 0% 7594 12.1 0% 22 0.06 1754 82% 1 60.1 - 1501 60.06 1954 100% 1 60.0 0% 176 1.85 1854 100% 1533 60.0 0% 451 4.613 1437 - 1 60.0 0% 98 0.45 113 0% 0 0.0 0% 8 0.09 1718 83% 1406 60.0 0% 725 2.97 948 76% 1089 60.0 0% 131 0.48 1099 100% 4905 60.0 - 9814 60.08 2245 100% 7 60.0 0% 692 11.36 1416 93% 11018 60.0 0% 68 0.39 1975 90% 5679 60.0 0% 260 2.3
(comparison with time-indexed approach to come...)

Cross-fertilization:
train dispatching ⇄ multi-agent path finding

Many ideas from multi-agent path finding seem promising for train dispatching:
• Conflict prioritization (=strong branching)
• Disjoint splitting (Andreychuk et al., 2021)
• Bypassing / deep bypassing
• Better lower bound using conflict graphs (Li et al., 2019)
• Heuristics: priority inheritance, Monte Carlo methods, large neighborhood search(Okumura, 2023)

Technology for abetter society

