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A timetable at Oslo central Dispatchers at Oslo control centre

Timetabling and real-time dispatching



The train dispatching problem

The train dispatching problem: given the current position of the trains,decide a route and a schedule for each train, s.t.:
• ... trains do not use the same track segments at the same time, and
• ... delays (compared to the timetable) are minimized.
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• Optimized Train Scheduling can increase throughput and 
reduce delays.

• Yet, it is still the missing piece of many TMS systems
• That is because it requires state-of-the-art optimization 

methods, advanced software engineering skills, and a 
tremendous amount of experience



Real-time train dispatching is difficult!

It is very hard to solve train dispatching problems in practice:
1. The core is a job-shop scheduling problem (NP-hard) (Mascis & Pacciarelli 2002).
2. In practice, additional rules and constraints.
3. Very large instances (of practical interest)
4. Short computational time (< 2 minutes)



Formalizing the train dispatching problem

• A train is a directed acyclic graph of
operations.

• A route for a train is a path through thegraph from an initial to a final node.
• A schedule is an assignment of starttimes to each operation in the route.
• Each operation requires exclusiveaccess to some resources.
• Operations have start time andduration bounds.
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State of the art

Approaches to solving train dispatching problems:
• Heuristics (out of scope here)
• Alternative graph (AG) models (“resource-oriented”)

— Create graph with all potential precedence constraints between conflicting operationsand select a subset of precedence constraints.— MILP with many big-M constraints (custom branch-and-bound beneficial)
• Time-indexed models (“time-oriented”)

— Decide on a set of discrete time ”slots” and allow only one train in each location in eachtime slot.— MILP with packing constraints (column generation typically beneficial)
• Spatial decomposition is also very important (but out of scope here)



Alternative graph models

• Let xi
j ∈ {0, 1} be the decision ofwhether train i performs operation j.

• Flow conservation constraints select apath for each train.
• Let ti
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Alternative graph

(xi
j = 0) ∨ (xk

l = 0) ∨ (t∗i
j ≤ tk

l ) ∨ (t∗k
l ≤ ti

j)

• Introduce variables y for selecting the last two disjuncts.
• The disjunctive constraint can be linearized with big-M.
• Branch-and-bound over decisions x and y.
• Node relaxations optimize timing t as a longest path problem (easy).
• Called “alternative graph” because the relaxation is a project scheduling graph andthe branch-and-bound selects between alternative choices of precedences.



Alternative graph

• Introduced without routing in 2002.
(Mascis & Pacciarelli, 2002)

• Used in practice with extensions to routing and spatial decomposition.
(D’Ariano et al., 2007), (Pellegrini et al., 2015), (Lamorgese & Mannino, 2015), (Leutwiler & Corman 2022)

• Reasonably scalable when routing is very limited (or decomposable).
• With comprehensive routing choices: multiple independent decisions to makebefore the node relaxation’s bound increases.
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Time-oriented models

• Alternative: time-oriented models:decide on a set of relevant time points(discretization).
• As a MILP: packing constraints givebetter relaxation bounds.
• Granulatity trade-off bites: finediscretizations give a huge number ofdecisions
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Time-oriented models

• Can be used for dispatching, especially in station areas.
(Zwaneveld et al., 2001), (Harrod, 2011)

• Somewhat scalable in number of trains and resources (w/column generation).
(Lusby et al., 2013), (Reynolds et al. 2020) .

• ... but harder to scale time horizon and to longer lines.
• Dynamic discretization helps. (Croella et al. 2023)



Time-oriented branch-and-bound

What has been done in similar applications?
• Robotics path planning literature hasmany similarities!

Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

• The multi-agent path finding problem
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Time-oriented branch-and-bound

What has been done in similar applications?
• Robotics path planning literature hasmany similarities!

Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

• The multi-agent path finding problem:
— agents placed on a grid (or graph)— traveling one cell per time unit— each agent ends up in a specified cell

... minimizing delays



Conflict based search

Much progress in multi-agent path finding, especially a branch-and-bound algorithmcalled conflict-based search (Sharon et al., 2015).Idea:
• Plan each agent as a shortest path problem in a time-expanded graph.
• Combine the individual plans and look for conflicts(two agents in the same cell at the same time).
• For a conflict in cell c at time t, branch on the decision of whether

— agent A is not in cell c at time t— agent B is not in cell c at time t

(zA,c
t = 0) ∨ (zB,c

t = 0)



Adaptation to train dispatching

Adapting CBS to deal in continuous timesimilar to (Andreychuk et al., 2022)and (Walker et al., 2018):
• For a conflict in resource r1— used by train A in the interval [tA

r1
, t∗A

r1
]

— used by train B in the interval [tB
r1
, t∗B

r1
]

What constraint can we use to
eliminate this solution?
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From precedences to time windows

Starting from the familiar precedence constraint,
(xA = 0) ∨ (xB = 0) ∨ (t∗B ≤ tA) ∨ (t∗A ≤ tB)
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From precedences to time windows

Starting from the familiar precedence constraint,
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... choose any constant λ ∈ R, then we have:
. . . ∨ (t∗B < λ) ∨ (λ ≤ tA) ∨ . . .



From precedences to time windows

Starting from the familiar precedence constraint,
(xA = 0) ∨ (xB = 0) ∨ (t∗B ≤ tA) ∨ (t∗A ≤ tB)

... choose constants λ1, λ2 ∈ R, then we have:
(xA = 0) ∨ (xB = 0) ∨ (t∗B < λ1) ∨ (λ1 ≤ tA) ∨ (t∗A < λ2) ∨ (λ2 ≤ tB)



Adaptation to train dispatching

The constants λ1 = t∗B
r1
and λ2 = t∗A

r1makes most sense, since the end time is
likely to already be as early as possible.
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Adaptation to train dispatching

How to deal with the 6-way disjunction?Rearrange:
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Adaptation to train dispatching

How to deal with the 6-way disjunction?Rearrange:
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Shortest path subproblem
In each branch-and-bound node, find shortest path in time-expanded network.
• The relevant times are only theoperation lower bounds and the timesmentioned in the constraints.
• We generalize slightly from Safe

Interval Path Planning.(Phillips & Likhachev, 2011)
• Implementation is straight-forward with“labelled Dijkstra’s”.
• Strong domination when constraintsare sparse. E.g., r4 is unconstrained, sousing the earliest start time suffices.
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Beware of swapping!
If trains move immediately from oneresource to the next, we can get swapping.
• Node relaxation has a pair of train

marginally overlapping in adjacentresources r1, r2.
• No time-window constraint on eitherresource will suffice.
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Solution: condition the constraint on all four operations.
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Beware of swapping in cycles!

We can also see three or more trainsswapping in a cycle.
• Node relaxation has a pair of train

marginally overlapping in a cyclebetween resources r1, r2, r3.
• No two-way disjunction on a pair oftrains will suffice.

r1

r2

r3

Train A Train B
Train B Train C
Train C Train A

Solution: three-way disjunction.(fortunately, this happens very rarely)



Conflict based search for train dispatching

We implemented:
• Shortest path search with path/timing constraints.
• Incremental conflict detector using interval trees.
• Constraint generator with cycle conflict detection.
• Branch-and-bound with strong branching and probing.

• Using the Rust programming langauge• Running on AMD Ryzen 9 7900X 12-core desktop computer• Gurobi v10.0 for MILP comparison



Experiments
We tested on problem instances provided by Siemens Mobility.Freight-dominated, 5-12 trains, avg. ∼1400 operations per instance.
MILP with big-M for comparison. Note that MILP has heuristics, while CBS is pure best-first.

Instance Alternative graph MILP Conflict-based searchTrains Ops. Gap Nodes Time (s) Gap Nodes Time (s)6 443 0% 7594 12.1 0% 22 0.06 1754 82% 1 60.1 - 1501 60.06 1954 100% 1 60.0 0% 176 1.85 1854 100% 1533 60.0 0% 451 4.613 1437 - 1 60.0 0% 98 0.45 113 0% 0 0.0 0% 8 0.09 1718 83% 1406 60.0 0% 725 2.97 948 76% 1089 60.0 0% 131 0.48 1099 100% 4905 60.0 - 9814 60.08 2245 100% 7 60.0 0% 692 11.36 1416 93% 11018 60.0 0% 68 0.39 1975 90% 5679 60.0 0% 260 2.3
(comparison with time-indexed approach to come...)



Cross-fertilization:
train dispatching ⇄ multi-agent path finding

Many ideas from multi-agent path finding seem promising for train dispatching:
• Conflict prioritization (=strong branching)
• Disjoint splitting (Andreychuk et al., 2021)
• Bypassing / deep bypassing
• Better lower bound using conflict graphs (Li et al., 2019)
• Heuristics: priority inheritance, Monte Carlo methods, large neighborhood search(Okumura, 2023)



Technology for abetter society


