SINTEF

Conflict-based search
for real-time railway
dispatching

Bjgrnar Luteberget, Paolo Ventura, and
Carlo Mannino

2024-09-12

SF Timetabling and real-time dispatching

A timetable at Oslo central Dispatchers at Oslo control centre

SINTEE The train dispatching problem

The train dispatching problem: given the current position of the trains,
decide a route and a schedule for each train, s.t.:

e ... trains do not use the same track segments at the same time, and

e ... delays (compared to the timetable) are minimized.

silill Real-time application

* Optimized Train Scheduling can increase throughput and
reduce delays.

e Yet, itisstill the missing piece of many TMS systems

* That is because it requires state-of-the-art optimization
methods, advanced software engineering skills, and a
tremendous amount of experience

Traffic Management System (TMS)

Tim etable I
r~ Scheduhng Real-time Dispatchers® |
' algomhm - sched ule —> user interface
f W I

1500

1451

Sinrer Real-time train dispatching is difficult!

It is very hard to solve train dispatching problems in practice:
1. The core is a job-shop scheduling problem (NP-hard) (Mascis & Pacciarelli 2002).
2. In practice, additional rules and constraints.
3. Very large instances (of practical interest)
4. Short computational time (< 2 minutes)

el Formalizing the train dispatching problem

e Atrainis a directed acyclic graph of é %
operations. D 1 rt -

e Aroute for a train is a path through the =
graph from an initial to a final node.

e Aschedule is an assignment of start T'::;"OA5 — oo ?1‘:1]5 _
times to each operation in the route. £=0 Pl

res.: [1] — 25—

e Each operation requires exclusive res.: [r2]
access to some resources. Train B

e Operations have start time and po0E op1,6 =5 2,0 =0
duration bounds. res: [r1] e [e |

SINTEF State of the art

Approaches to solving train dispatching problems:
[)

e Alternative graph (AG) models (“resource-oriented”)
— Create graph with all potential precedence constraints between conflicting operations
and select a subset of precedence constraints.
— MILP with many big-M constraints (custom branch-and-bound beneficial)
e Time-indexed models (“time-oriented”)
— Decide on a set of discrete time "slots” and allow only one train in each location in each
time slot.
— MILP with packing constraints (column generation typically beneficial)

Il Alternative graph models

o Letx; € {0, 1} be the decision of
whether train i performs operation j.

. . Train A op 1,6 =5
e Flow conservation constraints select a o5 v e [x1]
. N ,0 =20
path for each train. t=0 o 0
o . res.: [1] — P —
o Let tJ‘ t*; € R be the start and end time res.: [r2]
of train i’s operation j. (End time must
be start time of the next operation.) 0,5 =5 P 2 0=0
re;.::[rol] res.: [1] res.: [|

Train B

Il Alternative graph models

o Letx; € {0, 1} be the decision of
whether train i performs operation j.

. . Train A op1,d =5
e Flow conservation constraints select a SeTETL v e (x1]
o N ,0=0
path for each train. t=0 * e 1
)) res.: [1] —— P
o Lett,t"; € R be the start and end time ARSIt res: [x2]
of train i’s operation j. (End time must ‘*
be start time of the next operation.) DD pesarre T
. . . . A res.: [1] res.: ||
e For pair of conflicting operations xi, xX: res.: (1]
Train B

(= 0)V(d =0V (<t (th < e

SINTEF

Alternative graph

Introduce variables y for selecting the last two disjuncts.

The disjunctive constraint can be linearized with big-M.

Branch-and-bound over decisions x and y.
Node relaxations optimize timing t as a longest path problem (easy).

Called “alternative graph” because the relaxation is a project scheduling graph and
the branch-and-bound selects between alternative choices of precedences.

SINTEF

Alternative graph

e Introduced without routing in 2002.

(Mascis & Pacciarelli, 2002)

e Used in practice with extensions to routing and spatial decomposition.

(D'Ariano et al., 2007), (Pellegrini et al., 2015), (Lamorgese & Mannino, 2015), (Leutwiler & Corman 2022)

e Reasonably scalable when routing is very limited (or decomposable).

e With comprehensive routing choices: multiple independent decisions to make
before the node relaxation’s bound increases.

SINTEF Time-oriented models

sink
r; e

e Alternative: time-oriented models: re

decide on a set of relevant time points

. o . rs

(discretization). g
e As a MILP: packing constraints give § ra / / / j / / /

better relaxation bounds. é rs
e Granulatity trade-off bites: fine ry

discretizations give a huge number of r

decisions r
0

/o--‘f'z 3 4 5 6 7

source Time intervals

SINTEF Time-oriented models

Can be used for dispatching, especially in station areas.

(Zwaneveld et al., 2001), (Harrod, 2011)

Somewhat scalable in number of trains and resources (w/column generation).

(Lusby et al., 2013), (Reynolds et al. 2020) .

... but harder to scale time horizon and to longer lines.

Dynamic discretization helps. (croella et al. 2023)

SINTEF Time-oriented branch-and-bound

What has been done in similar applications?
e Robotics path planning literature has
many similarities!
Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

e The multi-agent path finding problem

SINTEF Time-oriented branch-and-bound

What has been done in similar applications?

e Robotics path planning literature has .

many similarities!

Already noted for shunting (Mulderij et al., 2020)

(Hanou et al., 2024)

e The multi-agent path finding problem:

— agents placed on a grid (or graph)

SINTEF Time-oriented branch-and-bound

What has been done in similar applications?

e Robotics path planning literature has .--)

many similarities!

<@

Already noted for shunting (Mulderij et al., 2020)

(Hanou et al., 2024)

e The multi-agent path finding problem:

— agents placed on a grid (or graph)

— traveling one cell per time unit

SINTEF Time-oriented branch-and-bound

What has been done in similar applications?

e Robotics path planning literature has
many similarities!
Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)

e The multi-agent path finding problem:

— agents placed on a grid (or graph)
— traveling one cell per time unit
— each agent ends up in a specified cell

~

SINTEF Time-oriented branch-and-bound

What has been done in similar applications?

e Robotics path planning literature has
many similarities!
Already noted for shunting (Mulderij et al., 2020)
(Hanou et al., 2024)
e The multi-agent path finding problem:
— agents placed on a grid (or graph)
— traveling one cell per time unit
— each agent ends up in a specified cell

... minimizing delays

~

SINTEF Conflict based search

Much progress in multi-agent path finding, especially a branch-and-bound algorithm
called conflict-based search (Sharon et al., 2015).
Idea:

e Plan each agent as a shortest path problem in a time-expanded graph.

e Combine the individual plans and look for conflicts
(two agents in the same cell at the same time).
e For a conflict in cell ¢ at time t, branch on the decision of whether

— agentAisnotincell cattimet
— agentBisnotincell cattimet

(= 0) V (2 = 0)

SF Adaptation to train dispatching

Adapting CBS to deal in continuous time
similar to (Andreychuk et al., 2022)
and (Walker et al., 2018):

e For a conflict in resource ry r
. . . —A
— used by train A in the interval ﬁfl]

— used by train B in the interval ﬁfl,Ffl]

What constraint can we use to
eliminate this solution?

SINTEE From precedences to time windows

Starting from the familiar precedence constraint,

F=0)vEE=0)v (@ <th)v (@ <th)

SINTEE From precedences to time windows

Starting from the familiar precedence constraint,

Vet <tyv...

SINTEE From precedences to time windows

Starting from the familiar precedence constraint,
v (eP<tyv...
... choose any constant A € R, then we have:

VEP<N)VA<tH) V...

SINTEE From precedences to time windows

Starting from the familiar precedence constraint,
F=0)vEE=0) vt <thv (4 <t
... choose constants A1, Ay € R, then we have:

=0 vEE=0)v (P <)V <tV (< X))V (N <tB)

SF Adaptation to train dispatching

The constants \; = F*i and \p = F‘fl
makes most sense, since the end time is
likely to already be as early as possible.

r

B —B
[tT‘l’ t*rl]
Train A .Train B

EA

A
ry? t*rl]

SF Adaptation to train dispatching

How to deal with the 6-way disjunction?
Rearrange:

B B B A A A
(X;l‘; = 0) \/ (Xfl = 0) \/ (tfl Z t*rl) \/ (t*rl < t*rl) \/ (tfl 2 t*rl) \/ (t*rl < t*rl)

1

SF Adaptation to train dispatching

How to deal with the 6-way disjunction?
Rearrange:

=0V >t) vt <tr)vEE =0)v (e <

ri

SF Adaptation to train dispatching

How to deal with the 6-way disjunction?
Rearrange:

—B . —A «B _ —B —A
(Xfl - 0) \/ (t?l 2 t*rl) \/ (t fl < t"rl)\/(xfl - 0) \/ (t : ~ t‘)'\) \/ (tB > t‘l'\)

ri ry —

Left branch: timing/path constraint on train A Right branch: timing/path constraint on train B

SF Shortest path subproblem

In each branch-and-bound node, find shortest path in time-expanded network.

e The relevant times are only the

operation lower bounds and the times PY
mentioned in the constraints. ry

e We generalize slightly from Safe

r
Interval Path Planning. 3

(Phillips & Likhachev, 2011) ry

e Implementation is straight-forward with
“labelled Dijkstra’s”.

e Strong domination when constraints time
are sparse. E.g., s is unconstrained, so
using the earliest start time suffices.

SINTEF Beware of swapping!

If trains move immediately from one

resource to the next, we can get swapping. @~ ——-------------------

e Node relaxation has a pair of train r2 Train B Train A
marginally overlapping in adjacent = ~—TT——7——"——
resources ri, r'o. r Train A Train B

e No time-window constraint on either
resource will suffice.

Solution: condition the constraint on all four operations.
B B
(K =0)v (x = 0) v (x& = 0) v (x& = O)V

—B B —B B A A A
(trl‘;l 2 t*rz) v (t*rz < t*rz) Vv (trl 2 t*rz) v (t*"z < t*rz)

Sirer Beware of swapping in cycles!

We can also see three or more trains
swapping in a cycle. r3
e Node relaxation has a pair of train
marginally overlapping in a cycle
between resources ry, 19, 3.

ry

e No two-way disjunction on a pair of "

trains will suffice.

Solution: three-way disjunction.
(fortunately, this happens very rarely)

el Conflict based search for train dispatching

We implemented:

Shortest path search with path/timing constraints.
Incremental conflict detector using interval trees.
Constraint generator with cycle conflict detection.
Branch-and-bound with strong branching and probing.

Using the Rust programming langauge
Running on AMD Ryzen 9 7900X 12-core desktop computer
Gurobi v10.0 for MILP comparison

SINTEF Experiments

We tested on problem instances provided by Siemens Mobility.
Freight-dominated, 5-12 trains, avg. ~1400 operations per instance.

MILP with big-M for comparison. Note that MILP has heuristics, while CBS is pure best-first.

Instance Alternative graph MILP Conflict-based search
Trains Ops. Gap Nodes Time (s) Gap Nodes Time (s)
6 443 0% 7594 12.1 0% 22 0.0

6 1754 82% 1 60.1 - 1501 60.0
1954 100% 1 60.0 0% 176 1.8

5 1854 100% 1533 60.0 0% 451 4.6
13 1437 o 1 60.0 0% 98 0.4
5 13 0% o 0.0 0% 8 0.0

9 1718 83% 1406 60.0 0% 725 2.9

7 948 76% 1089 60.0 0% 131 0.4

8 1099 100% 4905 60.0 = 9814 60.0

8 2245 100% 7 60.0 0% 692 1.3

6 1416 93% 11018 60.0 0% 68 0.3

9 1975 90% 5679 60.0 0% 260 2.3

(comparison with time-indexed approach to come...)

Cross-fertilization:
train dispatching = multi-agent path finding

Many ideas from multi-agent path finding seem promising for train dispatching:
e Conflict prioritization (=strong branching)
e Disjoint splitting (Andreychuk et al., 2021)
e Bypassing / deep bypassing
e Better lower bound using conflict graphs (Li et al., 2019)

e Heuristics: priority inheritance, Monte Carlo methods, large neighborhood search
(Okumura, 2023)

Technology for a
better society

