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Timeline-based planning is a paradigm for domain-independent temporal planning, describing multiple values
that change over time and the conditions for such changes. We present an algorithm for encoding a timeline-
based planning problem into a satisfiability modulo theories (SMT) problem. Each timeline is represented by a
separate bounded unrolling of its transition relation, giving a local state space representation per timeline,
while synchronizations across timelines are represented as disjunctive temporal constraints on the scheduling
variables. This combines previously known successful techniques of state space representations for classical
planning problems with partial order representations for scheduling problems.

Compared to existing SMT translations, our approach is the first to use unsatisfiable cores to build the SMT
formula in a conflict-directed way, producing smaller SMT problems that can be solved faster. In contrast to
many other SMT-based planners, our approach requires only an off-the-shelf SMT solver’s external interface,
so that our implementation is relatively small, simple, and extensible, and can take advantage the full range of
features and fine-tuned heuristics from high-performance SMT solvers. We have evaluated our approach by
comparing performance using manual translations for benchmark problems from other SMT-based timeline
solvers and IPC4 temporal domains.

1 INTRODUCTION
In the quest for higher level of autonomy in robotics, there is a need for efficient and integrated
task planning of operations and actions. Task planning algorithms are becoming efficient enough to
use onboard unmanned vehicles (whether surface, underwater, aerial, or ground vehicles), though
there are still many challenges in the integration of planning and execution. If successful, such
an integration would connect high-level decision-making all the way through to the guidance
systems and control systems, enabling a higher degree of autonomy in a wide range of application
areas, including off-shore installation campaigns, inspection and maintenance of subsea and marine
installations, and emergency response operations.

In thementioned application areas, there is a need for decision-making based onwhen tasks should
be completed, for instance guaranteeing that a maintenance action is taken after an inspection
action or that an emergency is attended to within a certain time window. Therefore, robotic planning
models often need to be temporal, i.e. time-aware, and handle durative actions, concurrency and
deadlines. Temporal planning problems, where actions may have durations and concurrency,
represent both a planning problem (deciding which actions to take) and, at the same time, a
scheduling problem (deciding when actions start and end).

A modelling formalism for planning problems called the Planning Domain Description Language
(PDDL) ([14]) is dominating in the task planning community, and has also been extended to temporal
planning. However, the formalisms and algorithms that work well for planning-heavy problems,
especially classical (non-temporal) planning solved with state-based heuristic search, do not always
give as good results when extended to models with a heavy temporal component.

An alternative modeling formalism more specifically focused on temporal planning is timeline-
based planning, which has been successfully used in several planning systems, including EUROPA
([2]), and oRatio ([4]). Also, the planners IxTeT ([15]) and FAPE ([11]), use a formalism similar
to timelines. In timeline-based planning, multi-valued state variables change over time and are
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represented as timelines, consisting of a sequence of tokens, each token representing a time interval
where a state variable takes a specific value. Constraints on the timelines are imposed as synchro-
nization rules, which specify, for each token, other tokens that it depends on, and the temporal
relationship between a token and its dependencies. For temporal planning problems where sched-
uling aspects and resource constraints play a prominent role, timelines-based formulations have
been demonstrated to give a succinct and user-friendly representation for various task planning
problems in e.g. space missions and marine robotics. Timelines planning is especially suitable when
modeling nearly independent parallel processes, for instance when using more than one vehicle.
The motivations and practical considerations around timelines modeling are described in more
detail in [8, 12, 13].

Classical (non-temporal) planning problems are often solved by the state space search approach,
where one represents a single assignment to all state variables at one point in time and then searches
through possible actions and their resulting effects on the state. In contrast, timeline problems
are often solved by search through possible plans, where plans are a set of tokens (time-varying
values on a timeline) and their temporal dependencies, resulting in a set of timing variables and
corresponding constraints. Roughly, finding the set of tokens and their dependencies corresponds
to planning, and solving the resulting constraint problem over the timing variables corresponds
to the scheduling. Rapidly solving these scheduling problems as the set of tokens changes during
search is efficiently handled by constraint solvers (such as CSP, MILP, and SMT solvers).
The main approach to implementing timelines-based planners in the literature (e.g, [21]) is to

build a custom constraints solver (i.e., a mathematical solver assigning values to variables under
given constraints) and integrate it with a heuristic planning algorithm (i.e., a tree search algorithm
that evaluates different state changes that can be made). Building such a solver can be a daunting
task: most of the constraint-based timeline planners available today are medium to large code bases,
e.g. oRatio at 12k LOC (lines of code), FAPE at 17k LOC, and EUROPA at over 100k LOC.

Knowing that the implementation of constraints solvers is a field of research in itself, we argue
that making the best use of existing constraint systems, instead of implementing and maintaining
bespoke solutions for one specific planning system, may give long-term benefits for timeline-based
planners in terms of performance, and in added speed and flexibility when developing the planning
system. A few temporal planners based on off-the-shelf SMT solvers have recently appeared, mainly
LCP ([6]) and ANML SMT ([20]), where the planning problem is translated into variables and
constraints representing timing and choices. In [6], the LCP planner is presented, which focuses on
the partial-order plan representation, adding pairwise temporal constraints (non-overlap) between
tokens on the same timeline.
In this paper, we present an approach to implementing a simple, flexible and extensible solver

for timeline-based planning problems using a novel algorithm (Section 3). Compared to existing
SMT-based approaches, the algorithm builds a smaller problem representation by expanding only
those timelines where it is needed.
The key to more precise expanding of the formulation is a lesser-used feature of SMT solvers

called unsatisfiable core analysis. We view each timeline as a miniature classical planning problem,
similarly as in [9]. Each timeline has a transition relation which describes which sequence of values
are allowed (as state variables are represented in SAT-based state space planning approaches [16, 18]).
Figure 1 shows some examples of transitions relations drawn as graphs, and their corresponding
unrolling, i.e., the conversion of the graphs into sequences of choices. In this representation, the non-
overlap constraints on timelines become implicit, and it becomes easier to exploit the information
in the transition relation to include only tokens that are reachable from the previous token.
In Figure 1, the Operation Timeline represents the state of an inspection task. Since there is

only one possible transition in each state and the total number of states is fixed, so the unrolling
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Operation Timeline

Ready Do Done

𝑆1 𝑆2 𝑆3
Ready Do Done

Resource Timeline

Free Occ.

𝑆1 𝑆2 𝑆3 . . .

Free Occ. Free Occ.

Robot Location Timeline

. . .

At(a)

Go(a,b)

Go(a,c)

At(b)

At(c)
𝑆1 𝑆2 𝑆3 . . .

At(a) Go(a,b)
Go(a,c)

At(b)
At(c)

Go(b,a)
Go(b,c)
Go(c,a)
. . .

Fig. 1. Directed graphs corresponding to transition relations for different timelines (on the left) and their

corresponding unrolled state sequences (on the right).

produces no choice variables (only timing variables). For the Resource Timeline and the Robot
Location Timeline the number of states is unbounded and we can only unroll up to some limit.
When this timeline then appears in the unsatisfiable core, we extend the number of states in the
unrolling of that timeline.

Furthermore, using a high-performing off-the-shelf solver in a timeline-based planning system en-
sures that the latest research into constraints solving can be exploited without huge implementation
efforts.
Our approach was motivated by work in two research projects: the SEAVENTION1project on

autonomous subsea intervention using UUVs, and the ROBPLAN2 project on autonomous mobile
robot missions including inspection tasks on marine installations. Even so, the approach is fully
domain-independent and can be used for any task planning application.

2 BACKGROUND
Definition 1. A timeline 𝑡 is a tuple (Π,Π0, 𝐷, 𝑅) such that Π is a set of token types, Π0 ⊆ Π

are the initial token types, 𝐷 : Π → I are the token types’ duration intervals, 𝐷 (𝜋) = [𝑙𝜋 , 𝑢𝜋 ], and
𝑅 ⊆ Π × Π is a transition relation.

A timeline represents a time-varying value by interpreting each token type as a different value.
Each token type 𝜋 must have a duration of at least 𝑙𝜋 and at most 𝑢𝜋 . If we have (𝜋1, 𝜋2) ∈ 𝑅, then
the end of a token of type 𝜋1 can be followed by the start of a token of type 𝜋2.

Definition 2. A timeline planning problem 𝑃 is a tuple 𝑃 = (T,C, 𝐹 ,𝐺), where
• T is a set of timelines.

1See https://www.sintef.no/en/projects/2018/seavention
2See https://www.sintef.no/en/projects/2021/robplan

https://www.sintef.no/en/projects/2018/seavention
https://www.sintef.no/en/projects/2021/robplan
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• C = {𝐶𝜋 } is a set of synchronization conditions for each token type 𝜋 , where each 𝑐 =

(𝑟𝑐 ,Π𝑐 ) ∈ 𝐶𝜋 consists of a temporal relation 𝑟𝑐 and a set of target token types Π𝑐 .
• The facts set 𝐹 is a subset of token types 𝐹 ⊆ Π, with given start and end times 𝜏𝑏, 𝜏𝑒 .
• The goals set 𝐺 is a subset of token types 𝐺 ⊆ Π.

The temporal relations typically consist of a numerical constraint involving the start and end
times of tokens. In our planner implementation, we have used the Allen relations ([1]) which
are often used in timeline-based planning ([17]), but the SMT encoding approach is flexible with
regards to the type of temporal constraints used.

A plan for a timeline planning problem 𝑃 consists of a set of tokens 𝐻 = {𝜂1, 𝜂2, . . .}. Each token
𝜂 belongs to a timeline 𝑡 and is an instantiation of one of the timeline’s token types 𝜙 (𝜂) = 𝜋 ∈ Π𝑡 .
Each token has a start time 𝜏𝜂𝑠 ∈ R and an end time 𝜏𝜂𝑒 ∈ R. For such a set of tokens to be a valid
plan (a solution to the timeline planning problem 𝑃 ), the following conditions must be fulfilled:
• Duration limits: The duration limits of the token type are fulfilled:

∀𝜂 ∈ 𝐻 : 𝑙𝜋 ≤ 𝜏
𝜂
𝑒 − 𝜏

𝜂
𝑠 ≤ 𝑢𝜋 .

• Timeline coherence: The set of tokens belonging to the same timeline must be non-
overlapping in time:

∀𝜂, 𝜂 ∈ 𝐻 :
(
𝜂 ≠ 𝜂 ∧ 𝑡 = 𝑡

)
⇒

(
𝜏
𝜂
𝑠 ≥ 𝜏

�̃�
𝑒 ∨ 𝜏

�̃�
𝑠 ≥ 𝜏

𝜂
𝑒

)
.

• Timeline transitions: for consecutive tokens 𝜂1, 𝜂2 on the same timeline 𝑡 , we have that
(𝜂1, 𝜂2) ∈ 𝑅𝑡 (transition relations).

• Token conditions: each token 𝜂 of type 𝜋 must fulfill each of its conditions 𝑐 ∈ 𝐶𝜋 by
satisfying the temporal relation 𝑟𝑐 with another token 𝜂 of type �̃� ∈ Π𝑐 :

∀𝜂 ∈ 𝐻 : ∀𝑐 ∈ 𝐶𝜋 :
∨

�̃�∈𝐻 |𝜙 (�̃� ) ∈Π𝑐

𝑟𝑐 (𝜂, 𝜂)

For example, the Allen relation during, requires that 𝜂 starts before 𝜂 and ends after it, so if
𝑟𝑐 = during, we get:

𝑟𝑐 (𝜂, 𝜂) = during(𝜂, 𝜂) =
(
𝜏
�̃�
𝑠 ≤ 𝜏

𝜂
𝑠 ∧ 𝜏

�̃�
𝑒 ≥ 𝜏

𝜂
𝑒

)
• Facts and goals: for each fact 𝑓 , a corresponding fixed token 𝜂𝑓 must be included in the
plan:

∀𝑓 ∈ 𝐹 : 𝜂𝑓 ∈ 𝐻

Goal tokens 𝜂𝑔 for each goal 𝑔 must be also included in the plan and their end times 𝜏𝜂𝑔𝑒
must be equal to the highest time value in the plan:

∀𝑔 ∈ 𝐺 : 𝜂𝑔 ∈ 𝐻 ∧ 𝜏
𝜂𝑔
𝑒 = max

𝜏
𝜂
𝑒 |𝜂∈𝐻

𝜏
𝜂𝑔
𝑒

See [19] for a thorough treatment of resource management in timelines-based planning. Other
extended definitions of timelines problems include priced disjunctions ([4]), flexible plans and
uncontrollability ([9, 17]). In this paper, we assume the planning domain to be fully deterministic.
This means also that all tokens are controllable, i.e. their duration can be freely chosen anywhere
within the duration interval. We also assume that the problems are grounded, i.e., all the token
types, transition relations, and synchronization conditions are explicitly given without variables.
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At(a)
[1,∞)

At(b)
[1,∞)

At(c)
[1,∞)

Go(a,b)
[𝑑𝑎𝑏,∞)

Go(b,a)
[𝑑𝑏𝑎,∞)

Go(a,c)
[𝑑𝑎𝑐 ,∞)

Go(c,a)
[𝑑𝑐𝑎,∞)

Go(b,c)
[𝑑𝑏𝑐 ,∞)

Go(c,b)
[𝑑𝑐𝑏,∞)

Do
[𝑑𝐼1,∞)

Ready
[1,∞)

Done
[1,∞)

Operation 1

Done
[1,∞)

Ready
[1,∞)

Do
[𝑑𝐼2,∞)

Operation 2
Robot Location

During

During

Fig. 2. A timelines representation of a planning problem with a mobile robot that needs to perform two

operation tasks at different locations. Rectangular boxes indicate timelines, circles represent token types,

solid arrows represent timeline transitions, and dashed arrows represent synchronization conditions.

time

Robot Location At(a) Go(a,b) At(b) Go(b,c) At(c)

Operation 1 Ready Do Done

Operation 2 Ready Do Done

Fig. 3. A solution to the mobile robot planning problem drawn as a scheduling diagram. Timelines are on the

vertical axis. Boxes correspond to tokens in the timeline and red arrows correspond to temporal dependencies

that fulfil the synchronization conditions.

2.1 Mobile robot use case
The planning domain that motivated our approach to timeline-based planning was a mobile robot,
e.g., an UUV or an USV, that has a set of tasks to perform at various locations, and a set of deadlines
or time windows in which these tasks should be performed. This use-case is relevant for marine
applications such as inspection and maintenance of equipment and off-shore installations or search
and rescue.
The mobile robot’s location is an illustrative example of a timeline, as the robot can only be in

one place, and there is a non-trivial transition relation between the locations. A robot is either in a
location that is a point of interest, At(x), or it is under way from one location to another, Go(x,y).
The duration of an At(x) value is unconstrained, while the duration of a Go(x,y) is the time it
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takes to travel from location x to location y. The corresponding transition graph is shown in the left
part of Figure 2. The goals given to the robot might be to perform some actions at certain locations,
such as delivering a parcel or inspecting a piece of equipment. These goals are simpler timelines
with fixed tokens. The Doing state has a condition that it should happen while the robot is at a
certain location indicated by the dashed arrows in Figure 2. A solution to a simple mobile robot
problem instance is shown in Figure 3.

From this basic model, we have extended our representation of the mobile robot in various ways
for different use cases, including:
• More complex state, for example picking up a piece of equipment from one location before
performing inspection, are modelled by adding timelines and conditions.
• Deadlines and time windows, for example a forecast on weather conditions restricting
access to certain locations during exposed operations, are modelled by adding facts, i.e.
tokens with fixed start and/or end times.
• For reusable resource constraints, such as transferring data using an exclusive access
to the communication module of the robot during remote operations, we have extended
the formalism (and the input format) with resource constraints, allowing us to handle
resource constraints specially in the solver. The implementation consists of adding a task-
indexed resource constraint using a pseudo-Boolean encoding (see [7]). Further details
about resource handling are out of scope for this paper.
• Non-reusable resource constraints, such as battery capacity, may also be handled similarly
to reusable resources.

The mobile robot example illustrates how some timelines have complex transition graphs, and
some have trivial ones. The operation timelines’ simple transition relations give only fixed tokens,
while the robot location timeline has is more complex.

2.2 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) solvers determine whether a first-order logical formula is sat-
isfiable. By satisfiable, it is meant whether or not there exist some assignment for the formula’s free
variables making the logical formula true. SMT formulas consist of Boolean expressions connected
by logical connectors such as negations(¬), conjunction(∧), disjunctions(∨) and implications(⇒).
An example of a Boolean logical formula is (𝑎 ∧ 𝑏) ∨ (𝑐 ⇒ 𝑑). In addition to Boolean variables,
the Boolean expressions of an SMT formula may be statements of different kinds, using variable
types such as integers, real numbers, vectors etc., and the connectives may for instance be linear
arithmetic constraints such as 𝑎 + 2𝑏 ≤ 2 or 𝑎 = 𝑐 . See [3] for an introduction to SMT.

Timeline-based planning problems involve both logical structure and temporal constraints on real
variables. As such, SMT solvers are capable of handling the types of constraints needed in timeline-
based planning. However, the unknown number of tokens in a solution plan makes it impossible
to specify the whole planning problem directly as a (quantifier-free) SMT formula. Building the
formula incrementally has been shown to work well for planning, especially in SAT-based classical
planning (see [18]). This means that we solve a constraint system and then afterwards add more
variables and constraints and solve again until the formula is able to represent a valid solution.
In this context it is also possible to give the SMT solver a set of assumptions, which are Boolean
variables that are set to a given value only temporarily, for a single solve call. When that solve call
returns that the formula is unsatisfiable, the solver also reports a subset of the given assumptions
that make the formula unsatisfiable. Such a subset is called an unsatisfiable core.
If we have a propositional logic disjunction,

𝑎1 ∨ . . . ∨ 𝑎𝑖−1 ∨ 𝑎𝑖 ∨ . . . ∨ 𝑎𝑛,
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we can represent it equivalently as the conjunction of two separate disjunctions by adding a fresh
variable 𝑥 :

𝑎1 ∨ . . . ∨ 𝑎𝑖−1 ∨ 𝑥
¬𝑥 ∨ 𝑎𝑖 ∨ . . . ∨ 𝑎𝑛

Then, using a SMT solver with the assumptions interface, we may first add only the first disjunction
and give the assumption ¬𝑥 when solving. If 𝑥 shows up in the unsatisfiable core, we can add the
second disjunction as well (and remove 𝑥 from the assumptions), and we are left with a problem
equivalent to just adding the original disjunction from the beginning. We apply this technique to
our timeline planning encoding below to extend the disjunctions for goals and synchronization
conditions.

3 PARALLEL TRANSITION SYSTEMS ENCODING
The formulas in our encoding of the timeline planning problem into SMT are built from two main
parts: the timeline state sequence, and the synchronization conditions. All actions happen inside
the planning horizon [𝑇0,𝑇Ω].

We construct a sequence of states S𝑡 =
〈
𝑆0𝑡 , 𝑆

1
𝑡 , . . .

〉
for each timeline 𝑡 , representing the unrolling

of the transition graph of 𝑡 . Note that we are not using the word state in classical planning sense,
where the state represents the whole world: here, a state is local to an individual timeline (this
is called a stream in [9]). Each state 𝑆𝑖𝑡 represents a choice between token types 𝜋1, 𝜋2, . . . ∈ Π𝑡 ,
producing a set of corresponding tokens 𝜂1, 𝜂2, . . .. A Boolean variable 𝑠𝑡,𝑖 represents whether the
state 𝑖 of timeline 𝑡 exists in the plan, and for each token 𝜂, a Boolean variable 𝑣𝜂 represents whether
that token is chosen for that state or not. We denote the state that contains a token 𝜂 as 𝜁 (𝜂) = 𝑆 .
The first state 𝑆0𝑡 of each timeline 𝑡 is a choice between one of the initial token types Π0

𝑡 , while
the subsequent states are a choice between the token types �̃� in the transition relation 𝑅𝑡 (𝜋, �̃�) for
any token type 𝜋 in the previous state. Since each possible token type belongs to a specific state 𝑆 ,
we use start and end time variables 𝜌𝑆𝑠 , 𝜌𝑆𝑒 associated with the states instead of creating separate
time variables for each of the tokens themselves.

If the set of goal tokens includes a token type 𝑔 ∈ 𝐺 from timeline 𝑡 , then one of the states must
choose this goal value, and have an end time equal to the end of the planning horizon,𝑇Ω . We create
a Boolean variable 𝛾𝑔,𝜂 for each token 𝜂 of token type 𝑔, representing whether the token is chosen
as goal state, and we require that one of tokens 𝜂 is chosen as the last state of the state sequence.
Also, to be able to add further alternative goal tokens, we use a sequence of extension variables
𝛾+1𝑔 , 𝛾+2𝑔 , . . . to make an incrementally encoded disjunction (see Section 2.2). These variables are
used as assumptions in the abstraction refinement algorithm described in the section below.

Formalizing the above, the SMT formulas for state variable constraints are as follows:
• At most one token is chosen for every state

∀𝜂, 𝜂 | (𝜁 (𝜂) = 𝜁 (𝜂)) : ¬𝑣𝜂 ∨ ¬𝑣�̃� (1)

• If a state exists, then one of the tokens is chosen:

𝑠𝑡,𝑖 ⇒
∨

𝜂 |𝜁 (𝜂 )=𝑆𝑡,𝑖

𝑣𝜂 (2)

• If state 𝑆𝑖𝑡 exists, then the previous state 𝑆𝑖−1𝑡 also exists:

∀𝑖 > 0 : 𝑠𝑡,𝑖 ⇒ 𝑠𝑡,𝑖−1 (3)

• If a token 𝜂 of type 𝜋 is chosen for its state, the token type’s duration constraints are
satisfied:

𝑣𝜂 ⇒ (𝑙𝜋 ≤ 𝜌
𝜁 (𝜂 )
𝑒 − 𝜌𝜁 (𝜂 )𝑠 ≤ 𝑢𝜋 ) (4)
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• The transition conditions are fulfilled:

∀𝜂 : 𝑣𝜂 ⇒
∨

�̃� |𝑅 (𝜙 (𝜂 ),𝜙 (�̃� ) )
𝑣�̃� (5)

• For each goal 𝑔, at least one of its tokens 𝜂1, 𝜂2, . . . is selected, or the disjunction is extended:

𝛾𝑔,𝜂1 ∨ 𝛾𝑔,𝜂2 ∨ 𝛾𝑔,𝜂3 ∨ . . . ∨ 𝛾+1𝑔 (6)

• Selecting the goal state activates the token, and the goal state ends at the end of the planning
horizon:

∀𝜂 |𝜙 (𝜂) ∈ 𝐺 : 𝛾𝑔,𝜂 ⇒
(
𝑣𝜂 ∧ (𝜌𝜁 (𝜂 )𝑒 = 𝑡Ω)

)
(7)

The use of state-space-style planning for each timeline has the advantage that the sequencing
of the tokens is implicit and pairwise non-overlap constraints are not required. Also, instead of
constraining the a state’s start time to be equal to the previous state’s end time, we can re-use the
variable to make this implicit, making the number of scheduling variables for the tokens in the
timeline 𝑛 + 1 instead of 2𝑛, where 𝑛 is the number of states instantiated in the timeline.
For each token 𝜂 of type 𝜋 that appears in the unrolling of the transition relation of timeline 𝑡 ,

we create a Boolean variable 𝜆�̃�𝜂,𝑐 that represents whether condition 𝑐 ∈ 𝐶𝜋 is satisfied by the token
𝜂 𝑗 of type �̃� ∈ Π𝑐 . Also, to be able to add further tokens 𝜂, we use a sequence of extension variables
𝜆+1𝜂,𝑐 , 𝜆

+2
𝜂,𝑐 , . . . to make an incrementally encoded disjunction (see Section 2.2). These variables are

used as assumptions in the abstraction refinement algorithm described below.
The conditions on 𝜆

�̃�
𝜂,𝑐 are:

• If a token 𝜂 is chosen, for each of its conditions 𝑐 ∈ 𝐶𝜙 (𝜂 ) , a synchronization condition is
required, or, the disjunction needs to be extended.

𝑣𝜂 ⇒ 𝜆
𝜂1
𝜂,𝑐 ∨ 𝜆

�̃�2
𝜂,𝑐 ∨ 𝜆

�̃�3
𝜂,𝑐 ∨ . . . ∨ 𝜆+𝜂,𝑐 (8)

• Enabling the synchronization condition applies a constraint between the two tokens:

𝜆
�̃�
𝜂,𝑐 ⇒

(
𝑣�̃� ∧ 𝑟𝑐 (𝜂, 𝜂)

)
(9)

For example, if 𝑟𝑐 is the Allen relation during, we get, in the place of 𝑟𝑐 (𝜂, 𝜂):

(𝜏𝜁 (�̃� )𝑠 ≤ 𝜏
𝜁 (𝜂 )
𝑠 ∧ 𝜏𝜁 (𝜂 )𝑒 ≥ 𝜏

𝜁 (�̃� )
𝑒 )

In combination, equations (1)-(9) describe the SMT encoding for a given fixed number of states
for each timeline.

3.1 Abstraction Refinement Algorithm
The planner algorithm builds an SMT formula incrementally, based on equations (1)-(9), to handle
arbitrary-length plans. Figure 4 illustrates the representations of the encoding objects (states, tokens,
and conditions) used in the algorithm.

Algorithm 1 describes the SMT encoding algorithm. After initialization (line 1-2), the fact and
goal tokens are added to their respective sequences (line 3-5). In order to add a token type to a
timeline (the addToken function on lines 4, 13, 15), we start from the set of token types in the
timeline’s current last state and consider all the token types reachable from any of these last token
types (i.e., following the timeline’s transition graph forward by one step). This set of reachable
token types are added to the tokens list, and the corresponding state encoding object is added to
the states list. This process is repeated (further states are added) until the token type being added
appears among the reachable tokens in the state.
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Fig. 4. Overview of the parallel transition system encoding. Green boxes represent states. The Do token

contains a red box indicating the condition that the robot location must be At(b) during the inspection

operation. The bundle of red arrows indicates alternative targets for fulfilling the synchronization (dashed

tokens may be added during abstraction refinement).

Algorithm 1 SMT Timelines planner with abstraction refinement
Input: A timelines planning problem 𝑃 = (T,C, 𝐹 ,𝐺)
1: Let O = [].
2: Let S = new SMTSolver().
3: for all 𝜋 ∈ 𝐹 ∪𝐺 do
4: O = addToken(S,O, 𝜋)
5: end for
6: loop
7: while any 𝑜 ∈ O has state initialized do
8: O = encode(S,O, 𝑜)
9: end while
10: if S.solve(

[
𝛾+𝜋1 , . . . , 𝜆𝜂1,𝑐1 , . . .

]
) = UNSAT then

11: for all 𝑥 ∈ S.get_core() do
12: if 𝑥 is a goal extension 𝛾+𝜋 then
13: O = addToken(S,O, 𝜋)
14: else if 𝑥 is a synch. extension 𝜆+𝜂,𝑐 then
15: O = addToken(S,O, typeOf(𝜂))
16: end if
17: end for
18: if S.get_core() = ∅ then
19: return Unsat
20: end if
21: else
22: return (Sat, S.get_model())
23: end if
24: end loop

Each of the encoding objects exists in one of two states: initialized or encoded. Whenever a new
encoding object is created, it starts in the initialized state. Before calling the SMT solver on the
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current formula, any objects in the initialized state are encoded into the SMT formula (the encode
function line 8, based on equations (1)-(9)), which might in turn create new encoding objects, so
we continue converting objects in a loop until all objects are in the encoded state (line 7-9).

When all objects are encoded, the SMT solver is called using the list of current assumptions which
are the last disjunction extension variables for the goal state disjunctions and the synchronization
condition disjunctions (line 10). If the formula is determined to be unsatisfiable, then either the
whole planning problem is unsatisfiable, or the current encoding failed to include one or more
tokens that were required to construct a solution plan. To analyse this, we look at the unsatisfiable
core reported by the solver (line 10-20), which is a subset of the current assumptions. If the core is
empty (line 18-20), then the planning problem is unsatisfiable. If the core contains one or more
goal expansion variables (line 12-13) or condition expansion variables (line 13-14), we add more
tokens of the required types to the problem, and go back to the encoding loop.
If the formula is instead determined to be satisfiable (line 21-23), the problem has been solved,

and the solution can be extracted from the variable assignment returned by the SMT solver. The
variable assignment determines which tokens are part of the solution, the dependencies between
them, and the start and end time of each token.

4 EXTENSIONS
One of the advantages of using an SMT translation for planning is that the problem definition
can be extended to describe a richer model, for example including numerical (linear or non-linear)
planning or explicit resources. However, care must be taken in the encoding so that missing tokens
can be identified in the unsatisfiable core, and that the encoding can be correctly incrementally
extended when new tokens are added.
In this section, we describe an extension for explicitly handling resource constraints as part of

the timeline planning problem. This extension was used in all of the ICP4 benchmark translations
described in the performance evaluation below.

To extend the definition of timeline planning to explicitly describe reusable resource constraints,
we associate a capacity to each token type, and a consumption amount to each condition.

Definition 3. A timeline planning problem with reusable resource constraints P𝑅 is a tuple
𝑃𝑅 = (𝑃, 𝑟→, 𝑟←), where
• 𝑃 = (T,C, 𝐹 ,𝐺) is a timeline planning problem as defined in Definition 2.
• 𝑟→ : T → R assigns a capacity to each token type 𝜋 .
• 𝑟← : T → (C𝜋 → R) assigns a consumption amount to each condition 𝑐 ∈ C𝜋 for a token
type 𝜋 .

Let Φ𝜂 be the set containing a tuple (𝜂, 𝑞) of tokens and consumption amount for each possible
token that has a consumption of a resource from the token type 𝜋 of the token 𝜂. I.e., for conditions
𝑐 ∈ 𝐶�̃� for tokens 𝜂 of type �̃� , and for all tokens 𝜂 of the condition’s token type 𝜋 ∈ Π𝑐 , if
𝑟← (�̃�, 𝑐) = 𝑞 > 0, then (𝜂, 𝑞) ∈ Φ𝜂 .

For reusable resources, we add a task-indexed resource constraint using a pseudo-Boolean
encoding (see [7] for details):

∀(𝜂 𝑗 , _) ∈ Φ𝜂 :
∑︁

(𝜂𝑘 ,𝑞𝑘 ) ∈Φ𝜂

𝑞𝑘𝑎(𝜂 𝑗 , 𝜂𝑘 ) ≤ 𝑟→ (𝜋)

where 𝑎(𝜂, 𝜂) = 𝑣𝜂 ∧ 𝑣�̃� ∧ (𝜌𝜁 (�̃� )𝑠 ≤ 𝜌
𝜁 (𝜂 )
𝑒 ) ∧ (𝜌𝜁 (�̃� )𝑒 ≤ 𝜌

𝜁 (𝜂 )
𝑠 ).

If the set Φ𝜂 is extended by abstraction refinement algorithm, we encode this constraint again. We
also use a special case encoding for reusable resources with capacity 1, using pairwise non-overlap
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constraints instead of a pseudo-Boolean constraint:

∀𝑖 : ∀𝑗 > 𝑖 : ¬𝑣𝜂𝑖 ∨ ¬𝑣𝜂 𝑗
∨ (𝜌𝜁 (𝜂𝑖 )𝑒 ≤ 𝜌

𝜁 (𝜂 𝑗 )
𝑠 ) ∨ (𝜌𝜁 (𝜂 𝑗 )

𝑒 ≤ 𝜌
𝜁 (𝜂𝑖 )
𝑠 )

This encoding has the advantage that it can be incrementally extended when the set Φ𝜂 is extended.

5 PERFORMANCE EVALUATION
We have used two sets of benchmark planning domains and performed a preliminary performance
evaluation of our planner. Since timeline planners use different input file formats (and indeed, there
is not yet any standard file format for timelines planning problems), we have manually translated
the problems from the original input format to our planner’s custom input format.

We have created two sets of benchmark planning domains for performing empirical evaluation of
the performance of our planner. We have used three of the oRatio planner’s benchmark problems.We
have hand-encoded these problems to our own planner, and also into SMT directly (shown as
manual SMT in the table), as a test for how close the timelines encoding comes to a manual SMT
encoding. The planning domains are:
• Cooking: a pure scheduling problem with a resource constraint. The problem involves
cooking a dish with several ingredients and preparation steps. Additionally, to cook the
individual ingredients and the dish, requires exclusive access to one of the available cooking
plates.
• Ceramic: a set of ceramic items need to be baked, treated, and assembled into composite

items, which again are baked. The baking requires space in an oven, and the oven can only
bake for a specific duration before it needs to be shut down and re-started.
• Rover: a mobile robot traveling to locations, taking pictures, and uploading pictures in
certain time windows. It can upload only one picture at a time, which is a modelled as a
reusable antenna resource.

The results in Table 1 indicate that our planner outperforms oRatio on the three benchmark
problems (cc, tms, and goac).
Table 2 compares our planner to FAPE ([11]) on our translations of the temporal versions of

airports, satellite and pipesworld from the fourth International Planning Competition (IPC4).
Also here, our planner performs competitively with the state of the art.

• Airport: planning the movement of airplanes in an airport, requiring both exclusive and
non-exclusive access to different road segment. The airplanes operate in different modes
(push-back, move, parked, airborne).
In our timelines formulation, each airplane is represented by a single timeline whose values
are a 3-tuple consisting of mode (push-back, move, parked, airborne), road segment, and
direction (traveling north/south/etc.).
• Satellites: planning to take measurements by calibrating instruments, turn into the correct

position, take the measurement, and transfer the data. In our formulation, separate timelines
represent the target that each satellite is pointing to, the state of each instrument (off, starting,
calibrating, measuring, etc.), and the state of each measurement goal (measuring, sending,
finished).
• Pipesworld: planning the flow of oil products through a pipeline network discretized into

batches of equal size, and in order to remove a batch from one end of a pipe, another batch
must be inserted in the other end.
In our timelines formulation, there is one timeline for each batch, representing its location
(e.g., a section of a pipe). Pipe parts are used exclusively as reusable resources. Removing a
batch from a pipe segment requires simultaneous movement into that segment.
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Table 1. Performance comparison between oRatio and our planner. The cells show the running time (in secs).

t/o indicates > 60 secs. Note that problem models are translated by hand into our solver’s format.

Instance oRatio our planner
cc, 1 plate, 5 dishes 0.109 0.026
cc, 1 plate, 50 dishes 10.682 0.294
cc, 1 plate, 100 dishes t/o 1.880
cc, 2 plates, 50 dishes 11.185 0.298
cc, 2 plates, 100 dishes t/o 1.860
tms, 1 oven, 2 items 0.073 0.014
tms, 2 ovens, 4 items 0.849 0.021
tms, 2 ovens, 6 items 5.921 0.037
tms, 4 ovens, 6 items 15.234 0.029
tms, 5 ovens, 10 items t/o 0.158
goac, 5 locs., 3 time windows 0.252 0.056
goac, 5 locs., 5 time windows 0.300 0.027
goac, 7 locs., 3 time windows 0.469 0.049
goac, 7 locs., 5 time windows 0.973 0.045
goac, 9 locs., 3 time windows 1.589 0.142
goac, 9 locs., 5 time windows 1.420 0.154

Table 2. Performance comparison between FAPE and our planner. Cells show running time (in secs). t/o

indicates > 300 secs. Note that problem models are translated by hand into our solver’s format

Instance FAPE our planner
Airports-2, 1 vehicle, 17 locations 10.4 0.4
Airports-4, 1 vehicle, 40 locations 73.8 0.2
Airports-6, 2 vehicles, 40 locations t/o 1.5
Airports-8, 3 vehicles, 40 locations t/o 18.7
Airports-10, 1 vehicle, 44 locations 142.9 0.2
Satellite-2, 2 tools, 8 directions 4.3 24.5
Satellite-4, 3 tools, 10 directions 6.2 0.9
Satellite-6, 5 tools, 11 directions 6.7 1.0
Satellite-8, 10 tools, 15 directions 41.0 19.4
Satellite-10, 11 tools, 17 directions t/o 17.1
Pipesworld-2, 2 pipes, 6 deliveries 32.2 0.7
Pipesworld-4, 2 pipes, 8 deliveries 9.4 0.4
Pipesworld-6, 2 pipes, 10 deliveies t/o 0.8
Pipesworld-8, 2 pipes, 12 deliveries t/o 6.1
Pipesworld-10, 2 pipes, 14 deliveries t/o 3.8

Note, however, that the manual translation of the problems means that the performance evaluation
does not directly compare the algorithms on exactly the same input, and the input language and
modeling choices will have an effect on the running times. Even so, these results are promising
for the practical use of our solver, and for a more direct comparison in the future using a standard
input format.
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6 CONCLUSIONS
We have presented a novel algorithm for encoding timeline planning problems into SMT. The
approach performs well on many planning domains, compared to SMT-based approaches from
the recent literature, possibly because of the competitive off-the-shelf SMT solver used instead of
a custom solver. For example, the Z3 SMT solver used in our planner, uses the VSIDS branching
heuristic, which is not directly applicable to flaw-directed planning algorithms.

Our approach extends earlier work on SMT-encoding of partial-order planning ([6]) by exploiting
the transition relation of a timeline to generate a state space and then using partial-order causal link
constraints for relations across different timelines. Our algorithm also makes use of the unsatisfiable
core of the SMT solver to extend the set of tokens in the plan in a conflict-directed way.

Another approach is to encode the planning problem to linear-temporal logic and use a general
LTL solver (see [10]), though it is reported that this does not scale to real-world problem sizes.

In the future, we would like to investigate better heuristics for the number of states to generate
on each timeline. Extensions to controllability and flexibility could also fit into the SMT encoding
paradigm, as demonstrated in [9]. Finally, future support for a standard input language for timelines,
e.g. ghost ([5]), would be good for sharing and comparing of problem instances between planners.
We are also working on integrating our planner in an execution framework for autonomous
inspection using mobile robots.
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