
Preprint

Efficient Verification of Railway Infrastructure Designs
Against Standard Regulations

Christian Johansen · Bjørnar Luteberget

2017-01-27

Abstract In designing safety-critical infrastructures s.a. railway systems, engineers often
have to deal with complex and large-scale designs. Formal methods can play an impor-
tant role in helping automate or check various tasks. Especially for railway designs formal
methods have been used in verifying the safety of so-called interlockings through model
checking, which deals with state change and rather complex properties, usually incurring
considerable computational burden (e.g., the state-space explosion problem). In contrast,
we focus on static infrastructure models and are interested in checking requirements coming
from design guidelines and regulations. Our goal is to automate the manual work of the rail-
way engineers through software that is fast enough to do verification on-the-fly, thus being
able to be included in the railway design tools, much like a compiler in an IDE.

In consequence, this paper describes the integration of formal methods into the railway
design process, by formalizing relevant technical regulations and expert knowledge. We em-
ploy a variant of Datalog and use the standardized “railway markup language” railML as ba-
sis and exchange format for the formalization. We describe a prototype tool and its (ongoing)
integration in industrial railway CAD software, developed under the name RailCOMPLETEr.
We apply this tool chain in a Norwegian railway project, the upgrade of the Arna railway
station.

Keywords railway designs, automation, logic programming, signalling, railway infrastruc-
ture, railML, CAD, Datalog

This work was partially supported by the RailComplete AS company and the project RailCons funded by the
Norwegian Research Council.

Christian Johansen
Department of Informatics, University of Oslo, Norway
E-mail: cristi@ifi.uio.no

Bjørnar Luteberget
RailComplete AS, Sandvika, Norway (formerly Anacon AS) and
Department of Informatics, University of Oslo, Norway
E-mail: bjornar.luteberget@railcomplete.no

http://www.mn.uio.no/ifi/english/research/projects/railcons/
http://www.forskningsradet.no

2 C. Johansen, B. Luteberget

1 Introduction

Railways require thoroughly designed control systems to ensure safety and efficient opera-
tion. The railway signals are used to direct traffic, and the signalling component layout of a
train station is crucial to its traffic capacity. Another central part of a railway infrastructure,
e.g., of a single railway station, is the so-called interlocking, which refers, generally speak-
ing, to the ensemble of systems tasked to establish safe, conflict-free routes of trains through
stations. A more narrow interpretation of “interlocking” are the principles, the routes, the
signalling and movements of trains have to follow to ensure safe operation (cf. [37]).

Railway construction projects are heavy processes that integrate various fields, engineer-
ing disciplines, different companies, stakeholders, and regulatory bodies. When working out
railway designs a large part of the work is repetitive, involving routine checking of consis-
tency with regulations, writing tables, and coordinating disciplines. Many of these manual
checks are simple enough to be automated. The repetition comes from the fact that even
small changes in station layout and interlocking may require thorough (re-)investigation to
prove that the designs remain internally consistent and still adhere to the rules and regula-
tions of the national (and international) rail administration agencies.

With the purpose of increasing the degree of automation, we present results on integrat-
ing formal methods into the railway design process by the following means:

– Formalizing rules governing track and signalling layout, and interlocking.
– Using the standardized “railway markup language” railML1. as basis and exchange for-

mat for the formalization.
– Modeling the concepts describing a railway design in the logic of Datalog; and develop-

ing an automated generation of the model from the railML representation.
– Developing a prototype tool and integrating it in existing railway CAD software.

We illustrate the logical representation of signalling principles and show how they can be
implemented and solved efficiently using the Datalog style of logic programming [48]. We
also show the integration with existing railway engineering workflow by using CAD models
directly. This enables us to verify compliance with regulations continuously as the design
process changes the station layout and interlocking. Based on railML [35] as intermediary
language, our results can be easily adopted by anyone who uses this international standard.

The approach presented in this paper could be applied also to other engineering dis-
ciplines, such as catenary power lines, track works, and others, which have similar design
regulations and often make use of a similar CAD environment. However, this paper uses the
signalling and interlocking design process and shows how it can be improved by automation
using formal methods.

The work uses as case study the software and the design (presently under development)
used in the Arna-Fløen upgrade project,2 a major infrastructure activity of the Norwegian
railway system, with planned completion in 2020. The Arna train station is located on North-
ern Europe’s busiest single-track connection (between Arna and Bergen), which is being
extended to a double-track connection. Thus, the train station is currently undergoing an ex-
tensive overhaul, including significant new tunnel constructions and specifically a replace-
ment of the entire signalling and control system. The case study is part of an ongoing project
in Anacon AS (now merged with Norconsult), a Norwegian signalling design consultancy.
It is used to illustrate the approach, test the implementation, and to verify that the tool’s
performance is acceptable for interactive work within the CAD software.

1 railML.org: https://www.railml.org/
2 http://www.jernbaneverket.no/Prosjekter/prosjekter/Arna---Bergen

https://www.railml.org/
http://www.jernbaneverket.no/Prosjekter/prosjekter/Arna---Bergen

Verification of Railway Infrastructure Designs against Regulations 3

The paper is organized as follows. Section 2 presents aspects of the railway domain
relevant for this work. Section 3 presents our approach to extending CAD programs with
domain-specific data, in our case for railway signalling based on the railML format. Section
4 presents our formalization of the rules and concepts of railway design as logical formulas
amenable for the Datalog implementation and checking. Section 5 proposes a tool chain that
extends CAD with formal representations of signalling layout and interlocking. Section 6
provides information about our tool implementation, including details about counterexample
presentation and empirical evaluation using the case study. Section 7 describes our results
of performing verification in an incremental manner for better integration with interactive
design tools. We conclude in Section 8 with related and future work.

2 The railway signalling design process

The signalling design process results in a set of documents which can be categorized into
(a) track and signalling component layout, and (b) interlocking specification, and an (c)
automatic train control specification. The first two categories are considered in this paper.

2.1 Track and Signalling Component Layout

Railway construction projects rely heavily on computer aided design (CAD) tools to map out
railway station layouts. The various disciplines within a project, such as civil works, track
works, signalling, or catenary power lines, work with coordinated CAD models. These CAD
models contain a major part of the work performed by engineers, and are a collaboration tool
for communication between disciplines. The signalling component layout is worked out by
the signalling engineers as part of the design process. Signals, train detectors, derailers, etc.,
are drawn using symbols in a 2D geographical CAD model. An example of a layout drawing
made from a CAD model is given in Figure 1.

Track layout details, which are input for the signalling design, are often given by a
separate division of the railway project. At an early stage and working at a low level of
detail, the signalling engineer may challenge the track layout design, and an iterative process
may be initiated.

2.2 Interlocking Specification

An interlocking is an interconnection of signals and switches to ensure that train movements
are performed in a safe sequence [37]. Interlocking is performed electronically so that, e.g., a
green light (or, more precisely, the proceed aspect) communicating the movement authority
required for a train to travel through a station can only be lit by the interlocking controller
under certain conditions. Conditions and state are built into the interlocking by relay-based
circuitry or by computers running interlocking software. Most interlocking specifications
use a route-based tabular approach, which means that a train station is divided into possible
routes, which are paths that a train can take from one signal to another. These signals are
called the route entry signal and route exit signal, respectively. An elementary route contains
no other signals in-between. The main part of the interlocking specification is to tabulate all
possible routes and set conditions for their use. Typical conditions are:

– Switches must be positioned to guide the train to a specified route exit signal.
– Train detectors must show that the route is free of any other trains.
– Conflicting routes, i.e. overlapping routes (or safety zones), must not be in use.

4 C. Johansen, B. Luteberget

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1
2

3

4 6

5

Switch X Switch Y

(a)

(b)

Fig. 1: (a) Example schematic construction drawing. (b) Cut-out from 2D geographical CAD
model (construction drawing) of preliminary design of the Arna station signalling.

Route Start End Sw. pos Detection sections Conflicts
AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

Fig. 2: Example of a tabular interlocking, showing available routes and their conditions.

3 Semantic CAD

Civil engineering construction projects, such as railway projects, make heavy use of computer-
aided design (CAD) tools to model the geometric aspects of the construction project and its
product. The origins of CAD tools are in the computerizing of traditional drafting, which
produces human-readable technical drawings that are used as plans and documentation for
the construction. Mainstream CAD tools are mainly concerned with manipulating databases
of geometrical objects constituting 2D or 3D representations of spatial properties, and the
production of human-readable drawings which depict these geometrical structures.

The DWG file format created for the Autodesk AutoCAD software is a de facto standard
in many engineering disciplines, and this format has also been adopted by several other CAD
software packages.

Verification of Railway Infrastructure Designs against Regulations 5

3.1 Grouping geometry into blocks

Grouping together several geometrical features into a single unit is in CAD terminology
called “making a block”. This allows the CAD user to create models more efficiently, by
reusing commonly used components. The blocks, which may represent things such as chairs,
doors, or railway signals, also create the opportunity to store higher-level information in
a CAD model, other than the purely geometrical description. For example, if one uses a
railway signal block to model a signal in a railway station, a program can count the number
of signals in a model.

This idea can be extended by adding any number of attributes to a block. For a railway
signal, we can add attributes that describe e.g. to which track it signals, along with its type,
function, and direction. The CAD object database does then not only contain the geometrical
objects, such as lines, curves, triangles, cubes, etc., but groups these primitives into higher-
level concepts which are closer to the representation that one uses to reason about the actual
working of the railway infrastructure.

With a good library of blocks (which we call a symbol library), the engineer can more
efficiently build the geometric CAD models which lead to human-readable drawings, but
they are also building a machine-readable model of high-level railway concepts. We call this
semantic CAD. While this concept is also a part of building information modeling (BIM),
BIM also includes many other concepts such as 3D visualization, time (“4D”), and cost
(“5D”).

The verification of signalling and interlocking rules requires information about prop-
erties and relations between objects such as which signals and signs are related to which
track, and their identification, capabilities, and use. This information is better modelled by
the railway-specific hierarchical object model railML [35]. In the CAD industry-standard
DWG file format, each geometrical object in the database has an associated extension dic-
tionary, where add-on programs may store any data related to the object. Our tool uses this
method to store the railML fragments associated with each geometrical object or symbol,

CAD document (DWG file format)

Model space

Polyline (geometry
corresponding to track
horizontal geometry)

Block reference
(symbol for sig-

nalling equipment)
. . .

Extension
dictionary

Extension
dictionary

. . .

Complete
railML

document

railML
fragment

railML
fragment

. . .

Fig. 3: railML integrated into a CAD database

6 C. Johansen, B. Luteberget

see Figure 3 . Thus, we can compile the complete railML representation of the station from
the CAD model.

3.2 Object type descriptions

It is necessary to decide which objects in the CAD model should be associated with which
data types, i.e. what attributes should be stored in the symbols. This is comparable to speci-
fying an object’s class in an object-oriented programming language. To do this, we create an
object type description which augments the symbol library with class information. When-
ever the user adds a symbol, its data editor is determined by the assigned class, and vice
versa: when e.g. a railML object is imported into CAD, its corresponding symbol is inserted
in the graphical model.

3.3 Interlocking and train protection systems

Besides the CAD model layout, the design of a railway station’s signalling consists also
of specifications for the interlocking and train protection (speed control) systems. These
specifications are used to build the interlocking controllers and speed controllers, and they
model the behavior of the signalling equipment and its interaction with trains. These systems
are tightly linked to the station layout.

A formal representation of the interlocking and train protection specifications is em-
bedded in the CAD document in a similar way as for the railML infrastructure data, using
the document’s global extension dictionary. Thus, the single CAD document showing the
human-readable, geographical layout of the train station also contains a machine-readable
model which fully describes both the component layout and the functional specification of
the interlocking and train protection systems. This allows analysis of the operational aspects
of the train station directly in a familiar editable CAD model. See Figure 4 for an overview
of this architecture.

4 Logic programming and knowledge-base systems

We have shown how to associate semantic information with CAD symbols, but in order to
automatically verify rules and regulations on this railway infrastructure model, we need a
computer program which can check each property for violations with the given model as
input.

A straight-forward approach to making such a program could be to create some search
function on the graph implicit in the track network. This procedure should allow, for exam-
ple, to find the nearest object of a given type, or to find all paths between two points. Then
we would describe a checking procedure for each rule. Consider for example, the home sig-
nal regulation from Property 1, which says “A home main signal shall be placed at least 200
m in front of the first controlled, facing switch in the entry train path.”. Checking such a
property can be done by iterating over tracks, locating station boundaries, starting a search
function to locate the relevant facing switches, starting another search backwards to check
that there is a home signal, and so on. The amount of code required to do this in a main-
stream programming language can become large, and this code is often very specific to a
given railway administration.

Verification of Railway Infrastructure Designs against Regulations 7

DWG

file

CAD model space
(railway infrastructure layout)

Document header
(DWG global extension dict.)
– Station/project name
– Construction stages
– Enterprises, parcels, etc.
– Other meta data

Interlocking (in formal specification format)

Train protection systems (formal specification)

Semantic CAD data
(block extension dictionary)

...

Fig. 4: Semantic CAD document organization including interlocking specification.

Better suited to manage the large amounts of code required for a large number of rules,
is logic programming, which allows rule descriptions that are much closer to the original
specifications than in a mainstream programming language.

8 C. Johansen, B. Luteberget

4.1 Logic programming

Logic programming [36] is a family of programming languages based on formal logic. Logic
programs are declarative, i.e. they describe properties of the solution of a problem rather
than a calculation procedure for finding the solution. This separates the concerns of express-
ing rules about railway systems from the algorithms required to do automatic analysis. This
separation allows one to systematically maintain a large set of rules, and decouple the tool
implementation from the set of concepts, rules and expert knowledge that is specific to a
railway administration.

We have successfully used the Datalog language [48], a subset of the more well-known
Prolog language, for verifying many properties given as technical rules and expert knowl-
edge. It allows concise formulations of railway concepts, and queries can be efficiently cal-
culated.

Ideally, we would like the railway engineers themselves, without much programming
education, to be able to create and maintain the set of rules which is used for the verification.
This separation of logic and algorithm is a step in this direction, because non-IT experts
can work on the rules without considering how the calculations are implemented. However,
the strict formalism and subtle semantics of logic programming are still a challenge for an
inexperienced programmer.

Still we think that it is feasible for inexperienced logic programmers to do some of the
maintenance of a rule base for the following reasons:

1. The most basic concepts, such as connectedness, distances, directions, etc., rarely need
to be redefined, and may be specified by an expert programmer, and then reused.

2. Naming or documenting the basic concepts in a way that is understandable by railway
engineers allows them to use these concepts without considering the actual definitions.

3. Rule formulations are often so succinct that they can be understood even without knowl-
edge of the logic programming syntax.

4. Modification (updating) of rules, for example following a change in regulation from the
railway administration, often preserves the structure of the specification, adding only a
similar clause or the change of a numeric constant.

5. Templates for common rule structures can be given, so that implementing some types of
rules becomes a matter of specifying e.g. only object types, directions, and distances.

We envision that a common rule base would be exchanged between all engineers work-
ing with a railway administration, and that the rule base would be worked out partly by
software experts, partly by railway experts. Also, the rule base should be fairly constant,
like the regulations, requiring an update frequency of perhaps once per year.

We do, however, concede that Datalog programming in general is outside what would
be expected competency for a railway engineer. A higher-level domain-specific language
including relevant constructs for a railway signalling design knowledge base could improve
the likelihood of railway engineers being successful in creating and maintaining the regula-
tions. Even more, this language could allow each company and each engineer to experiment
with encoding different design heuristics and expert knowledge to see the effects on the
verification and the design. Our planned future work (see Section 8.2) includes defining
such a language and also on using a controlled natural language syntax to improve ease of
comprehension.

Verification of Railway Infrastructure Designs against Regulations 9

4.2 Datalog

Declarative logic programming is a programming language paradigm which allows clean
separation of logic (meaning) and computation (algorithm). This section gives a short overview
of Datalog concepts. See [48,1,36] for more details. In its most basic form Datalog is a
database query, as in the SQL language, over a finite set of atoms which can be combined
using conjunctive queries, i.e. expressions in the fragment of first-order logic which includes
only conjunctions and existential quantification.

Conjunctive queries alone, however, cannot express the properties needed to verify rail-
way signalling. For example, given the layout of the station with tracks represented as edges
between signalling equipment nodes, graph reachability queries are required to verify some
of the rules. This corresponds to computing the transitive closure of the graph adjacency
relation, which is not expressible in first-order logic [24, Chap. 3].

Adding fixed-point operators to conjunctive queries is a common way to mitigate the
above problem while preserving decidability and polynomial time complexity.

The Datalog language is a first-order logic extended with least fixed points. We define the
Datalog language as follows: Terms are either constants (atoms) or variables. Literals consist
of a predicate p with a certain arity n, along with terms corresponding to the predicate
arguments, forming an expression like p(−→a), where −→a = (a1,a2, . . . ,an). Clauses consist
of a head literal and one or more body literals, such that all variables in the head also appear
in the body. Clauses are written as

r0(
−→x) :– ∃−→y : r1(

−→x1 ,
−→y1),r2(

−→x2 ,
−→y2), . . . ,rk(

−→xk ,
−→yk),

with
⋃

1≤i≤k
−→xi =

−→x and
⋃

1≤i≤k
−→yi =

−→y . Datalog uses the Prolog convention of interpreting
identifiers starting with a capital letter as variables, and other identifiers as constants, e.g.,
the clause

a(X ,Y) :– b(X ,Z), c(Z,Y)

has the meaning of
∀x,y : ((∃z : (b(x,z)∧ c(z,y)))→ a(x,y)) .

Clauses without body, which cannot then contain any variables, are called facts, those
with one or more literals in the body are called rules. No nesting of literals is allowed.
However, recursive definitions of predicates are possible. For example, let edge(a,b) be a
graph edge relation between vertices a and b. Graph searches can now be encoded by making
a transitive closure over the edge relation:

path(a,b) :– edge(a,b).
path(a,b) :– edge(a,x), path(x,b).

In the railway domain, this can be used to define the connected predicate, which defines
whether two objects are connected by railway tracks:

directlyConnected(a,b) :– track(t), belongsTo(a, t), belongsTo(b, t).
connected(a,b) :– directlyConnected(a,b).
connected(a,b) :– directlyConnected(a,x), connection(x,c),

connected(c,b).

Here, the connection predicate contains switches and other connection types. Further details
of relevant predicates are given in the sections below.

10 C. Johansen, B. Luteberget

Another common feature of Datalog implementations is to allow negation, with negation
as failure semantics. This means that negation of predicates in rules is allowed with the
interpretation that when the satisfiability procedure cannot find a model, the statement is
false. To ensure termination and unique solutions, the negation of predicates must have
a stratification, i.e. the dependency graph of negated predicates must have a topological
ordering (see [48, Chap. 3] for details).

Datalog is sufficiently expressive to describe static rules of signalling layout topology
and interlocking. For geometrical properties, it is necessary to take sums and differences
of lengths, which requires extending Datalog with arithmetic operations. A more expres-
sive language is required to cover all aspects of railway design, e.g. capacity analysis and
software verification, but for the properties in the scope of this paper, a concise, restricted
language which ensures termination and short running times has the advantage of allowing
tight integration with the existing engineering workflow.

4.3 Knowledge-base system

With Datalog as specification language, we build a knowledge-base system to perform the
verification. A knowledge-base system consists of a set of facts and rules, along with an
inference engine which answers queries by applying logical inference rules. For an intro-
duction to knowledge-base systems in general, see [48, Chap. 3] or [41, Chap. 8 and 12].
We give here an overview of how we encode railway signalling properties as Datalog predi-
cates, which in turn may be automatically checked for consistency. In our verification tool,
we organize our knowledge base in the following manner:

1. Input documents: Predicate representation of input document, i.e. track layout and
interlocking, are represented as facts which are converted from the railML representation
stored and maintained in the CAD database by a CAD plug-in program.

2. Derived concepts: Predicate representation of derived concept rules, such as object
properties, topological properties, and calculation of distances. A library of general rail-
way concepts and administration-specific concepts and definitions are kept in a rule base
which is re-used between projects.

3. Technical rules and expert knowledge: Predicate representation of technical rules or
expert knowledge as logic programming rules, which encode the administration-specific
rules and expert knowledge that is checked and errors reported to the user by the verifi-
cation tool.

4. Inference engine: A Datalog evaluation engine is used as inference engine; in our case
the XSB Prolog tabled logic programming system [47].

Each of these aspects are described in more detail below.

4.3.1 Input documents

Each of the XML elements and attributes is translated into a corresponding predicate. An
example of translating a railML switch element into predicate representation is given below.

Verification of Railway Infrastructure Designs against Regulations 11

<switch id=’sw1’>
<connection id=’conn1’ course=’left’

orientation=’outgoing’ />
</switch>

→

switch(sw1).
connection(conn1).
belongsTo(sw1,conn1).
course(conn1,left).
orientation(conn1,outgoing).

4.3.2 Track and signalling objects layout in the railML format.

Given a complete railML infrastructure document, we consider the set of XML elements in
it that correspond to identifiable objects (this is the set of elements which inherit properties
from the type tElementWithIDAndName). The set of all IDs which are assigned to XML
elements form the finite domain of constants on which we base our predicates (IDs are
assumed unique in railML).

Atoms := {a | element.ID= a} .

We denote a railML element with ID = a as elementa. All other data associated with an
element is expressed as predicates with its identifying atom as one of the arguments, most
notably the following:

– Element type (also called class in railML):

track(a)← elementa is of type track,
signal(a)← elementa is of type signal,
balise(a)← elementa is of type balise,

switch(a)← elementa is of type switch.

– Element name:
name(a,n)← (elementa.name= n).

– Position and absolute position (elements inheriting from tPlacedElement):

pos(a, p)← (elementa.pos= p), a ∈ Atoms, p ∈ R,
absPos(a, p)← (elementa.absPos= p), a ∈ Atoms, p ∈ R.

– Geographical coordinates (for elements inheriting from tPlacedElement):

geoCoords(a,q)← (elementa.geoCoords= q), a ∈ Atoms,q ∈ R3.

– Direction (for elements inheriting from tOrientedElement):

dir(a,d)← (elementa.dir= d), a ∈ Atoms,d ∈ Direction,

where Direction = {up,down,both,unknown}, indicating whether the object is visible
or functional in only one of the two possible travel directions, or both.

– Signal properties (for elements of type tSignal):

signalType(a, t)← (elementa.type= t), t∈{main, distant, shunting, combined} ,
signalFunction(a, f)← (elementa.function= f),

a ∈ Atoms, f ∈ {home, intermediate, exit, blocking} .

Consistency axioms would impose that signalType and signalFunction be applied only
to signal elements:

signalType(a, t)⇒ signal(a),

signalFunction(a, f)⇒ signal(a).

12 C. Johansen, B. Luteberget

Path 1

Path 2

Switch A

Switch B

Fig. 5: Switches give rise to branching paths

These are only a few examples of predicates that are extracted from the railML docu-
ment. The translator from railML to predicate form needs only to consider XML elements,
attributes and sub-elements, not the specifics of railML and its type hierarchy. The complete
structure of railML as such is carried over directly to the logic programming environment.
The switch element is the object which connects tracks with each other and creates the
branching of paths, see Figure 5. A switch belongs to a single track, but contains connec-
tion sub-elements which point to other connection elements, which are in turn contained in
switches, crossings or track ends. For connections, we have the following predicates:

– Connection element and reference:

connection(a)← elementa is of type connection,
connection(a,b)← (elementa.ref= b).

– Connection course and orientation:

connectionCourse(a,c)← (elementa.course= c),c∈{left, straight, right}
connectionOrientation(a,o)← (elementa.orientation= o),

a ∈ Atoms,o ∈ {outgoing, incoming} .

To encode the hierarchical structure of the railML document, a separate predicate encod-
ing the parent/child relationship is added. This is required because the predicate represen-
tation does not implicitly contain the hierarchy of the XML representation, where elements
are declared inside other elements.

– Object belongs to (e.g. a is a signal belonging to track b):

belongsTo(a,b)← b is the closest XML ancestor of a whose element
type inherits from tElementWithIDAndName.

4.3.3 Interlocking.

An XML schema for tabular interlocking specifications is described in [5], and this format is
used here, anticipating that it will become part of the railML standard schema in the future.
We give some examples of how this schema is translated into predicate form:

– Train route with given direction d, start point a, and end point b (a,b ∈ Atoms, d ∈
Direction):

trainRoute(t)← elementt is of type route
start(t,a)← (elementt .start= a)
end(t,b)← (elementt .end= b)

Verification of Railway Infrastructure Designs against Regulations 13

– Conditions on detection section free (a) and switch position (s, p):

detectionSectionCondition(t,a)←(a ∈ elementt .sectionConditions),
switchPositionCondition(t,s, p)←((s, p) ∈ elementt .switchConditions).

4.4 Derived Concepts Representation

Derived concepts are properties of the railway model which can be defined independently
of the specific station. A library of these predicates is needed to allow concise expression of
the rules to be checked.

4.4.1 Object properties.

Properties related to specific object types which are not explicitly represented in the layout
description, such as whether a switch is facing in a given direction, i.e. if the path will branch
when you pass it:

– Switch facing or trailing (a ∈ Atoms, d ∈ Direction):

switchFacing(a,d)←∃c,o : switch(a)∧ switchConnection(a,c)∧
switchOrientation(c,o)∧orientationDirection(o,d).

switchTrailing(a,d)←¬switchFacing(a,d)

4.4.2 Topological and geometric layout properties.

Predicates describing the topological configuration of signalling objects and the train travel
distance between them are described by predicates for track connection (predicate connected(a,b)),
directed connection (predicate following(a,b,d)), distance (predicate distance(a,b,d, l)),
etc. The track connection predicate is defined as:

– There is a track connection between object a and b (a,b ∈ Atoms):

directlyConnected(a,b)←∃t : track(t)∧belongsTo(a, t)∧belongsTo(b, t),

connected(a,b)← directlyConnected(a,b)∨ (∃c1,c2 : connection(c1,c2)∧
directlyConnected(a,c1)∧ connected(c2,b)).

– There is a directed connection between object a and b (a,b ∈ Atoms, d ∈ Direction,
pa, pb ∈ R):

directlyFollowing(a,b,d)← directlyConnected(a,b)∧
position(a, pa)∧position(b, pb)∧
((d = up∧ pa < pb)∨ (d = down∧ pa > pb))

following(a,b,d)← directlyFollowing(a,b,d)∨
∃c1,c2 : connection(c1,c2)∧directlyFollowing(a,c1,d)
∧ following(c2,b,d)

14 C. Johansen, B. Luteberget

– The distance (along track) in a given direction between object a and b (a,b ∈ Atoms,
d ∈ Direction, pa, pb, l ∈ R):

directDistance(a,b,d, l)← directlyFollowing(a,b,d)∧
position(a, pa)∧position(b, pb)

∧ l = |pb− pa|

distance(a,b,d, l)← directDistance(a,b,d, l)∨
∃c1,c2, l1, l2 : connection(c1,c2)

∧directDistance(a,c1,d, l1)
∧distance(c2,b,d, l2)∧ l = l1 + l2

– Object is located between a and b (a,x,b ∈ Atoms, d ∈ Direction):

between(a,x,b,d)← following(a,x,d)∧ following(x,b,d)

between(a,x,b)←∃d : between(a,x,b,d)

– A path between a and b overlaps with a path between c and d (a,b,c,d ∈ Atoms):

overlap(a,b,c,d)←∃e : between(a,e,b)∧between(c,e,d)

4.4.3 Interlocking properties.

Predicates such as existsPathWithoutSignal(a,b) which defines the method for finding el-
ementary routes, and existsPathWithDetector(a,b) for finding adjacent train detectors, will
be used as building blocks for the interlocking rules. We show here a recursive rule used for
finding elementary routes:

– Signals a and b have a path between them without any other signals in between:

existsPathWithoutSignal(a,b,d)← following(a,b,d)∧
(¬(∃x : signal(x)∧between(a,x,b))∨
(∃x : between(a,x,b)∧ existsPathWithoutSignal(a,x,d)∧
existsPathWithoutSignal(x,b,d)).

4.5 Rule Violations Representation

With the input documents represented as facts, and a library of derived concepts, it remains
to define the technical rules to be checked. All technical rules presented herein are based on
the Norwegian infrastructure manager’s regulations3. The goal of the consistency checking
is to confirm that no inconsistencies exist, in which case no further information is required,
or to find inconsistencies and present them in a way that allows the user to understand the
error and to adjust their design accordingly. Rules are therefore expressed negatively, as rule
violations, so that a query corresponding to the rule is empty whenever the rule is consistent
with the design, or the query contains counterexamples to the rule when they exist. Some
examples of technical rules representing conditions of the railway station layout are given
below.

3 Jernbaneverket: Teknisk regelverk, http://trv.jbv.no/

http://trv.jbv.no/

Verification of Railway Infrastructure Designs against Regulations 15

Property 1 (Layout: Home signal) A home main signal shall be placed at least 200 m in
front of the first controlled, facing switch in the entry train path.

200 m

Property 1 may be represented in the following way:

isFirstFacingSwitch(b,s)← stationBoundary(b)∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x)∧between(b,x,s)),

ruleViolation1(b,s)← isFirstFacingSwitch(b,s)∧
(¬(∃x : signalFunction(x,home)∧between(b,x,s))∨
(∃x,d, l : signalFunction(x,home)∧
∧distance(x,s,d, l)∧ l < 200).

Checking for rule violations can be expressed as:

∃b,s : ruleViolation1(b,s),

which in Datalog query format becomes ruleViolation1(B,S)?.

Property 2 (Layout: Minimum detection section length) No train detection section shall
be shorter than 21 m. I.e., no train detectors should be separated with less than 21 m driving
distance.

This property is represented as follows:

ruleViolation2(a,b)←∃d, l : trainDetector(a)∧ trainDetector(b)∧
distance(a,b,d, l)∧ l < 21.0.

Property 3 (Layout: Exit main signal) An exit main signal shall be used to signal move-
ment exiting a station.

This property can be elaborated into the following rules:

– No path should have more than one exit signal:

ruleViolation3(s)←∃d : signalType(s,exit)∧ following(s,so,d)∧
¬signalType(s0,exit).

– Station boundaries should be preceded by an exit signal:

exitSignalBefore(x,d)←∃s : signalType(s,exit)∧ following(s,x,d)
ruleViolation3(b)←∃d : stationBoundary(b)∧¬exitSignalBefore(b,d).

A basic property of tabular interlockings is that each consecutive pair of main signals
normally has an elementary train route associated with it, i.e.:

Property 4 (Interlocking: Elementary routes) A pair of consecutive main signals should
be present as a route in the interlocking.

16 C. Johansen, B. Luteberget

This can be represented as follows:

defaultRoute(a,b,d)← signalType(a,main)∧ signalType(b,main)∧
direction(a,d)∧direction(b,d)∧
following(a,b,d)∧ existsPathWithoutSignal(a,b,d),

ruleViolation4(a,b,d)← defaultRoute(a,b,d)∧
¬(∃r : trainRoute(r)∧ trainRouteStart(r,a)∧ trainRouteEnd(r,b)).

This type of rule is not absolutely required for a railway signalling design to be valid and
safe. Some rules are hard constraints, where violations may be considered to be errors in
the design, while other rules are soft constraints, where violations may suggest that further
investigation is recommended. This is relevant for the counterexample presentation section
below.

Property 5 (Interlocking: Track clear on route) Each pair of adjacent train detectors de-
fines a track detection section. For any track detection sections overlapping the route path,
there shall exist a corresponding condition on the activation of the route.

Section 1 Section 2

Sig. A Sig. B

Detector Detector Detector

Tabular interlocking:
Route Start End Sections must be clear

AB A B 1, 2

Property 5 can be represented as follows:

existsPathWithDetector(a,b)←∃d : following(a,b,d)∧ trainDetector(x)∧
between(a,x,b).

adjacentDetectors(a,b)←trainDetector(a)∧ trainDetector(b)∧
¬existsPathWithDetector(a,b),

detectionSectionOverlapsRoute(r,da,db)← trainRoute(r)∧
start(r,sa)∧ end(r,sb)∧
adjacentDetectors(da,db)∧overlap(sa,sb,da,db),

detectionSectionCondition(r,da,db)← detectionSectionCondition(c)∧
belongsTo(c,r)∧belongsTo(da,c)∧belongsTo(db,c).

ruleViolation5(r,da,db)←
detectionSectionOverlapsRoute(r,da,db)∧
¬detectionSectionCondition(r,da,db).

Property 6 (Interlocking: Flank protection) A train route shall have flank protection.

Verification of Railway Infrastructure Designs against Regulations 17

Route

Signal A Signal B

Signal C

Switch X

Switch Y

Flan
k

Fig. 6: The dashed path starting in switch X must be terminated in all branches by a valid
flank protection object, in this case switch Y and signal C. (Property 6)

For each switch in the route path and its associated position, the paths starting in the opposite
switch position defines the flank. Each flank path is terminated by the first flank protection
object encountered along the path. The following objects can give flank protection:

1. Main signals, by showing the stop aspect.
2. Shunting signals, by showing the stop aspect.
3. Switches, by being controlled and locked in the position which does not lead into the

path to be protected.
4. Derailers, by being controlled and locked in the derailing state.

An example situation is shown in Figure 6. While the indicated route is active (A to B),
switch X needs flank protection for its left track. Flank protection is given by setting switch
Y in right position and setting signal C to stop. Property 6 can be elaborated into the follow-
ing rules:

– All flank protection objects should be eligible flank protection objects, i.e. they should
be in the list of possible flank protection objects, and have the correct orientation (the
flankElement predicate contains the interlocking facts):

flankProtectionObject(a,b,d)←((signalType(a,main)∧dir(a,d))∨
(signalType(a,shunting)∧dir(a,d))∨
switchFacing(a,d)∨
derailer(a))∧ following(a,b,d).

flankProtectionRequired(r,x,d)← trainRoute(r)∧ start(r,sa)∧
end(r,sb)∧ switchOrientation(x,o)∧between(sa,x,sb)∧
orientationDirection(o,od)∧oppositeDirection(od ,d).

flankProtection(r,e)←flankProtectionRequired(r,x,d)∧
flankProtectionObject(e,x,d).

ruleViolation6(r,e)←flankElement(r,e)∧
¬flankProtection(r,e).

18 C. Johansen, B. Luteberget

– There should be no path from a model/station boundary to the given switch, in the given
direction, that does not pass a flank protection object for the route:

existsPathWithFlankProtection(r,b,x,d)←
flankElement(r,e)∧flankProtectionElement(e,x,d)∧
between(b,e,x).

existsPathWithoutFlankProtection(r,b,x,d)←
¬existsPathWithFlankProtection(r,b,x,d)∨
(between(b,y,x)∧¬flankProtectionElement(e,y,d)∧
existsPathWithoutFlankProtection(r,b,y,d)∧
existsPathWithoutFlankProtection(r,y,x,d)).

ruleViolation6(r,b,x)← stationBoundary(b)∧
flankProtectionRequired(r,x,d)∧ following(b,x,d)∧
existsPathWithoutFlankProtection(r,b,x,d).

5 Proposed Railway Signalling Design Tool Chain

Next we describe the tool chain that we propose for automating the current manual tasks
involved in the design of railway infrastructures (more details can be found in [26]). In
particular, we are focused on integrating and automating those simple, yet tedious, rules and
conditions usually used to maintain some form of consistency of the railway, and have these
checks done automatically. Whenever the design is changed by an engineer working with the
CAD program, our verification procedure would help, behind the scenes, verifying any small
changes in the model and the output documents. Violations would either be automatically
corrected, if possible, or highlighted to the engineer. Thus, we are focusing on solutions
with small computational overhead when working with CAD tools (running on standard
computers).

Figure 7 shows the overall tool chain. The software allows checking of rules and regu-
lations of static infrastructure (described in this paper) inside the CAD environment, while
more comprehensive verification and quality assurance can be performed by special-purpose
software for other design and analysis activities.

Generally, analysis and verification tools for railway signalling designs can have com-
plex inputs, they must account for a large variety of situations, and they usually require long
running times. Therefore, we limit the verification inside the design environment to static
rules and expert knowledge, as these rules require less dynamic information (timetables,
rolling stock, etc.) and less computational effort, while still offering valuable insights. This
situation may be compared to the tool chain for writing computer programs. Static analysis
can be used at the detailed design stage (writing the code), but can only verify a limited set
of properties. It cannot fully replace testing, simulation and other types of analysis, and must
as such be seen as a part of a larger tool chain.

Other tools, that are external to the CAD environment, may be used for these types of
analysis, which are less automated or require heavier computation, such as:

– Code generation and verification for interlockings is possible e.g. through the formal
verification framework of Prover Technology4.

4 Prover Technology AB: http://www.prover.com/

http://www.prover.com/

Verification of Railway Infrastructure Designs against Regulations 19

Rules,
regulations,
and expert
knowledge
(Prolog /
Datalog

representation)

CAD program (design stage)

CAD document
(station layout)

Verification
issues GUI

Symbols with
attached railML

fragments

Interlocking
specification

Complete railML
document

Verification engine

User decision

Issue
description

(rule,objects,
locations)

Human-readable
reports and drawings

Machine-readable
layout and specs

Interlocking
code generation
and verification

Capacity analysis

Drawing / report
generators

Building
Information
Modeling

Export

Fig. 7: Railway design tool chain. The CAD program box shows features which are di-
rectly accessible at design time inside the CAD program, while the export creates machine-
readable (or human-readable) documents which may be further analyzed and verified by
external software (shown in dashed boxes).

Railway infrastructure topology, signalling objects, and interlocking specifications should
be automatically transferred to a code generation and verification tool to help automate
interlocking implementation. The transfer of data from the CAD design model to inter-
locking code generation tools is possible by using standardized formats such as railML,
which in the future will also include an interlocking specification schema [5].

– Capacity analysis and timetabling can be performed using e.g. OpenTrack5, LUKS6,
or Treno7.
OpenTrack is a simulation tool which allows stochastic capacity analysis, running time
analysis, and other types of analyses. By transferring data directly from a CAD model,
such analyses can be performed at an early stage in the design process, greatly increas-
ing the possibility for design decisions to be affected by capacity analysis. This allows
a more agile and dynamic design process, so that the end goals of the railway adminis-
tration can be met, and costs of re-designing and re-building can be minimized.

– Building information modeling (BIM), including such activities as life-cycle informa-
tion management and 3D viewing, are already well integrated with CAD, and can be
seen as an extension of CAD.

5 OpenTrack: simulation of railway networks, http://www.opentrack.ch/
6 LUKS: analysis of lines and junctions, http://www.via-con.de/en/development/luks
7 treno: timetable reliability & network operations analyser, University of Trieste.

http://www.opentrack.ch/
http://www.via-con.de/en/development/luks

20 C. Johansen, B. Luteberget

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 8: Structured comments on rule violation expression

The object type definitions described in Section 3 above may be used to associate 3D
models to symbols in the 2D geographical layout. Semantic information can then be
preserved when transferring information between 2D and 3D representations. 3D tools
for design and presentation are now becoming widely used on new railway projects.8

6 Tool Implementation

In this section we describe the main aspects of our tool, which implements the verification
and the integration into the CAD program, as described in Figure 7.

The XSB Prolog interpreter [47] was used as a back-end for the implementation as it
offers tabled predicates which have the same characteristics as Datalog programs, while still
allowing general Prolog expressions such as arithmetic operations.

The translation from railML to Datalog facts assumes that the document is valid railML,
which may be checked with general XML schema validators, or a specialized railML val-
idator.

6.1 Counterexample Presentation

When rule violations are found, the railway engineer will benefit from information about
the following:

– Which rule was violated (textual message containing a reference to the source of the
rule or a justification in the case of expert knowledge rules).

– Where the rule was violated (identity of objects involved).

Also, classification of rules based on e.g. discipline and severity may be useful in many
cases. In the rule databases, this may be accomplished through the use of structured com-
ments, similar to the common practice of including structured documentation in computer
programs, such as JavaDoc (see Figure 8 for an example of how we do this). A program
parses the structured comments and forwards corresponding queries to the logic program-
ming solver. Any violations returned are associated with the information in the comments, so
that the combination can be used to present a helpful message to the user. We implemented
a prototype CAD add-on program for Autodesk AutoCAD (see Figure 9 for a screen-shot).

8 http://www.jernbaneverket.no/Prosjekter/Inter-City-/3d/

http://www.jernbaneverket.no/Prosjekter/Inter-City-/3d/

Verification of Railway Infrastructure Designs against Regulations 21

Testing
station

Arna
phase A

Arna
phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog facts 85 8283 9159
Running time (s) 0.1 4.4 9.4

Table 1: Case study size and running times on a standard laptop.

6.2 Case Study Results

The rules concerning signalling layout and interlocking from Jernbaneverket9 described
above have been checked against the model (i.e., railML representation) of the Arna-Fløen
project, which is an ongoing design project in Anacon AS (now merged with Norconsult
AS). Each object was associated with one or more construction phases, which we call phase
A and phase B, which also corresponds to two operational phases. The model that was used
for the work with the Arna station (phase A and B combined) included 25 switches, 55
connections, 74 train detectors, and 74 signals. The interlocking consisted of 23 and 42
elementary routes in operational phase A and B respectively.

The Arna station design project and the corresponding CAD model has been in progress
since 2013, and the method of integrating railML fragments into the CAD database, as de-
scribed in Section 5, has been in use for more than one year. Engineers working on this
model are now routinely adding the required railML properties to the signalling compo-
nents as part of their CAD modelling process. This allowed a fully automated transfer of
the railML station description to the verification tool. Several simplified models were made
also for testing the correct functioning of the concept predicates and rule violation predi-
cates. The rule collection consisted of 37 derived concepts, 5 consistency predicates, and 8
technical predicates. Running times for the verification procedure can be found in Table 1.

The tight integration into the CAD program and, as such, into the engineer’s design
process, creates the demand for fast re-evaluation of all conclusions upon small changes to
the railway designs.

Usually, engineers start with an empty or draft design and add/change one object at a
time. The performance figures presented in Table 1 show that the current implementation is

9 The Norwegian Railway Authorities (http://www.jbv.no).

Fig. 9: Counterexample presentation within an interactive CAD environment.

http://www.jbv.no

22 C. Johansen, B. Luteberget

well acceptable for “one-shot” validation even for realistic designs with running times in the
range of seconds. However, it is not fast enough to smoothly and transparently be integrated
such that it can automatically rerun the complete verification for each small change.

An alternative approach that promises to be more efficient is incremental verification:
instead of solving logic programs from scratch for each verification run, it tries to mate-
rialize all consequences of the base facts and then maintains this view under fact updates.
Incremental verification is further discussed in Section 7 below.

7 Incremental Verification

While the static infrastructure verification process as developed so far in this text certainly
can improve on the current practice of railway signalling design as it is, the full potential of
a “light-weight” verification is still unused because of the perceived separation of design ac-
tivity and verification activity. A verification tool which runs invisibly alongside the design,
giving feedback on the current state of the design at any time could have a higher impact on
the design process.

The common use case for running the railway design CAD tool in general is that one
performs a series of small changes. Indeed, we have found in the collaborations with railway
engineers that large portions of the design phase have the goal of efficiently handling changes
in track layouts, component capabilities, performance requirements, etc. The verification
could, instead of being called whenever final version printouts are being made, instantly
report potential problems in the design as soon as this information is available.

This requires lowering the running time of the verification, hopefully to less than one
second, while keeping in mind that our prototype verification tool should eventually be able
to scale up to much larger stations, projects spanning several stations, and significantly larger
knowledge bases. Exploiting the fact that the design work is incremental, also evaluating the
Datalog programs incrementally seems to be a promising solution to this challenge.

In this section we give an overview of approaches and algorithms for incremental Dat-
alog and the tools that are available. We study these from the viewpoint of our application
domain and evaluate initial performance on our case study.

7.1 Incremental evaluation of Datalog

Datalog systems use rules to derive a set of consequences (intensional facts), from a given
set of base facts (extensional facts). Typically, Datalog systems use a bottom-up (or forward-
chaining) evaluation strategy, where all possible consequences are materialized [48, Chap.
3] [1, Chap. 13] . This simplifies query answering to simply looking up values in the mate-
rialization tables. Any change to the base facts, however, will invalidate the materialization.
Several approaches have been suggested to reduce the work required to find a new material-
ization after changing the base facts.

First, if considering only addition of facts to positive Datalog programs, i.e. without
negation, then the standard semi-naive algorithm [48, Chap. 3] [1, Chap. 13] is already an
efficient approach, as it correctly handles additions to the materialization in an incremental
manner. The real challenge is the non-monotonic changes, i.e., when removing facts ap-
pearing positively in rules or adding facts appearing negatively in rules. Non-monotonicity
is essential in our railway infrastructure verification rules. Graph reachability is prominent

Verification of Railway Infrastructure Designs against Regulations 23

in many of the regulations for railway signalling, so efficiently maintaining rules involving
transitivity is also essential.

Some algorithms, such as truth maintenance systems [8], work by storing more infor-
mation (in addition to the logical consequences) about the supporting facts for derived facts,
so that removal of supporting facts may or may not remove a derived fact, depending on
whether the support is still sufficient. This allows efficient removal of facts, at the cost of
requiring more time and memory for normal derivations. Inspired by the truth maintenance
systems of Doyle [8], the XSB Prolog system implements incremental tabling [46] by keep-
ing such sets of supporting facts in memory. Figure 10. shows deduced facts for a graph
reachability query. In this case, whenever there are several paths connecting a pair vertices
of the graph, the reach fact for the two vertices is deduced in several ways. In the ap-
proach taken in XSB Prolog, different sets of facts that independently prove a derived fact
are stored in tables. Whenever changes are made to base facts, the sets of supporting facts
can be removed, and as long as the set is not emptied, the derived fact still holds.

Fig. 10: Edge relation and corresponding support sets for a reachability predicate (example
from [42]).

Another class of algorithms, working without additional “bookkeeping”, can be more
efficient if the re-evaluation of sets of facts is relatively easy compared to re-materializing
all facts. The Propagation-Filtering algorithm [17] works on each removed fact separately,
propagating it through to all rules which depend on it, while also after each step of the
propagation performing a query for alternative support which would end the propagation. In
contrast, the Delete-Rederive (DRed) algorithm [16] is rule-oriented and works on sets of
facts, first over-approximating all possible deletions that may result from a change in base
facts, then re-deriving any still-supported facts from the over-deleted state before finally
continuing semi-naive materialization on newly added facts.

An example where the DRed algorithm is less efficient is graph reachability, which can
be encoded on the following form:

path(x,y)← edge(x,y),

path(x,y)← edge(x,z)∧path(z,y).

Figure 11 shows key differences in update approaches for the example of a graph reach-
ability from a given node.

Recently, the Forward/Backward/Forward (FBF) algorithm [32] used in RDFox im-
proved the DRed algorithm in most cases by searching for alternative support (and caching
the results) for each potentially deleted fact before proceeding to the next fact. Notably, this
method performs better on rules involving transitivity, as deletions do not propagate further
than necessary.

24 C. Johansen, B. Luteberget

(a) Edge relation visualized as arrows between ob-
jects (each element is an arrow e(a,b)).

(b) DRed algorithm: removing one edge (thick line)
triggers re-evaluation of many dependent edges
(dashed lines)

(c) FBF algorithm: removing one edge (thick
line) causes re-evaluation of dependent edge (thick
dashed line), but confirmation that this edge is still
valid stops further propagation.

1

1
2−1

2

(d) Counting approach: removing one edge (thick
line) causes re-evaluation of dependent edge (thick
dashed line), but because this edge has multiple
derivations, it is still valid, and propagation can
stop. Note that a pure counting approach is not suf-
ficient in this case because of the recursive reacha-
bility rule.

Fig. 11: Different approaches to incremental evaluation demonstrated on a reachability pro-
gram using an edge relation. Using the edge relation in (a), the reachability from the first
vertex is calculated, and update strategies for (b) DRed, (c) FBF, and (d) a counting approach
are exemplified.

This method is used in the Semantic Web tool RDFox10, which has a high performance
on multicore processors with in-memory databases. We are considering RDFox as an al-
ternative candidates for the back end of our incremental railway infrastructure verification
procedure.

7.2 Tools and performance

This section summarizes a survey of tools first presented in [27], and describes tools that
feature incremental evaluation and Datalog, and which have the maturity required for a fu-
ture in industrial applications. The logic programs for our verification make use of recursive
predicates, stratified negation, and arithmetic. Therefore, we pay particular attention to tools
that at least satisfy these needs. In addition, we are looking for high performance on rela-
tively small (in-memory) data sets, so light-weight library-style logic engines are preferred.
High-performance distributed “big data” type of tools have less value in this context.

XSB Prolog, continuously developed since 1990, has constantly been pushing the state of
the art in high-performance Prolog. XSB is especially known for its tabling support [47],
which allows fast Datalog-like evaluation of logic programs without restricting ISO Pro-
log in any way. The tabling support was extended to allow incremental evaluation [42],
and these features have been under continued development and seem to have reached
a mature state [46]. For some applications, however, the additional memory usage for
incremental tabling can lead to a significant increase in the total memory needed.

10 RDFox: scalable in-memory RDF triple store with share memory parallel Datalog reasoning, http:
//www.cs.ox.ac.uk/isg/tools/RDFox/

http://www.cs.ox.ac.uk/isg/tools/RDFox/
http://www.cs.ox.ac.uk/isg/tools/RDFox/

Verification of Railway Infrastructure Designs against Regulations 25

RDFox is a multicore-scalable in-memory RDF triple store with Datalog reasoning. It reads
semantic web formats (RDF/OWL) and stores RDF triples, but also includes a Datalog-
like input language which can describe SWRL rules. This rule language has been ex-
tended to include stratified negation and arithmetic. The RDFox system also implements
the new FBF algorithm for incremental evaluation [32].
RDFox stores internally only triples as in RDF (subject, predicate, and object), which,
in Datalog, corresponds to only using unary and binary predicates. A method of reify-
ing the rules for higher-arity Datalog predicates into binary predicates allows RDFox
to calculate any-arity Datalog programs. However, this requires separate rules for each
component (argument) of the predicate, and when doing incremental evaluation, the FBF
algorithm’s backward chaining step then examines all combinations of components (ar-
guments) potentially involved in such a higher-arity predicate. Because of this problem,
using RDFox incrementally did not improve running times in our case study, suggesting
a need for native support for n-ary predicates in RDFox.

LogicBlox is a programming platform [2] for combining transactions with analytics in en-
terprise application areas including web-based retail planning and insurance. It uses a
typed, Datalog-based custom language LogiQL and has a comprehensive development
framework. It claims support for incremental verification, but we could not evaluate it
on our railway example due to absence of freely downloadable distributions.

Dyna is a promising new Datalog-like language for modern statistical AI systems [10]. It
has currently not matured sufficiently for our application, but its techniques are promis-
ing, and we hope to see it more fully developed in the future.

Many other Datalog tools are available (around 30), few of them supporting incremental
evaluation. An overview and our brief evaluation of them can be found in the technical report
[29], and a more general overview of Datalog tools can be found in the Wikipedia page. 11

7.3 Performance

Table 2 compares the running time and memory usage for the verification case study of Arna
station presented in Section 6, extended to use the incremental capabilities of XSB Prolog.
The extra bookkeeping required in XSB to prepare for incremental evaluation requires more
time and memory than non-incremental evaluation, so we include both non-incremental
and from-scratch incremental evaluation in the table for comparison. We show how updates
can be calculated faster than from-scratch evaluation by moving a single object (an axle
counter) in and out of a disallowed area near another object (regulations require at least 21.0
m separation between train detectors). Without using abstraction methods, the case study
verification uses over 2 GB of memory. So, for any hope of handling larger stations on a
standard laptop or workstation, this must be reduced. We were not able to reduce memory
usage in this case study using the abstraction methods in XSB (version 3.6.0).

While currently none of the tools seem to satisfy all conditions we hoped for in our in-
tegration, notably efficiency, but also maturity and stability, it should also be noted that the
need for incremental evaluation has been identified by the community not only as theoreti-
cally interesting, but also as of practical importance. The RDFox developers aim to support
incremental updates of higher-arity predicates in a later version. The XSB project has made
efforts to improve its abstraction mechanisms, so future versions might become feasible for
our use. If reducing the memory usage would require adapting a Datalog algorithm (such as

11 https://en.wikipedia.org/wiki/Datalog#Systems_implementing_Datalog

https://en.wikipedia.org/wiki/Datalog#Systems_implementing_Datalog

26 C. Johansen, B. Luteberget

Testing
station

Arna
phase A

Arna
phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog input facts 85 8283 9159
XSB:
Non-incremental verif.: Running time: (s) 0.015 2.31 4.59

Memory (MB) 20 104 190
Incremental verif. baseline: Running time (s) 0.016 5.87 12.25

Memory (MB) 21 1110 2195
Incr. single object update: Running time (s) 0.014 0.54 0.61

Memory (MB) 22 1165 2267

Table 2: Case study size and running times on a standard laptop.

DRed), then XSB’s unrestricted Prolog might be a challenge. A different approach would
be to extend another efficient Datalog tool, such as Soufflé12 to do incremental evaluation,
which could require a significant effort.

8 Conclusions, Related and Further Work

We have demonstrated a logical formalism in which railway layout and interlocking con-
straints can be modelled and technical regulations can be expressed, and which can be de-
cided by logic programming methods (Datalog in particular) with polynomial time com-
plexity. This allows verification of railway signalling designs against infrastructure manager
regulations. It also allows to build and maintain a formally expressed body of expert knowl-
edge, which may be exchanged between engineers and automatically checked against de-
signs. We have demonstrated this approach on an ongoing railway design project from the
Anacon AS company and using the standard regulations from the Norwegian railway au-
thorities. We have implemented a prototype and integrated it in the engineer’s CAD design
tool suite. Even though preliminary tests show good performance, we saw the need for faster
verification methods, and thus looked into incremental verification tools for Datalog. In this
respect we presented our summary of findings and our test results on our railway use case.

This paper is an extension and combination of three previous conference papers, i.e., we
extended our initial results from [28] with more explanations and background material; we
combined and explained the logical work in more context, some of which was presented in
[26] to the practitioners from the railway domain; we explained the need for incremental
verification and provided our findings and conclusions, part of which were presented in
[27]. This paper, thus, presents our results in a more uniform and integrated manner, giving
a better picture of the overall tool chain and putting the problem well in context. Our future
work is detailed in the following.

8.1 Related work.

Railway control systems and signalling designs are a fertile ground for formal methods. See
[3,11] for an overview of various approaches and pointers to the literature, applying for-
mal methods in various phases of railway design. For a slightly more dated state-of-the-art

12 Soufflé: a Datalog compiler, http://souffle-lang.org/

http://souffle-lang.org/

Verification of Railway Infrastructure Designs against Regulations 27

survey, see [19]. In particular, safety of interlockings has been intensively formalized and
studied, using for instance VDM [14] and the B-method, resp. Event-B [23]. Model checking
has proved particularly attractive for tackling the safety of interlocking, and various model
checkers and temporal logics have been used, cf. e.g. [6,51,9] [38,30,15,9]. Critically eval-
uating practicality, [12] investigated applicability of model checking for interlocking tables
using NuSMV resp. Spin, two prominent representatives of BDD-based symbolic model
checking, resp. explicit state model checking. The research shows that interlocking systems
of realistic size are currently out of reach for both flavors of general purpose model checkers.
To mitigate the state-space explosion problem, [18] uses bounded model checking [7] for
interlockings. Instead of attempting an exhaustive coverage of the state-space, symbolically
or explicitly, bounded model checking analysis (the behavior of) a given system only up to
a given bound (which is raised incrementally in case analyzing a problem instance is incon-
clusive). This restriction allows to use SAT solving techniques in the analysis. The paper
uses a variant of linear temporal logic (LTL) for safety property specification and employs
so-call k-induction. The work of [50] investigates how to exploit domain-specific knowl-
edge about interlocking verification to obtain good variable orderings when encoding the
systems to be verified in a BDD-based symbolic model checker. An influential technology
is the tool-based support for verified code generation for railway interlockings from Prover
AB Sweden [4]. Prover is an automated theorem prover, using Stålmarck’s method [45] of
tautology checking.

Also logic (programming) languages, like Prolog or Datalog, have been used for repre-
senting and checking various aspects of railway designs. For the verification of signalling of
an interlocking design [20] uses a Prolog database to represent the topology and the layout,
where for the the verification, the work uses a separate SAT solver. Similarly, the work of
[33,34] uses logic programming for verification of interlocking systems. In particular, the
work uses a specific version of so-called annotated logic, namely annotated logic programs
with strong negation (ALPSN). In general and beyond the railway system domain, recent
times have seen renewed research interest in Datalog, see for instance the collection [31].
Datalog has in particular been used for formalizing and efficiently implementing program
analyses [43,49], whereas [44] presents Doop, a context-sensitive points-to analysis frame-
work for Java.

The mentioned works generally include dynamic aspects of the railway in their check-
ing, like train positions and the interlocking state. This is in contrast to our work, which
focuses on checking against a formalization of the general design rules issued by the regu-
latory bodies, thus concentrating on static aspects such as the signalling layout. This makes
the notorious state-space explosion problem less urgent and makes an integration into the
standard design workflow within the existing CAD tool practical.

Lodemann et al. [25] use semantic technologies to automate railway infrastructure ver-
ification. Their scope is still wider than this paper in the computational sense, with the full
expressive power of OWL ontologies, running times on the order of hours, and the use of
separate interactive graphical user interfaces rather than integration with design tools.

8.2 Future work.

In the future work with RailComplete AS, we will focus on extending the rule base to con-
tain more relevant signalling and interlocking regulations, and also on evaluating the perfor-
mance of our verification on a larger scale. Design information and rules about other railway
control systems, such as geographical interlockings and train protection systems could also

28 C. Johansen, B. Luteberget

be included. The current work is assuming Norwegian regulations, but the European Rail
Traffic Management System is expected to dominate in the future.

Involving railway engineers in knowledge base development is somewhat hindered by
the fact that Datalog and logic programming, though declarative and concise, are still pro-
gramming languages, and a good intuition about language semantics is required for effi-
cient and correct development. We have started developing a higher-level domain-specific
language which compiles to Datalog, for the purpose of including railway engineers more
closely in the knowledge base development. Using the techniques of controlled natural lan-
guages (CNL) [22], the language is formally defined and parsable, yet readable as natural
language. Writing text in a controlled natural language is a harder problem, as the formal
grammar limits what can be expressed, and also how it is written. This problem can be miti-
gated by means of specialized text editors (e.g., as provided by the Grammatical Framework
[39],[40, Chap. 7] or Attempto Controlled English [13,21]) which guide the user towards
writing acceptable sentences. Adding specific language constructs for static infrastructure
analysis of railway designs ensures that the level of abstraction is close to the original reg-
ulation text. Our future work will include testing this language with railway engineers and
integrating knowledge base development into the railway design tool chain.

Finally, we plan to extend from consistency checking to optimization of designs. Opti-
mization requires significantly larger computational effort, and the relation between Datalog
and more expressive logical programming frameworks could become relevant.

Acknowledgements We are grateful to Claus Feyling from RailComplete AS and Martin Steffen from Uni-
versity of Oslo for valuable inputs.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases, 1st edn. Addison-Wesley Longman
Publishing Co., Inc. (1995)

2. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veldhuizen, T.L., Washburn,
G.: Design and implementation of the LogicBlox system. In: T.K. Sellis, S.B. Davidson, Z.G. Ives (eds.)
The 2015 ACM SIGMOD International Conference on Management of Data, pp. 1371–1382. ACM
(2015). DOI 10.1145/2723372.2742796

3. Bjørner, D.: New results and trends in formal techniques for the development of software in transporta-
tion systems. In: G. Tarnai, E. Schnieder (eds.) Proceedings of the Symposium on Formal Methods for
Railway Operation and Control Systems (FORMS’03), pp. 1–20. L’Harmattan Hongrie (2003)

4. Borälv, A., Stålmarck, G.: Prover technology in railways. In: M.G. Hinchey, J.P. Bowen (eds.) Industrial-
Strength Formal Methods, International Series in Formal Methods, pp. 329–305. Springer-Verlag (1999)

5. Bosschaart, M., Quaglietta, E., Janssen, B., Goverde, R.M.P.: Efficient formalization of railway inter-
locking data in RailML. Information Systems 49, 126–141 (2015). DOI http://dx.doi.org/10.1016/j.is.
2014.11.007

6. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of railway interlocking sys-
tems. In: J. Pang, Y. Liu, S. Mauw (eds.) Proceedings 4th International Workshop on Engineering Safety
and Security Systems, ESSS, Electronic Proceedings in Theoretical Computer Science, vol. 184, pp.
19–31. Open Publishing Association (2015). DOI 10.4204/EPTCS.184.2

7. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal
Methods in System Design 19, 7–34 (2001)

8. Doyle, J.: A truth maintenance system. Artificial Intelligence 12(3), 231–272 (1979). DOI 10.1016/
0004-3702(79)90008-0

9. Eisner, C.: Using symbolic model checking to verify the railway stations of Hoorn-Kersenboogerd and
Heerhuowaard. In: L. Pierre, T. Kropf (eds.) Correct Hardware Design and Verification Methods, 10th
IFIP WG 10.5 Advanced Research Working Conference, CHARME ’99, Lecture Notes in Computer
Science, vol. 1703, pp. 97–109. Springer-Verlag (1999)

10. Eisner, J., Filardo, N.W.: Dyna: Extending Datalog for modern AI. In: de Moor et al. [31], pp. 181–220

Verification of Railway Infrastructure Designs against Regulations 29

11. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applications to railway sig-
nalling. In: S. Gnesi, T. Margaria (eds.) Formal Methods for Industrial Critical Systems, pp. 61–84. John
Wiley & Sons Inc. (2012)

12. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking control tables. In:
E. Schnieder, G. Tarnai (eds.) 8th Symposium on Formal Methods for Automation and Safety in Railway
and Automotive Systems (FORMS/FORMAT 2010), pp. 107–115. Springer-Verlag (2011). DOI 10.
1007/978-3-642-14261-1

13. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge representation. In:
C. Baroglio, P. Bonatti, J. Maluszynski, M. Marchiori, A. Polleres, S. Schaffert (eds.) Reasoning
Web, Lecture Notes in Computer Science, vol. 5224, pp. 104–124. Springer (2008). DOI 10.1007/
978-3-540-85658-0 3

14. Fukuda, M., Hirao, Y., Ogino, T.: VDM specification of an interlocking system and a simulator for its
validation. In: U. Becker, E.L. Schneider (eds.) 9th IFAC Symposium Control in Transportation Systems,
pp. 218–223. IFAC (2000)

15. Gnesi, S., Lenzini, G., Latella, D., Abbaneo, C., Amendola, A., Marmo, P.: Automatic Spin validation
of a safety critical railway control system. In: IEEE Conference on Dependable Systems and Networks,
pp. 119–124. IEEE Computer Society Press (2000)

16. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: P. Buneman, S. Ja-
jodia (eds.) SIGMOD International Conference on Management of Data, SIGMOD ’93, pp. 157–166.
ACM (1993). DOI 10.1145/170035.170066

17. Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive database: An update
propagation approach. In: K. Ramamohanarao, J. Harland, G. Dong (eds.) Proceedings of the Workshop
on Deductive Databases held in conjunction with the Joint International Conference and Symposium
on Logic Programming, Technical Report, vol. CITRI/TR-92-65, pp. 56–65. Department of Computer
Science, University of Melbourne (1992)

18. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for interlocking system
designs. In: S. Counsell, M. Núñez (eds.) Software Engineering and Formal Methods Collocated Work-
shops, Lecture Notes in Computer Science, vol. 8368, pp. 205–220. Springer-Verlag (2014)

19. Hinchey, M.G., Bowen, J.P. (eds.): Industrial-Strength Formal Methods. International Series in Formal
Methods. Springer-Verlag (1999)

20. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles in railway interlocking
systems. In: A. Miller, M. Calder (eds.) Proceedings of the Eighth International Workshop on Automated
Verification of Critical Systems (AVoCS 2008), Electronic Notes in Theoretical Computer Science, vol.
250, pp. 19–31. Elsevier (2009). DOI http://dx.doi.org/10.1016/j.entcs.2009.08.015

21. Kuhn, T.: A principled approach to grammars for controlled natural languages and predictive editors.
Journal of Logic, Language and Information 22(1), 33–70 (2013). DOI 10.1007/s10849-012-9167-z

22. Kuhn, T.: A survey and classification of controlled natural languages. Computational Linguistics 40(1),
121–170 (2014). DOI 10.1162/COLI a 00168

23. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the railways. In: F. Ishikawa,
A.. Romanovsky (eds.) Advances in Developing Dependable Systems in Event-B. In conjunction with
ICFEM 2012, Technical Report. Newcastle University (2012)

24. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series.
Springer-Verlag (2004). DOI 10.1007/978-3-662-07003-1. URL http://dx.doi.org/10.1007/
978-3-662-07003-1

25. Lodemann, M., Luttenberger, N., Schulz, E.: Semantic computing for railway infrastructure verification.
In: 7th International Conference on Semantic Computing (ICSC), pp. 371–376. IEEE (2013). DOI
10.1109/ICSC.2013.69

26. Luteberget, B., Feyling, C.: Automated verification of rules and regulations compliance in CAD mod-
els of railway signalling and interlocking. In: C. Brebbia, J. Mera, N. Tomii, P. Tzieropoulos (eds.)
Computers in Railways XV, pp. 153–165. WIT Press (2016)

27. Luteberget, B., Johansen, C., Feyling, C., Steffen, M.: Rule-based incremental verification tools applied
to railway designs and regulations. In: J. Fitzgerald, C. Heitmeyer, S. Gnesi, A. Philippou (eds.) 21st
International Symposium on Formal Methods (FM), Lecture Notes in Computer Science, vol. 9995, pp.
772–778. Springer-Verlag (2016). DOI 10.1007/978-3-319-48989-6 49

28. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of railway infrastructure
designs. In: E. Ábrahám, M. Huisman (eds.) 12th International Conference on integrated Formal Methods
(iFM 2016), Lecture Notes in Computer Science, vol. 9681, pp. 491–507. Springer (2016). DOI 10.1007/
978-3-319-33693-0 31

29. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of railway infrastructure
designs (long version). Technical report 450, University of Oslo, Dept. of Informatics (2016). URL
http://www.ifi.uio.no/~msteffen/download/16/rulebasedconsistency-rep.pdf

http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1007/978-3-662-07003-1
http://www.ifi.uio.no/~msteffen/download/16/rulebasedconsistency-rep.pdf

30 C. Johansen, B. Luteberget

30. Mirabadi, A., Yazdi, M.B.: Automatic generation and verification of railway interlocking tables using
FSM and NuSMV. Transport Problems: An International Scientific Journal 4, 103–110 (2009)

31. de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.): Datalog Reloaded. First International Workshop
2010, Lecture Notes in Computer Science, vol. 6702. Springer-Verlag (2011)

32. Motik, B., Nenov, Y., Piro, R.E.F., Horrocks, I.: Incremental update of datalog materialisation: the back-
ward/forward algorithm. In: B. Bonet, S. Koenig (eds.) Twenty-Ninth AAAI Conference on Artificial
Intelligence, pp. 1560–1568. AAAI Press (2015). URL http://www.aaai.org/ocs/index.php/
AAAI/AAAI15/paper/view/9660

33. Nakamatsu, K., Kiuchi, Y., Chen, W., Chung, S.: Intelligent railway interlocking safety verification based
on annotated logic program and its simulator. In: IEEE International Conference on Networking, Sensing
and Control, vol. 1, pp. 694–699. IEEE (2004). DOI 10.1109/ICNSC.2004.1297524

34. Nakamatsu, K., Kiuchi, Y., Suzuki, A.: EVALPSN based railway interlocking simulator. In: M.G. Ne-
goita, R.J. Howlett, L.C. Jain (eds.) Knowledge-Based Intelligent Information and Engineering Systems,
Lecture Notes in Artificial Intelligence, vol. 3214, pp. 961–967. Springer-Verlag (2004)

35. Nash, A., Huerlimann, D., Schütte, J., Krauss, V.P.: RailML — a standard data interface for railroad
applications. In: J. Allan, C. Brebbia, R. Hill, G. Sciutto, S. Sone (eds.) Computers in Railways IX, pp.
233–240. WIT Press (2004)

36. Nilsson, U., Maluszynski, J.: Logic, Programming, and Prolog, 2nd edn. John Wiley & Sons, Inc. (1995)
37. Pachl, J.: Railway Operation and Control. VTD Rail Publishing (2015)
38. Pavlovic, O., Ehrich, H.: Model checking PLC software written in function block diagram. In: Third

International Conference on Software Testing, Verification and Validation, ICST, pp. 439–448. IEEE
(2010)

39. Ranta, A.: Grammatical framework. Journal of Functional Programming 14(2), 145–189 (2004). DOI
10.1017/S0956796803004738

40. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI Publications
(2011)

41. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2 edn. Pearson Education (2003)
42. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled logic programs. In: C. Palamidessi

(ed.) Logic Programming, 19th International Conference, ICLP, Lecture Notes in Computer Science,
vol. 2916, pp. 392–406. Springer (2003). DOI 10.1007/978-3-540-24599-5 27

43. Smaragdakis, Y., Bravenboer, M.: Using Datalog for fast and easy program analysis. In: de Moor et al.
[31], pp. 245–251

44. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Understanding context-sensitivity
(the making of a precise and scalable pointer analysis). In: T. Ball, M. Sagiv (eds.) 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, (POPL), pp. 17–30. ACM (2011)

45. Stalmårck, G.: A system for determining logic theorems by applying values and rules to triplets that are
generated from a formula. Swedish Patent No. 467 076 (approved 1992), U.S. Patent No. 5 276 897
(approved 1994), European Patent No. 0403 454 (approved 1995) (1992)

46. Swift, T.: Incremental tabling in support of knowledge representation and reasoning. Theory and Practice
of Logic Programming 14(4-5), 553–567 (2014). DOI 10.1017/S1471068414000209

47. Swift, T., Warren, D.S.: XSB: Extending Prolog with tabled logic programming. Theory and Practice of
Logic Programming 12(1-2), 157–187 (2012). DOI 10.1017/S1471068411000500

48. Ullman, J.D.: Principles of Database and Knowledge-Base Systems (Volume I & II). Computer Society
Press (1988)

49. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with binary decision diagrams for program
analysis. In: K. Yi (ed.) Third Asian Symposium on Programming Languages and Systems (APLAS),
Lecture Notes in Computer Science, vol. 3780, pp. 97–108. Springer-Verlag (2005)

50. Winter, K.: Optimising ordering strategies for symbolic model checking interlocking control tables. In:
T. Margaria, B. Steffen (eds.) 5th International Symposium on Leveraging Applications of Formal Meth-
ods, Verification, and Validation (ISOLA’12), Part II, Lecture Notes in Computer Science, vol. 7610, pp.
246–260. Springer-Verlag (2012)

51. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool support for checking railway
interlocking designs. In: T. Cant (ed.) Proceedings of the 10th Australian Workshop on Safety Critical
Systems and Software, pp. 101–107. ACM (2006)

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9660
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9660

	Introduction
	The railway signalling design process
	Track and Signalling Component Layout
	Interlocking Specification

	Semantic CAD
	Grouping geometry into blocks
	Object type descriptions
	Interlocking and train protection systems

	Logic programming and knowledge-base systems
	Logic programming
	Datalog
	Knowledge-base system
	Input documents
	Track and signalling objects layout in the railML format.
	Interlocking.

	Derived Concepts Representation
	Object properties.
	Topological and geometric layout properties.
	Interlocking properties.

	Rule Violations Representation

	Proposed Railway Signalling Design Tool Chain
	Tool Implementation
	Counterexample Presentation
	Case Study Results

	Incremental Verification
	Incremental evaluation of Datalog
	Tools and performance
	Performance

	Conclusions, Related and Further Work
	Related work.
	Future work.

